|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from typing import Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from einops import rearrange | 
					
						
						|  | from timm.models.layers import DropPath | 
					
						
						|  | from torch import nn | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.modeling_outputs import (BaseModelOutput, | 
					
						
						|  | BaseModelOutputWithPooling) | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  |  | 
					
						
						|  | from .configuration_intern_vit import InternVisionConfig | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | from flash_attn.bert_padding import pad_input, unpad_input | 
					
						
						|  | from flash_attn.flash_attn_interface import \ | 
					
						
						|  | flash_attn_varlen_qkvpacked_func | 
					
						
						|  | has_flash_attn = True | 
					
						
						|  | except: | 
					
						
						|  | print('FlashAttention2 is not installed.') | 
					
						
						|  | has_flash_attn = False | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FlashAttention(nn.Module): | 
					
						
						|  | """Implement the scaled dot product attention with softmax. | 
					
						
						|  | Arguments | 
					
						
						|  | --------- | 
					
						
						|  | softmax_scale: The temperature to use for the softmax attention. | 
					
						
						|  | (default: 1/sqrt(d_keys) where d_keys is computed at | 
					
						
						|  | runtime) | 
					
						
						|  | attention_dropout: The dropout rate to apply to the attention | 
					
						
						|  | (default: 0.0) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.softmax_scale = softmax_scale | 
					
						
						|  | self.dropout_p = attention_dropout | 
					
						
						|  |  | 
					
						
						|  | def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None, | 
					
						
						|  | max_s=None, need_weights=False): | 
					
						
						|  | """Implements the multihead softmax attention. | 
					
						
						|  | Arguments | 
					
						
						|  | --------- | 
					
						
						|  | qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None | 
					
						
						|  | if unpadded: (nnz, 3, h, d) | 
					
						
						|  | key_padding_mask: a bool tensor of shape (B, S) | 
					
						
						|  | """ | 
					
						
						|  | assert not need_weights | 
					
						
						|  | assert qkv.dtype in [torch.float16, torch.bfloat16] | 
					
						
						|  | assert qkv.is_cuda | 
					
						
						|  |  | 
					
						
						|  | if cu_seqlens is None: | 
					
						
						|  | batch_size = qkv.shape[0] | 
					
						
						|  | seqlen = qkv.shape[1] | 
					
						
						|  | if key_padding_mask is None: | 
					
						
						|  | qkv = rearrange(qkv, 'b s ... -> (b s) ...') | 
					
						
						|  | max_s = seqlen | 
					
						
						|  | cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, | 
					
						
						|  | device=qkv.device) | 
					
						
						|  | output = flash_attn_varlen_qkvpacked_func( | 
					
						
						|  | qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, | 
					
						
						|  | softmax_scale=self.softmax_scale, causal=causal | 
					
						
						|  | ) | 
					
						
						|  | output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) | 
					
						
						|  | else: | 
					
						
						|  | nheads = qkv.shape[-2] | 
					
						
						|  | x = rearrange(qkv, 'b s three h d -> b s (three h d)') | 
					
						
						|  | x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask) | 
					
						
						|  | x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads) | 
					
						
						|  | output_unpad = flash_attn_varlen_qkvpacked_func( | 
					
						
						|  | x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, | 
					
						
						|  | softmax_scale=self.softmax_scale, causal=causal | 
					
						
						|  | ) | 
					
						
						|  | output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), | 
					
						
						|  | indices, batch_size, seqlen), | 
					
						
						|  | 'b s (h d) -> b s h d', h=nheads) | 
					
						
						|  | else: | 
					
						
						|  | assert max_s is not None | 
					
						
						|  | output = flash_attn_varlen_qkvpacked_func( | 
					
						
						|  | qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, | 
					
						
						|  | softmax_scale=self.softmax_scale, causal=causal | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return output, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternRMSNorm(nn.Module): | 
					
						
						|  | def __init__(self, hidden_size, eps=1e-6): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | input_dtype = hidden_states.dtype | 
					
						
						|  | hidden_states = hidden_states.to(torch.float32) | 
					
						
						|  | variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
						
						|  | return self.weight * hidden_states.to(input_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | from apex.normalization import FusedRMSNorm | 
					
						
						|  |  | 
					
						
						|  | InternRMSNorm = FusedRMSNorm | 
					
						
						|  |  | 
					
						
						|  | logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm') | 
					
						
						|  | except ImportError: | 
					
						
						|  |  | 
					
						
						|  | pass | 
					
						
						|  | except Exception: | 
					
						
						|  | logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm') | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | NORM2FN = { | 
					
						
						|  | 'rms_norm': InternRMSNorm, | 
					
						
						|  | 'layer_norm': nn.LayerNorm, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternVisionEmbeddings(nn.Module): | 
					
						
						|  | def __init__(self, config: InternVisionConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.embed_dim = config.hidden_size | 
					
