| Quantization made by Richard Erkhov. | |
| [Github](https://github.com/RichardErkhov) | |
| [Discord](https://discord.gg/pvy7H8DZMG) | |
| [Request more models](https://github.com/RichardErkhov/quant_request) | |
| tiny_starcoder_py - AWQ | |
| - Model creator: https://huggingface.co/bigcode/ | |
| - Original model: https://huggingface.co/bigcode/tiny_starcoder_py/ | |
| Original model description: | |
| --- | |
| pipeline_tag: text-generation | |
| inference: true | |
| widget: | |
| - text: 'def print_hello_world():' | |
| example_title: Hello world | |
| group: Python | |
| license: bigcode-openrail-m | |
| datasets: | |
| - bigcode/the-stack-dedup | |
| metrics: | |
| - code_eval | |
| library_name: transformers | |
| tags: | |
| - code | |
| model-index: | |
| - name: Tiny-StarCoder-Py | |
| results: | |
| - task: | |
| type: text-generation | |
| dataset: | |
| type: openai_humaneval | |
| name: HumanEval | |
| metrics: | |
| - name: pass@1 | |
| type: pass@1 | |
| value: 7.84% | |
| verified: false | |
| --- | |
| # TinyStarCoderPy | |
| This is a 164M parameters model with the same architecture as [StarCoder](https://huggingface.co/bigcode/starcoder) (8k context length, MQA & FIM). It was trained on the Python data from [StarCoderData](https://huggingface.co/datasets/bigcode/starcoderdata) | |
| for ~6 epochs which amounts to 100B tokens. | |
| ## Use | |
| ### Intended use | |
| The model was trained on GitHub code, to assist with some tasks like [Assisted Generation](https://huggingface.co/blog/assisted-generation). For pure code completion, we advise using our 15B models [StarCoder]() or [StarCoderBase](). | |
| ### Generation | |
| ```python | |
| # pip install -q transformers | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| checkpoint = "bigcode/tiny_starcoder_py" | |
| device = "cuda" # for GPU usage or "cpu" for CPU usage | |
| tokenizer = AutoTokenizer.from_pretrained(checkpoint) | |
| model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) | |
| inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device) | |
| outputs = model.generate(inputs) | |
| print(tokenizer.decode(outputs[0])) | |
| ``` | |
| ### Fill-in-the-middle | |
| Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output: | |
| ```python | |
| input_text = "<fim_prefix>def print_one_two_three():\n print('one')\n <fim_suffix>\n print('three')<fim_middle>" | |
| inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) | |
| outputs = model.generate(inputs) | |
| print(tokenizer.decode(outputs[0])) | |
| ``` | |
| # Training | |
| ## Model | |
| - **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective | |
| - **Pretraining steps:** 50k | |
| - **Pretraining tokens:** 100 billion | |
| - **Precision:** bfloat16 | |
| ## Hardware | |
| - **GPUs:** 32 Tesla A100 | |
| - **Training time:** 18 hours | |
| ## Software | |
| - **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM) | |
| - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) | |
| - **BP16 if applicable:** [apex](https://github.com/NVIDIA/apex) | |
| # License | |
| The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement). | |