Upload folder using huggingface_hub
Browse files- README.md +10 -0
- modeling_internvl_chat.py +2 -1
README.md
CHANGED
|
@@ -110,6 +110,7 @@ model = AutoModel.from_pretrained(
|
|
| 110 |
path,
|
| 111 |
torch_dtype=torch.bfloat16,
|
| 112 |
low_cpu_mem_usage=True,
|
|
|
|
| 113 |
trust_remote_code=True).eval().cuda()
|
| 114 |
```
|
| 115 |
|
|
@@ -124,6 +125,7 @@ model = AutoModel.from_pretrained(
|
|
| 124 |
torch_dtype=torch.bfloat16,
|
| 125 |
load_in_8bit=True,
|
| 126 |
low_cpu_mem_usage=True,
|
|
|
|
| 127 |
trust_remote_code=True).eval()
|
| 128 |
```
|
| 129 |
|
|
@@ -170,6 +172,7 @@ model = AutoModel.from_pretrained(
|
|
| 170 |
path,
|
| 171 |
torch_dtype=torch.bfloat16,
|
| 172 |
low_cpu_mem_usage=True,
|
|
|
|
| 173 |
trust_remote_code=True,
|
| 174 |
device_map=device_map).eval()
|
| 175 |
```
|
|
@@ -187,6 +190,7 @@ model = AutoModel.from_pretrained(
|
|
| 187 |
path,
|
| 188 |
torch_dtype=torch.bfloat16,
|
| 189 |
low_cpu_mem_usage=True,
|
|
|
|
| 190 |
trust_remote_code=True).eval().cuda()
|
| 191 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 192 |
|
|
@@ -214,6 +218,7 @@ model = AutoModel.from_pretrained(
|
|
| 214 |
path,
|
| 215 |
torch_dtype=torch.bfloat16,
|
| 216 |
low_cpu_mem_usage=True,
|
|
|
|
| 217 |
trust_remote_code=True).eval().cuda()
|
| 218 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 219 |
|
|
@@ -240,6 +245,7 @@ model = AutoModel.from_pretrained(
|
|
| 240 |
path,
|
| 241 |
torch_dtype=torch.bfloat16,
|
| 242 |
low_cpu_mem_usage=True,
|
|
|
|
| 243 |
trust_remote_code=True).eval().cuda()
|
| 244 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 245 |
|
|
@@ -273,6 +279,7 @@ model = AutoModel.from_pretrained(
|
|
| 273 |
path,
|
| 274 |
torch_dtype=torch.bfloat16,
|
| 275 |
low_cpu_mem_usage=True,
|
|
|
|
| 276 |
trust_remote_code=True).eval().cuda()
|
| 277 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 278 |
|
|
@@ -311,6 +318,7 @@ model = AutoModel.from_pretrained(
|
|
| 311 |
path,
|
| 312 |
torch_dtype=torch.bfloat16,
|
| 313 |
low_cpu_mem_usage=True,
|
|
|
|
| 314 |
trust_remote_code=True).eval().cuda()
|
| 315 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 316 |
|
|
@@ -348,6 +356,7 @@ model = AutoModel.from_pretrained(
|
|
| 348 |
path,
|
| 349 |
torch_dtype=torch.bfloat16,
|
| 350 |
low_cpu_mem_usage=True,
|
|
|
|
| 351 |
trust_remote_code=True).eval().cuda()
|
| 352 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 353 |
|
|
@@ -418,6 +427,7 @@ model = AutoModel.from_pretrained(
|
|
| 418 |
path,
|
| 419 |
torch_dtype=torch.bfloat16,
|
| 420 |
low_cpu_mem_usage=True,
|
|
|
|
| 421 |
trust_remote_code=True).eval().cuda()
|
| 422 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 423 |
|
|
|
|
| 110 |
path,
|
| 111 |
torch_dtype=torch.bfloat16,
|
| 112 |
low_cpu_mem_usage=True,
|
| 113 |
+
use_flash_attn=True,
|
| 114 |
trust_remote_code=True).eval().cuda()
|
| 115 |
```
|
| 116 |
|
|
|
|
| 125 |
torch_dtype=torch.bfloat16,
|
| 126 |
load_in_8bit=True,
|
| 127 |
low_cpu_mem_usage=True,
|
| 128 |
+
use_flash_attn=True,
|
| 129 |
trust_remote_code=True).eval()
|
| 130 |
```
|
| 131 |
|
|
|
|
| 172 |
path,
|
| 173 |
torch_dtype=torch.bfloat16,
|
| 174 |
low_cpu_mem_usage=True,
|
