Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,65 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
- ar
|
| 5 |
+
- zh
|
| 6 |
+
- fr
|
| 7 |
+
- de
|
| 8 |
+
- it
|
| 9 |
+
- ja
|
| 10 |
+
- ko
|
| 11 |
+
- nl
|
| 12 |
+
- pl
|
| 13 |
+
- pt
|
| 14 |
+
- es
|
| 15 |
+
- th
|
| 16 |
+
- tr
|
| 17 |
+
- ru
|
| 18 |
+
tags:
|
| 19 |
+
- feature-extraction
|
| 20 |
+
- onnx
|
| 21 |
+
- use
|
| 22 |
+
- text-embedding
|
| 23 |
+
- tensorflow-hub
|
| 24 |
license: apache-2.0
|
| 25 |
+
inference: false
|
| 26 |
+
widget:
|
| 27 |
+
- text: Thank goodness ONNX is available, it is lots faster!
|
| 28 |
---
|
| 29 |
+
### Universal Sentence Encoder Multilingual v3
|
| 30 |
+
|
| 31 |
+
ONNX version of [https://tfhub.dev/google/universal-sentence-encoder-multilingual/3](https://tfhub.dev/google/universal-sentence-encoder-multilingual/3)
|
| 32 |
+
|
| 33 |
+
The original TFHub version of the model is referenced in other models here E.g. [https://huggingface.co/vprelovac/universal-sentence-encoder-large-5](https://huggingface.co/vprelovac/universal-sentence-encoder-large-5)
|
| 34 |
+
|
| 35 |
+
### Overview
|
| 36 |
+
|
| 37 |
+
See overview and license details at [https://tfhub.dev/google/universal-sentence-encoder-multilingual/3](https://tfhub.dev/google/universal-sentence-encoder-multilingual/3)
|
| 38 |
+
|
| 39 |
+
This model is a full precision version of the TFHub original, in ONNX format.
|
| 40 |
+
|
| 41 |
+
It uses the [ONNXRuntime Extensions](https://github.com/microsoft/onnxruntime-extensions) to embed the tokenizer within the ONNX model, so no seperate tokenizer is needed, and text is fed directly into the ONNX model.
|
| 42 |
+
|
| 43 |
+
Post-processing (E.g. pooling, normalization) is also implemented within the ONNX model, so no separate processing is necessary.
|
| 44 |
+
|
| 45 |
+
### How to use
|
| 46 |
+
|
| 47 |
+
```python
|
| 48 |
+
import onnxruntime as ort
|
| 49 |
+
from onnxruntime_extensions import get_library_path
|
| 50 |
+
from os import cpu_count
|
| 51 |
+
|
| 52 |
+
sentences = ["hello world"]
|
| 53 |
+
|
| 54 |
+
def load_onnx_model(model_filepath):
|
| 55 |
+
_options = ort.SessionOptions()
|
| 56 |
+
_options.inter_op_num_threads, _options.intra_op_num_threads = cpu_count(), cpu_count()
|
| 57 |
+
_options.register_custom_ops_library(get_library_path())
|
| 58 |
+
_providers = ["CPUExecutionProvider"] # could use ort.get_available_providers()
|
| 59 |
+
return ort.InferenceSession(path_or_bytes=model_filepath, sess_options=_options, providers=_providers)
|
| 60 |
+
|
| 61 |
+
model = load_onnx_model("filepath_for_model_dot_onnx")
|
| 62 |
+
|
| 63 |
+
model_outputs = model.run(output_names=["outputs"], input_feed={"inputs": sentences})[0]
|
| 64 |
+
print(model_outputs)
|
| 65 |
+
```
|