Upload folder using huggingface_hub
Browse files- README.md +396 -79
- config.json +18 -63
- configuration_intern_vit.py +3 -1
- configuration_internvl_chat.py +25 -7
- conversation.py +4 -885
- index.html +31 -0
- modeling_intern_vit.py +31 -9
- modeling_internvl_chat.py +122 -239
- tokenizer_config.json +1 -1
    	
        README.md
    CHANGED
    
    | @@ -1,35 +1,49 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            license: mit
         | 
| 3 | 
            -
             | 
| 4 | 
            -
            - laion/laion2B-en
         | 
| 5 | 
            -
            - laion/laion-coco
         | 
| 6 | 
            -
            - laion/laion2B-multi
         | 
| 7 | 
            -
            - kakaobrain/coyo-700m
         | 
| 8 | 
            -
            - conceptual_captions
         | 
| 9 | 
            -
            - wanng/wukong100m
         | 
| 10 | 
            -
            pipeline_tag: visual-question-answering
         | 
| 11 | 
             
            ---
         | 
| 12 |  | 
| 13 | 
             
            # InternVL-Chat-V1-1
         | 
| 14 |  | 
| 15 | 
            -
            [\[🆕 Blog\]](https://internvl.github.io/blog/)  [\[📜 InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238)  [\[📜 InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821) | 
| 16 |  | 
| 17 | 
            -
            [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL)  [\[🚀 Quick Start\]](# | 
| 18 |  | 
| 19 | 
            -
             | 
| 20 |  | 
| 21 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 22 |  | 
| 23 | 
             
            In this version, we explored increasing the resolution to 448 × 448, enhancing OCR capabilities, and improving support for Chinese conversations. Since the 448 × 448 input image generates 1024 visual tokens after passing through the ViT, leading to a significant computational burden, we use a pixel shuffle operation to reduce the 1024 tokens to 256 tokens.
         | 
| 24 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 25 | 
             
            ## Model Details
         | 
|  | |
| 26 | 
             
            - **Model Type:** multimodal large language model (MLLM)
         | 
|  | |
| 27 | 
             
            - **Model Stats:**
         | 
|  | |
| 28 | 
             
              - Architecture: [InternViT-6B-448px](https://huggingface.co/OpenGVLab/InternViT-6B-448px) + MLP + LLaMA2-13B (Our internal SFT versions)
         | 
| 29 | 
             
              - Image size: 448 x 448 (256 tokens)
         | 
| 30 | 
             
              - Params: 19B
         | 
| 31 |  | 
| 32 | 
             
            - **Training Strategy:**
         | 
|  | |
| 33 | 
             
              - Pretraining Stage
         | 
| 34 | 
             
                - Learnable Component: InternViT-6B + LLaMA2-13B
         | 
| 35 | 
             
                - Data: Trained on 72M samples, including COYO, LAION, CC12M, CC3M, SBU, Wukong, GRIT, Objects365, OpenImages, and OCR-related datasets.
         | 
| @@ -38,99 +52,412 @@ In this version, we explored increasing the resolution to 448 × 448, enhancing | |
| 38 | 
             