						
						|  | self.image_size = config.image_size | 
					
						
						|  | self.patch_size = config.patch_size | 
					
						
						|  |  | 
					
						
						|  | self.class_embedding = nn.Parameter( | 
					
						
						|  | torch.randn(1, 1, self.embed_dim), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.patch_embedding = nn.Conv2d( | 
					
						
						|  | in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.num_patches = (self.image_size // self.patch_size) ** 2 | 
					
						
						|  | self.num_positions = self.num_patches + 1 | 
					
						
						|  |  | 
					
						
						|  | self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) | 
					
						
						|  |  | 
					
						
						|  | def _get_pos_embed(self, pos_embed, H, W): | 
					
						
						|  | target_dtype = pos_embed.dtype | 
					
						
						|  | pos_embed = pos_embed.float().reshape( | 
					
						
						|  | 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2) | 
					
						
						|  | pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \ | 
					
						
						|  | reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype) | 
					
						
						|  | return pos_embed | 
					
						
						|  |  | 
					
						
						|  | def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | 
					
						
						|  | target_dtype = self.patch_embedding.weight.dtype | 
					
						
						|  | patch_embeds = self.patch_embedding(pixel_values) | 
					
						
						|  | batch_size, _, height, width = patch_embeds.shape | 
					
						
						|  | patch_embeds = patch_embeds.flatten(2).transpose(1, 2) | 
					
						
						|  | class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) | 
					
						
						|  | embeddings = torch.cat([class_embeds, patch_embeds], dim=1) | 
					
						
						|  | position_embedding = torch.cat([ | 
					
						
						|  | self.position_embedding[:, :1, :], | 
					
						
						|  | self._get_pos_embed(self.position_embedding[:, 1:, :], height, width) | 
					
						
						|  | ], dim=1) | 
					
						
						|  | embeddings = embeddings + position_embedding.to(target_dtype) | 
					
						
						|  | return embeddings | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternAttention(nn.Module): | 
					
						
						|  | """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: InternVisionConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.embed_dim = config.hidden_size | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  | self.use_flash_attn = config.use_flash_attn and has_flash_attn | 
					
						
						|  | if config.use_flash_attn and not has_flash_attn: | 
					
						
						|  | print('Warning: Flash Attention is not available, use_flash_attn is set to False.') | 
					
						
						|  | self.head_dim = self.embed_dim // self.num_heads | 
					
						
						|  | if self.head_dim * self.num_heads != self.embed_dim: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:' | 
					
						
						|  | f' {self.num_heads}).' | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.scale = self.head_dim ** -0.5 | 
					
						
						|  | self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias) | 
					
						
						|  | self.attn_drop = nn.Dropout(config.attention_dropout) | 
					
						
						|  | self.proj_drop = nn.Dropout(config.dropout) | 
					
						
						|  |  | 
					
						
						|  | self.qk_normalization = config.qk_normalization | 
					
						
						|  |  | 
					
						
						|  | if self.qk_normalization: | 
					
						
						|  | self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps) | 
					
						
						|  | self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | if self.use_flash_attn: | 
					
						
						|  | self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout) | 
					
						
						|  | self.proj = nn.Linear(self.embed_dim, self.embed_dim) | 
					
						
						|  |  | 
					
						
						|  | def _naive_attn(self, x): | 
					
						
						|  | B, N, C = x.shape | 
					
						
						|  | qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | 
					
						
						|  | q, k, v = qkv.unbind(0) | 
					
						
						|  |  | 
					
						
						|  | if self.qk_normalization: | 
					
						
						|  | B_, H_, N_, D_ = q.shape | 
					
						
						|  | q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) | 
					
						
						|  | k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | attn = ((q * self.scale) @ k.transpose(-2, -1)) | 
					
						
						|  | attn = attn.softmax(dim=-1) | 
					
						
						|  | attn = self.attn_drop(attn) | 
					
						
						|  |  | 
					
						
						|  | x = (attn @ v).transpose(1, 2).reshape(B, N, C) | 
					
						
						|  | x = self.proj(x) | 
					
						
						|  | x = self.proj_drop(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def _flash_attn(self, x, key_padding_mask=None, need_weights=False): | 
					
						
						|  | qkv = self.qkv(x) | 
					
						
						|  | qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads) | 
					
						
						|  |  | 
					
						
						|  | if self.qk_normalization: | 
					
						
						|  | q, k, v = qkv.unbind(2) | 
					
						
						|  | q = self.q_norm(q.flatten(-2, -1)).view(q.shape) | 
					
						
						|  | k = self.k_norm(k.flatten(-2, -1)).view(k.shape) | 
					
						
						|  | qkv = torch.stack([q, k, v], dim=2) | 
					
						
						|  |  | 
					
						
						|  | context, _ = self.inner_attn( | 
					
						
						|  | qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False | 
					
						
						|  | ) | 
					
						
						|  | outs = self.proj(rearrange(context, 'b s h d -> b s (h d)')) | 
					
						
						|  | outs = self.proj_drop(outs) | 
					
						
						|  | return outs | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternMLP(nn.Module): | 
					
