Upload folder using huggingface_hub
Browse files- README.md +7 -7
- modeling_intern_vit.py +6 -12
README.md
CHANGED
|
@@ -154,7 +154,7 @@ model = AutoModel.from_pretrained(
|
|
| 154 |
trust_remote_code=True).eval().cuda()
|
| 155 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 156 |
|
| 157 |
-
generation_config = dict(max_new_tokens=1024, do_sample=
|
| 158 |
question = 'Hello, who are you?'
|
| 159 |
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
|
| 160 |
print(f'User: {question}')
|
|
@@ -185,7 +185,7 @@ image_processor = CLIPImageProcessor.from_pretrained(path)
|
|
| 185 |
image = Image.open('./examples/image2.jpg').resize((448, 448))
|
| 186 |
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
|
| 187 |
|
| 188 |
-
generation_config = dict(max_new_tokens=1024, do_sample=
|
| 189 |
question = '<image>\nPlease describe the image shortly.'
|
| 190 |
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
| 191 |
print(f'User: {question}')
|
|
@@ -211,7 +211,7 @@ image_processor = CLIPImageProcessor.from_pretrained(path)
|
|
| 211 |
image = Image.open('./examples/image2.jpg').resize((448, 448))
|
| 212 |
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
|
| 213 |
|
| 214 |
-
generation_config = dict(max_new_tokens=1024, do_sample=
|
| 215 |
question = '<image>\nPlease describe the image in detail.'
|
| 216 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
| 217 |
print(f'User: {question}')
|
|
@@ -247,7 +247,7 @@ image2 = Image.open('./examples/image2.jpg').resize((448, 448))
|
|
| 247 |
pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
|
| 248 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 249 |
|
| 250 |
-
generation_config = dict(max_new_tokens=1024, do_sample=
|
| 251 |
question = '<image>\nDescribe the two images in detail.'
|
| 252 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 253 |
history=None, return_history=True)
|
|
@@ -286,7 +286,7 @@ pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values
|
|
| 286 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 287 |
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
| 288 |
|
| 289 |
-
generation_config = dict(max_new_tokens=1024, do_sample=
|
| 290 |
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
|
| 291 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 292 |
num_patches_list=num_patches_list, history=None, return_history=True)
|
|
@@ -323,7 +323,7 @@ pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values
|
|
| 323 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 324 |
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
| 325 |
|
| 326 |
-
generation_config = dict(max_new_tokens=1024, do_sample=
|
| 327 |
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
|
| 328 |
responses = model.batch_chat(tokenizer, pixel_values,
|
| 329 |
num_patches_list=num_patches_list,
|
|
@@ -385,7 +385,7 @@ model = AutoModel.from_pretrained(
|
|
| 385 |
trust_remote_code=True).eval().cuda()
|
| 386 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 387 |
|
| 388 |
-
generation_config = dict(max_new_tokens=1024, do_sample=
|
| 389 |
|
| 390 |
video_path = './examples/red-panda.mp4'
|
| 391 |
pixel_values, num_patches_list = load_video(video_path, num_segments=8)
|
|
|
|
| 154 |
trust_remote_code=True).eval().cuda()
|
| 155 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 156 |
|
| 157 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
| 158 |
question = 'Hello, who are you?'
|
| 159 |
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
|
| 160 |
print(f'User: {question}')
|
|
|
|
| 185 |
image = Image.open('./examples/image2.jpg').resize((448, 448))
|
| 186 |
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
|
| 187 |
|
| 188 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
| 189 |
question = '<image>\nPlease describe the image shortly.'
|
| 190 |
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
| 191 |
print(f'User: {question}')
|
|
|
|
| 211 |
image = Image.open('./examples/image2.jpg').resize((448, 448))
|
| 212 |
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
|
| 213 |
|
| 214 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
| 215 |
question = '<image>\nPlease describe the image in detail.'
|
| 216 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
| 217 |
print(f'User: {question}')
|
|
|
|
| 247 |
pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
|
| 248 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 249 |
|
| 250 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
| 251 |
question = '<image>\nDescribe the two images in detail.'