                - Learnable Component: MLP + LLaMA2-13B
         | 
| 39 | 
             
                - Data: A comprehensive collection of open-source datasets, along with their Chinese translation versions, totaling approximately 6M samples.
         | 
| 40 |  | 
| 41 | 
            -
            ##  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 42 |  | 
| 43 | 
            -
             | 
| 44 | 
            -
            | Model                   | Date       | Download                                                               | Note                             |
         | 
| 45 | 
            -
            | ----------------------- | ---------- | ---------------------------------------------------------------------- | -------------------------------- |
         | 
| 46 | 
            -
            | InternViT-6B-448px-V1-5 | 2024.04.20 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | support dynamic resolution, super strong OCR (🔥new) |
         | 
| 47 | 
            -
            | InternViT-6B-448px-V1-2 | 2024.02.11 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2) | 448 resolution                   |
         | 
| 48 | 
            -
            | InternViT-6B-448px-V1-0 | 2024.01.30 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-0) | 448 resolution                   |
         | 
| 49 | 
            -
            | InternViT-6B-224px      | 2023.12.22 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-224px)      | vision foundation model          |
         | 
| 50 | 
            -
            | InternVL-14B-224px      | 2023.12.22 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-14B-224px)      | vision-language foundation model |
         | 
| 51 |  | 
| 52 | 
            -
             | 
| 53 | 
            -
            | Model                   | Date       | Download                                                                    | Note                               |
         | 
| 54 | 
            -
            | ----------------------- | ---------- | --------------------------------------------------------------------------- | ---------------------------------- |
         | 
| 55 | 
            -
            | InternVL-Chat-V1-5      | 2024.04.18 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5)            | support 4K image; super strong OCR; Approaching the performance of GPT-4V and Gemini Pro on various benchmarks like MMMU, DocVQA, ChartQA, MathVista, etc. (🔥new)|
         | 
| 56 | 
            -
            | InternVL-Chat-V1-2-Plus | 2024.02.21 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2-Plus)       | more SFT data and stronger  |
         | 
| 57 | 
            -
            | InternVL-Chat-V1-2      | 2024.02.11 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2)            | scaling up LLM to 34B       |
         | 
| 58 | 
            -
            | InternVL-Chat-V1-1      | 2024.01.24 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-1)            | support Chinese and stronger OCR   |
         | 
| 59 |  | 
|  | |
| 60 |  | 
|  | |
| 61 |  | 
|  | |
| 62 |  | 
| 63 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 64 |  | 
| 65 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 66 |  | 
| 67 | 
            -
             | 
|  | |
|  | |
| 68 |  | 
| 69 | 
             
            ```python
         | 
|  | |
| 70 | 
             
            import torch
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 71 | 
             
            from PIL import Image
         | 
| 72 | 
            -
             | 
| 73 | 
            -
            from transformers import AutoTokenizer
         | 
| 74 |  | 
| 75 | 
             
            path = "OpenGVLab/InternVL-Chat-V1-1"
         | 
| 76 | 
            -
            # If your GPU has more than 40G memory, you can put the entire model on a single GPU.
         | 
| 77 | 
             
            model = AutoModel.from_pretrained(
         | 
| 78 | 
             
                path,
         | 
| 79 | 
             
                torch_dtype=torch.bfloat16,
         | 
| 80 | 
             
                low_cpu_mem_usage=True,
         | 
| 81 | 
             
                trust_remote_code=True).eval().cuda()
         | 
| 82 | 
            -
             | 
| 83 | 
            -
             | 
| 84 | 
            -
            #     path,
         | 
| 85 | 
            -
            #     torch_dtype=torch.bfloat16,
         | 
| 86 | 
            -
            #     low_cpu_mem_usage=True,
         | 
| 87 | 
            -
            #     trust_remote_code=True,
         | 
| 88 | 
            -
            #     device_map='auto').eval()
         | 
| 89 | 
            -
             | 
| 90 | 
            -
            tokenizer = AutoTokenizer.from_pretrained(path)
         | 
| 91 | 
            -
            image = Image.open('./examples/image2.jpg').convert('RGB')
         | 
| 92 | 
            -
            image = image.resize((448, 448))
         | 
| 93 | 
             
            image_processor = CLIPImageProcessor.from_pretrained(path)
         | 
|  | |
|  | |
| 94 |  | 
| 95 | 
            -
             | 
| 96 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 97 |  | 
| 98 | 
            -
             | 
| 99 | 
            -
                num_beams=1,
         | 
| 100 | 
            -
                max_new_tokens=512,
         | 
| 101 | 
            -
                do_sample=False,
         | 
| 102 | 
            -
            )
         | 
| 103 |  | 
| 104 | 
            -
             | 
| 105 | 
            -
             | 
| 106 | 
            -
             | 
| 107 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 108 |  | 
| 109 | 
            -
             | 
| 110 | 
            -
            question =  | 
| 111 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
         | 
| 112 | 
            -
            print(question | 
|  | |
| 113 |  | 
| 114 | 
            -
            question =  | 
| 115 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
         | 
| 116 | 
            -
            print(question | 
|  | |
| 117 | 
             
