--- license: mit language: - en license_link: https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE base_model: - BAAI/bge-base-en-v1.5 --- # bge-base-en-v1.5-int8-ov * Model creator: [BAAI](https://huggingface.co/BAAI) * Original model: [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) ## Description This is [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with quantization to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf). **Disclaimer**: Model is provided as a preview and may be update in the future. ## Quantization Parameters Weight compression was performed using `nncf.compress_weights` with the following parameters: * mode: **INT8_ASYM** For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/weight-compression.html). ## Compatibility The provided OpenVINO™ IR model is compatible with: * OpenVINO version 2025.3.0 and higher * Optimum Intel 1.25.2 and higher ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: ``` pip install optimum[openvino] ``` 2. Run model inference: ``` import torch from transformers import AutoTokenizer from optimum.intel.openvino import OVModelForFeatureExtraction # Sentences we want sentence embeddings for sentences = ["Sample Data-1", "Sample Data-2"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('OpenVINO/bge-base-en-v1.5-int8-ov') model = OVModelForFeatureExtraction.from_pretrained('OpenVINO/bge-base-en-v1.5-int8-ov') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = model_output[0][:, 0] # normalize embeddings sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:", sentence_embeddings) ``` For more examples and possible optimizations, refer to the [Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html). You can find more detailed usage examples in OpenVINO Notebooks: - [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system) ## Limitations Check the original [model card](https://huggingface.co/BAAI/bge-base-en-v1.5) for limitations. ## Legal information The original model is distributed under [MIT](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE) license. More details can be found in [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). ## Disclaimer Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.