| 175 |
+
use_flash_attn=True,
|
| 176 |
trust_remote_code=True,
|
| 177 |
device_map=device_map).eval()
|
| 178 |
```
|
|
|
|
| 190 |
path,
|
| 191 |
torch_dtype=torch.bfloat16,
|
| 192 |
low_cpu_mem_usage=True,
|
| 193 |
+
use_flash_attn=True,
|
| 194 |
trust_remote_code=True).eval().cuda()
|
| 195 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 196 |
|
|
|
|
| 218 |
path,
|
| 219 |
torch_dtype=torch.bfloat16,
|
| 220 |
low_cpu_mem_usage=True,
|
| 221 |
+
use_flash_attn=True,
|
| 222 |
trust_remote_code=True).eval().cuda()
|
| 223 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 224 |
|
|
|
|
| 245 |
path,
|
| 246 |
torch_dtype=torch.bfloat16,
|
| 247 |
low_cpu_mem_usage=True,
|
| 248 |
+
use_flash_attn=True,
|
| 249 |
trust_remote_code=True).eval().cuda()
|
| 250 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 251 |
|
|
|
|
| 279 |
path,
|
| 280 |
torch_dtype=torch.bfloat16,
|
| 281 |
low_cpu_mem_usage=True,
|
| 282 |
+
use_flash_attn=True,
|
| 283 |
trust_remote_code=True).eval().cuda()
|
| 284 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 285 |
|
|
|
|
| 318 |
path,
|
| 319 |
torch_dtype=torch.bfloat16,
|
| 320 |
low_cpu_mem_usage=True,
|
| 321 |
+
use_flash_attn=True,
|
| 322 |
trust_remote_code=True).eval().cuda()
|
| 323 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 324 |
|
|
|
|
| 356 |
path,
|
| 357 |
torch_dtype=torch.bfloat16,
|
| 358 |
low_cpu_mem_usage=True,
|
| 359 |
+
use_flash_attn=True,
|
| 360 |
trust_remote_code=True).eval().cuda()
|
| 361 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 362 |
|
|
|
|
| 427 |
path,
|
| 428 |
torch_dtype=torch.bfloat16,
|
| 429 |
low_cpu_mem_usage=True,
|
| 430 |
+
use_flash_attn=True,
|
| 431 |
trust_remote_code=True).eval().cuda()
|
| 432 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 433 |
|
modeling_internvl_chat.py
CHANGED
|
@@ -17,7 +17,7 @@ from transformers.utils import ModelOutput, logging
|
|
| 17 |
|
| 18 |
from .configuration_internvl_chat import InternVLChatConfig
|
| 19 |
from .conversation import get_conv_template
|
| 20 |
-
from .modeling_intern_vit import InternVisionModel
|
| 21 |
|
| 22 |
logger = logging.get_logger(__name__)
|
| 23 |
|
|
@@ -48,6 +48,7 @@ class InternVLChatModel(PreTrainedModel):
|
|
| 48 |
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
| 49 |
self.downsample_ratio = config.downsample_ratio
|
| 50 |
self.ps_version = config.ps_version
|
|
|
|
| 51 |
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
| 52 |
config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
|
| 53 |
|
|
|
|
| 17 |
|
| 18 |
from .configuration_internvl_chat import InternVLChatConfig
|
| 19 |
from .conversation import get_conv_template
|
| 20 |
+
from .modeling_intern_vit import InternVisionModel, has_flash_attn
|
| 21 |
|
| 22 |
logger = logging.get_logger(__name__)
|
| 23 |
|
|
|
|
| 48 |
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
| 49 |
self.downsample_ratio = config.downsample_ratio
|
| 50 |
self.ps_version = config.ps_version
|
| 51 |
+
use_flash_attn = use_flash_attn if has_flash_attn else False
|
| 52 |
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
| 53 |
config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
|
| 54 |
|