            ```
         | 
| 118 |  | 
| 119 | 
            -
             | 
| 120 |  | 
| 121 | 
            -
             | 
| 122 |  | 
| 123 | 
            -
             | 
|  | |
|  | |
|  | |
| 124 |  | 
| 125 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 126 |  | 
| 127 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 128 |  | 
| 129 | 
            -
             | 
| 130 |  | 
| 131 | 
            -
             | 
| 132 |  | 
| 133 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 134 |  | 
| 135 | 
             
            ## Citation
         | 
| 136 |  | 
| @@ -150,13 +477,3 @@ If you find this project useful in your research, please consider citing: | |
| 150 | 
             
              year={2024}
         | 
| 151 | 
             
            }
         | 
| 152 | 
             
            ```
         | 
| 153 | 
            -
             | 
| 154 | 
            -
            ## License
         | 
| 155 | 
            -
             | 
| 156 | 
            -
            This project is released under the MIT license. Parts of this project contain code and models (e.g., LLaMA2) from other sources, which are subject to their respective licenses.
         | 
| 157 | 
            -
             | 
| 158 | 
            -
            Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved.
         | 
| 159 | 
            -
             | 
| 160 | 
            -
            ## Acknowledgement
         | 
| 161 | 
            -
             | 
| 162 | 
            -
            InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!
         | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            license: mit
         | 
| 3 | 
            +
            pipeline_tag: image-text-to-text
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 4 | 
             
            ---
         | 
| 5 |  | 
| 6 | 
             
            # InternVL-Chat-V1-1
         | 
| 7 |  | 
| 8 | 
            +
            [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL)  [\[🆕 Blog\]](https://internvl.github.io/blog/)  [\[📜 InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238)  [\[📜 InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821)
         | 
| 9 |  | 
| 10 | 
            +
            [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/)  [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL)  [\[🚀 Quick Start\]](#quick-start)  [\[📖 中文解读\]](https://zhuanlan.zhihu.com/p/706547971)  \[🌟 [魔搭社区](https://modelscope.cn/organization/OpenGVLab) | [教程](https://mp.weixin.qq.com/s/OUaVLkxlk1zhFb1cvMCFjg) \]
         | 
| 11 |  | 
| 12 | 
            +
            ## Introduction
         | 
| 13 |  | 
| 14 | 
            +
            We released [🤗 InternVL-Chat-V1-1](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-1), featuring a structure similar to LLaVA, including a ViT, an MLP projector, and an LLM.
         | 
| 15 | 
            +
            As shown in the figure below, we connected our InternViT-6B to LLaMA2-13B through a simple MLP projector. Note that the LLaMA2-13B used here is not the original model but an internal chat version obtained by incrementally pre-training and fine-tuning the LLaMA2-13B base model for Chinese language tasks. Overall, our model has a total of 19 billion parameters.
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            <p align="center">
         | 
| 18 | 
            +
                <img src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/HD29tU-g0An9FpQn1yK8X.png" style="width: 75%;">
         | 
| 19 | 
            +
            </p>
         | 
| 20 |  | 
| 21 | 
             
            In this version, we explored increasing the resolution to 448 × 448, enhancing OCR capabilities, and improving support for Chinese conversations. Since the 448 × 448 input image generates 1024 visual tokens after passing through the ViT, leading to a significant computational burden, we use a pixel shuffle operation to reduce the 1024 tokens to 256 tokens.
         | 
| 22 |  | 
| 23 | 
            +
            ## Examples
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            In this update, InternVL-Chat has **improved support for Chinese and OCR**.
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            As you can see, although the Lynyrd Skynyrd in the image has some letters that are out of the camera's lens, and TOUR's T is blocked, the model is still able to recognize it correctly.
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            This model can also conduct an in-depth analysis of AAAI's official website and identify important information on the web page.
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            
         | 
| 34 | 
            +
             | 
| 35 | 
             