|
| 252 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 253 |
history=None, return_history=True)
|
|
|
|
| 286 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 287 |
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
| 288 |
|
| 289 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
| 290 |
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
|
| 291 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 292 |
num_patches_list=num_patches_list, history=None, return_history=True)
|
|
|
|
| 323 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 324 |
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
| 325 |
|
| 326 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
| 327 |
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
|
| 328 |
responses = model.batch_chat(tokenizer, pixel_values,
|
| 329 |
num_patches_list=num_patches_list,
|
|
|
|
| 385 |
trust_remote_code=True).eval().cuda()
|
| 386 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 387 |
|
| 388 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
| 389 |
|
| 390 |
video_path = './examples/red-panda.mp4'
|
| 391 |
pixel_values, num_patches_list = load_video(video_path, num_segments=8)
|
modeling_intern_vit.py
CHANGED
|
@@ -20,18 +20,12 @@ from transformers.utils import logging
|
|
| 20 |
from .configuration_intern_vit import InternVisionConfig
|
| 21 |
|
| 22 |
try:
|
| 23 |
-
try: # v1
|
| 24 |
-
from flash_attn.flash_attn_interface import \
|
| 25 |
-
flash_attn_unpadded_qkvpacked_func
|
| 26 |
-
except: # v2
|
| 27 |
-
from flash_attn.flash_attn_interface import \
|
| 28 |
-
flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
| 29 |
-
|
| 30 |
from flash_attn.bert_padding import pad_input, unpad_input
|
| 31 |
-
|
|
|
|
| 32 |
has_flash_attn = True
|
| 33 |
except:
|
| 34 |
-
print('
|
| 35 |
has_flash_attn = False
|
| 36 |
|
| 37 |
logger = logging.get_logger(__name__)
|
|
@@ -74,7 +68,7 @@ class FlashAttention(nn.Module):
|
|
| 74 |
max_s = seqlen
|
| 75 |
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
| 76 |
device=qkv.device)
|
| 77 |
-
output =
|
| 78 |
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 79 |
softmax_scale=self.softmax_scale, causal=causal
|
| 80 |
)
|
|
@@ -84,7 +78,7 @@ class FlashAttention(nn.Module):
|
|
| 84 |
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
| 85 |
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
| 86 |
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
| 87 |
-
output_unpad =
|
| 88 |
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 89 |
softmax_scale=self.softmax_scale, causal=causal
|
| 90 |
)
|
|
@@ -93,7 +87,7 @@ class FlashAttention(nn.Module):
|
|
| 93 |
'b s (h d) -> b s h d', h=nheads)
|
| 94 |
else:
|
| 95 |
assert max_s is not None
|
| 96 |
-
output =
|
| 97 |
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 98 |
softmax_scale=self.softmax_scale, causal=causal
|
| 99 |
)
|
|
|
|
| 20 |
from .configuration_intern_vit import InternVisionConfig
|
| 21 |
|
| 22 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
from flash_attn.bert_padding import pad_input, unpad_input
|
| 24 |
+
from flash_attn.flash_attn_interface import \
|
| 25 |
+
flash_attn_varlen_qkvpacked_func
|
| 26 |
has_flash_attn = True
|
| 27 |
except:
|
| 28 |
+
print('FlashAttention2 is not installed.')
|
| 29 |
has_flash_attn = False
|
| 30 |
|
| 31 |
logger = logging.get_logger(__name__)
|
|
|
|
| 68 |
max_s = seqlen
|
| 69 |
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
| 70 |
device=qkv.device)
|
| 71 |
+
output = flash_attn_varlen_qkvpacked_func(
|
| 72 |
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 73 |
softmax_scale=self.softmax_scale, causal=causal
|
| 74 |
)
|
|
|
|
| 78 |
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
| 79 |
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
| 80 |
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
| 81 |
+
output_unpad = flash_attn_varlen_qkvpacked_func(
|
| 82 |
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 83 |
softmax_scale=self.softmax_scale, causal=causal
|
| 84 |
)
|
|
|
|
| 87 |
'b s (h d) -> b s h d', h=nheads)
|
| 88 |
else:
|
| 89 |
assert max_s is not None
|
| 90 |
+
output = flash_attn_varlen_qkvpacked_func(
|
| 91 |
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 92 |
softmax_scale=self.softmax_scale, causal=causal
|
| 93 |
)
|