						
						|  | def __init__(self, config: InternVisionConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.act = ACT2FN[config.hidden_act] | 
					
						
						|  | self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | 
					
						
						|  | self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | hidden_states = self.fc1(hidden_states) | 
					
						
						|  | hidden_states = self.act(hidden_states) | 
					
						
						|  | hidden_states = self.fc2(hidden_states) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternVisionEncoderLayer(nn.Module): | 
					
						
						|  | def __init__(self, config: InternVisionConfig, drop_path_rate: float): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.embed_dim = config.hidden_size | 
					
						
						|  | self.intermediate_size = config.intermediate_size | 
					
						
						|  | self.norm_type = config.norm_type | 
					
						
						|  |  | 
					
						
						|  | self.attn = InternAttention(config) | 
					
						
						|  | self.mlp = InternMLP(config) | 
					
						
						|  | self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps) | 
					
						
						|  | self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim)) | 
					
						
						|  | self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim)) | 
					
						
						|  | self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() | 
					
						
						|  | self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | """ | 
					
						
						|  | hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternVisionEncoder(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | 
					
						
						|  | [`InternEncoderLayer`]. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config (`InternConfig`): | 
					
						
						|  | The corresponding vision configuration for the `InternEncoder`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: InternVisionConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] | 
					
						
						|  | self.layers = nn.ModuleList([ | 
					
						
						|  | InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)]) | 
					
						
						|  | self.gradient_checkpointing = True | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, BaseModelOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | 
					
						
						|  | Embedded representation of the inputs. Should be float, not int tokens. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | 
					
						
						|  | for more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | encoder_states = () if output_hidden_states else None | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  |  | 
					
						
						|  | for idx, encoder_layer in enumerate(self.layers): | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | encoder_states = encoder_states + (hidden_states,) | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | layer_outputs = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | encoder_layer, | 
					
						
						|  | hidden_states) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = encoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = layer_outputs | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | encoder_states = encoder_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple(v for v in [hidden_states, encoder_states] if v is not None) | 
					
						
						|  | return BaseModelOutput( | 
					
						
						|  | last_hidden_state=hidden_states, hidden_states=encoder_states | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternVisionModel(PreTrainedModel): | 
					
						
						|  | main_input_name = 'pixel_values' | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | config_class = InternVisionConfig | 
					
						
						|  | _no_split_modules = ['InternVisionEncoderLayer'] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: InternVisionConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | self.embeddings = InternVisionEmbeddings(config) | 
					
						
						|  | self.encoder = InternVisionEncoder(config) | 
					
						
						|  |  | 
					
						
						|  | def resize_pos_embeddings(self, old_size, new_size, patch_size): | 
					
						
						|  | pos_emb = self.embeddings.position_embedding | 
					
						
						|  | _, num_positions, embed_dim = pos_emb.shape | 
					
						
						|  | cls_emb = pos_emb[:, :1, :] | 
					
						
						|  | pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2) | 
					
						
						|  | pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False) | 
					
						
						|  | pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1) | 
					
						
						|  | pos_emb = torch.cat([cls_emb, pos_emb], dim=1) | 
					
						
						|  | self.embeddings.position_embedding = nn.Parameter(pos_emb) | 
					
						
						|  | self.embeddings.image_size = new_size | 
					
						
						|  | logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size)) | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embeddings | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | pixel_values: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | pixel_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | ) -> Union[Tuple, BaseModelOutputWithPooling]: | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | if pixel_values is None and pixel_embeds is None: | 
					
						
						|  | raise ValueError('You have to specify pixel_values or pixel_embeds') | 
					
						
						|  |  | 
					
						
						|  | if pixel_embeds is not None: | 
					
						
						|  | hidden_states = pixel_embeds | 
					
						
						|  | else: | 
					
						
						|  | if len(pixel_values.shape) == 4: | 
					
						
						|  | hidden_states = self.embeddings(pixel_values) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f'wrong pixel_values size: {pixel_values.shape}') | 
					
						
						|  | encoder_outputs = self.encoder( | 
					
						
						|  | inputs_embeds=hidden_states, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | last_hidden_state = encoder_outputs.last_hidden_state | 
					
						
						|  | pooled_output = last_hidden_state[:, 0, :] | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (last_hidden_state, pooled_output) + encoder_outputs[1:] | 
					
						
						|  |  | 
					
						
						|  | return BaseModelOutputWithPooling( | 
					
						
						|  | last_hidden_state=last_hidden_state, | 
					
						
						|  | pooler_output=pooled_output, | 
					
						
						|  | hidden_states=encoder_outputs.hidden_states, | 
					
						
						|  | attentions=encoder_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  |