            ## Model Details
         | 
| 36 | 
            +
             | 
| 37 | 
             
            - **Model Type:** multimodal large language model (MLLM)
         | 
| 38 | 
            +
             | 
| 39 | 
             
            - **Model Stats:**
         | 
| 40 | 
            +
             | 
| 41 | 
             
              - Architecture: [InternViT-6B-448px](https://huggingface.co/OpenGVLab/InternViT-6B-448px) + MLP + LLaMA2-13B (Our internal SFT versions)
         | 
| 42 | 
             
              - Image size: 448 x 448 (256 tokens)
         | 
| 43 | 
             
              - Params: 19B
         | 
| 44 |  | 
| 45 | 
             
            - **Training Strategy:**
         | 
| 46 | 
            +
             | 
| 47 | 
             
              - Pretraining Stage
         | 
| 48 | 
             
                - Learnable Component: InternViT-6B + LLaMA2-13B
         | 
| 49 | 
             
                - Data: Trained on 72M samples, including COYO, LAION, CC12M, CC3M, SBU, Wukong, GRIT, Objects365, OpenImages, and OCR-related datasets.
         | 
|  | |
| 52 | 
             
                - Learnable Component: MLP + LLaMA2-13B
         | 
| 53 | 
             
                - Data: A comprehensive collection of open-source datasets, along with their Chinese translation versions, totaling approximately 6M samples.
         | 
| 54 |  | 
| 55 | 
            +
            ## Performance
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            |             model              |  LLaVA-1.5   | InternVL-Chat-V1-0 | InternVL-Chat-V1-0 | InternVL-Chat-V1-1 |
         | 
| 58 | 
            +
            | :----------------------------: | :----------: | :----------------: | :----------------: | :----------------: |
         | 
| 59 | 
            +
            |           resolution           |     336      |        336         |        448         |        448         |
         | 
| 60 | 
            +
            |         vision encoder         | CLIP-L-336px | InternViT-6B-224px | InternViT-6B-448px | InternViT-6B-448px |
         | 
| 61 | 
            +
            |         language model         |  Vicuna-13B  |     Vicuna-13B     |     Vicuna-13B     |     LLaMA2-13B     |
         | 
| 62 | 
            +
            |                                |              |                    |                    |                    |
         | 
| 63 | 
            +
            |    VQAv2<sub>testdev</sub>     |     80.0     |        80.2        |        82.0        |        80.9        |
         | 
| 64 | 
            +
            |     GQA<sub>testdev</sub>      |     63.3     |        63.9        |        64.1        |        62.5        |
         | 
| 65 | 
            +
            |     VizWiz<sub>test</sub>      |     53.6     |        54.6        |        60.1        |        57.3        |
         | 
| 66 | 
            +
            |       SQA<sub>test</sub>       |     71.6     |        70.1        |        71.6        |        90.1        |
         | 
| 67 | 
            +
            | TextVQA<sub>val, w/o OCR</sub> |      -       |         -          |         -          |        64.2        |
         | 
| 68 | 
            +
            | TextVQA<sub>val, w/ OCR</sub>  |     61.3     |        58.7        |        64.8        |        68.6        |
         | 
| 69 | 
            +
            |              POPE              |     85.9     |        87.1        |        87.2        |        87.1        |
         | 
| 70 | 
            +
            |    MME<sub>perception</sub>    |    1531.3    |       1546.9       |       1579.0       |       1659.8       |
         | 
| 71 | 
            +
            |    MME<sub>cognition</sub>     |              |                    |                    |                    |
         | 
| 72 | 
            +
            |     MMB-EN<sub>test</sub>      |     67.7     |        66.5        |        68.2        |        75.4        |
