File size: 3,469 Bytes
b5dc274 2c90911 b5dc274 66b3dc0 b5dc274 66b3dc0 b5dc274 66b3dc0 b5dc274 66b3dc0 b5dc274 b985b27 b5dc274 b985b27 b5dc274 b985b27 b5dc274 b985b27 b5dc274 b985b27 b5dc274 b985b27 b5dc274 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: mit
language:
- en
license_link: https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE
base_model:
- BAAI/bge-base-en-v1.5
---
# bge-base-en-v1.5-int8-ov
* Model creator: [BAAI](https://huggingface.co/BAAI)
* Original model: [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
## Description
This is [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with quantization to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf).
**Disclaimer**: Model is provided as a preview and may be update in the future.
## Quantization Parameters
Weight compression was performed using `nncf.compress_weights` with the following parameters:
* mode: **INT8_ASYM**
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/weight-compression.html).
## Compatibility
The provided OpenVINO™ IR model is compatible with:
* OpenVINO version 2025.3.0 and higher
* Optimum Intel 1.25.2 and higher
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
```
pip install optimum[openvino]
```
2. Run model inference:
```
import torch
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForFeatureExtraction
# Sentences we want sentence embeddings for
sentences = ["Sample Data-1", "Sample Data-2"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('OpenVINO/bge-base-en-v1.5-int8-ov')
model = OVModelForFeatureExtraction.from_pretrained('OpenVINO/bge-base-en-v1.5-int8-ov')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
model_output = model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:", sentence_embeddings)
```
For more examples and possible optimizations, refer to the [Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html).
You can find more detailed usage examples in OpenVINO Notebooks:
- [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system)
## Limitations
Check the original [model card](https://huggingface.co/BAAI/bge-base-en-v1.5) for limitations.
## Legal information
The original model is distributed under [MIT](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE) license. More details can be found in [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5).
## Disclaimer
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
|