         | 
| 73 | 
            +
            |     MMB-CN<sub>test</sub>      |     63.6     |        61.9        |        64.0        |        70.3        |
         | 
| 74 | 
            +
            |   MMVet<sub>GPT-4-0613</sub>   |     35.4     |        33.7        |        36.7        |        46.7        |
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            Here, we have conducted only a simple performance comparison. For more detailed performance information and additional evaluation metrics, please refer to our performance summary table.
         | 
| 77 | 
            +
             | 
| 78 | 
            +
            ## Quick Start
         | 
| 79 |  | 
| 80 | 
            +
            We provide an example code to run InternVL-Chat-V1-1 using `transformers`.
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 81 |  | 
| 82 | 
            +
            We also welcome you to experience the InternVL2 series models in our [online demo](https://internvl.opengvlab.com/). Currently, due to the limited GPU resources with public IP addresses, we can only deploy models up to a maximum of 26B. We will expand soon and deploy larger models to the online demo.
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 83 |  | 
| 84 | 
            +
            > Please use transformers==4.37.2 to ensure the model works normally.
         | 
| 85 |  | 
| 86 | 
            +
            ### Model Loading
         | 
| 87 |  | 
| 88 | 
            +
            #### 16-bit (bf16 / fp16)
         | 
| 89 |  | 
| 90 | 
            +
            ```python
         | 
| 91 | 
            +
            import torch
         | 
| 92 | 
            +
            from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
         | 
| 93 | 
            +
            path = "OpenGVLab/InternVL-Chat-V1-1"
         | 
| 94 | 
            +
            model = AutoModel.from_pretrained(
         | 
| 95 | 
            +
                path,
         | 
| 96 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 97 | 
            +
                low_cpu_mem_usage=True,
         | 
| 98 | 
            +
                trust_remote_code=True).eval().cuda()
         | 
| 99 | 
            +
            ```
         | 
| 100 |  | 
| 101 | 
            +
            #### BNB 8-bit Quantization
         | 
| 102 | 
            +
             | 
| 103 | 
            +
            ```python
         | 
| 104 | 
            +
            import torch
         | 
| 105 | 
            +
            from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
         | 
| 106 | 
            +
            path = "OpenGVLab/InternVL-Chat-V1-1"
         | 
| 107 | 
            +
            model = AutoModel.from_pretrained(
         | 
| 108 | 
            +
                path,
         | 
| 109 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 110 | 
            +
                load_in_8bit=True,
         | 
| 111 | 
            +
                low_cpu_mem_usage=True,
         | 
| 112 | 
            +
                trust_remote_code=True).eval()
         | 
| 113 | 
            +
            ```
         | 
| 114 | 
            +
             | 
| 115 | 
            +
            #### BNB 4-bit Quantization
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            > **⚠️ Warning:** Due to significant quantization errors with BNB 4-bit quantization on InternViT-6B, the model may produce nonsensical outputs and fail to understand images. Therefore, please avoid using BNB 4-bit quantization.
         | 
| 118 |  | 
| 119 | 
            +
            #### Multiple GPUs
         | 
| 120 | 
            +
             | 
| 121 | 
            +
            The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
         | 
| 122 |  | 
| 123 | 
             
            ```python
         | 
| 124 | 
            +
            import math
         | 
| 125 | 
             
            import torch
         | 
| 126 | 
            +
            from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
         | 
| 127 | 
            +
             | 
| 128 | 
            +
            def split_model(model_name):
         | 
| 129 | 
            +
                device_map = {}
         | 
| 130 | 
            +
                world_size = torch.cuda.device_count()
         | 
| 131 | 
            +
                num_layers = {'InternVL-Chat-V1-1': 40}[model_name]
         | 
| 132 | 
            +
                # Since the first GPU will be used for ViT, treat it as half a GPU.
         | 
| 133 | 
            +
                num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
         | 
| 134 | 
            +
                num_layers_per_gpu = [num_layers_per_gpu] * world_size
         | 
| 135 | 
            +
                num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
         | 
| 136 | 
            +
                layer_cnt = 0
         | 
| 137 | 
            +
                for i, num_layer in enumerate(num_layers_per_gpu):
         | 
| 138 | 
            +
                    for j in range(num_layer):
         | 
| 139 | 
            +
                        device_map[f'language_model.model.layers.{layer_cnt}'] = i
         | 
| 140 | 
            +
                        layer_cnt += 1
         | 
| 141 | 
            +
                device_map['vision_model'] = 0
         | 
| 142 | 
            +
                device_map['mlp1'] = 0
         | 
| 143 | 
            +
                device_map['language_model.model.tok_embeddings'] = 0
         | 
| 144 | 
            +
                device_map['language_model.model.embed_tokens'] = 0
         | 
| 145 | 
            +
                device_map['language_model.output'] = 0
         | 
| 146 | 
            +
                device_map['language_model.model.norm'] = 0
         | 
| 147 | 
            +
                device_map['language_model.lm_head'] = 0
         | 
| 148 | 
            +
                device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                return device_map
         | 
| 151 | 
            +
             | 
| 152 | 
            +
            path = "OpenGVLab/InternVL-Chat-V1-1"
         | 
| 153 | 
            +
            device_map = split_model('InternVL-Chat-V1-1')
         | 
| 154 | 
            +
            model = AutoModel.from_pretrained(
         | 
| 155 | 
            +
                path,
         | 
| 156 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 157 | 
            +
                low_cpu_mem_usage=True,
         | 
| 158 | 
            +
                trust_remote_code=True,
         | 
| 159 | 
            +
                device_map=device_map).eval()
         | 
| 160 | 
            +
            ```
         | 
| 161 | 
            +
             | 
| 162 | 
            +
            ### Inference with Transformers
         | 
| 163 | 
            +
             | 
| 164 | 
            +
            #### Pure-text conversation
         | 
| 165 | 
            +
             | 
| 166 | 
            +
            ```python
         | 
| 167 | 
            +
            from transformers import AutoTokenizer, AutoModel
         | 
| 168 | 
            +
            import torch
         | 
| 169 | 
            +
             | 
| 170 | 
            +
            path = "OpenGVLab/InternVL-Chat-V1-1"
         | 
| 171 | 
            +
            model = AutoModel.from_pretrained(
         | 
| 172 | 
            +
                path,
         | 
| 173 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 174 | 
            +
                low_cpu_mem_usage=True,
         | 
| 175 | 
            +
                trust_remote_code=True).eval().cuda()
         | 
| 176 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
         | 
| 177 | 
            +
             | 
| 178 | 
            +
            generation_config = dict(num_beams=1, max_new_tokens=1024, do_sample=False)
         | 
| 179 | 
            +
            question = 'Hello, who are you?'
         | 
| 180 | 
            +
            response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
         | 
| 181 | 
            +
            print(f'User: {question}')
         | 
| 182 | 
            +
            print(f'Assistant: {response}')
         | 
| 183 | 
            +
             | 
| 184 | 
            +
            question = 'Can you tell me a story?'
         | 
| 185 | 
            +
            response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
         | 
| 186 | 
            +
            print(f'User: {question}')
         | 
| 187 | 
            +
            print(f'Assistant: {response}')
         | 
| 188 | 
            +
            ```
         | 
| 189 | 
            +
             | 
| 190 | 
            +
            #### Single-image single-round conversation
         | 
| 191 | 
            +
             | 
| 192 | 
            +
            ```python
         | 
| 193 | 
            +
            from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
         | 
| 194 | 
             
            from PIL import Image
         | 
| 195 | 
            +
            import torch
         | 
|  | |
| 196 |  | 
| 197 | 
             
            path = "OpenGVLab/InternVL-Chat-V1-1"
         | 
|  | |
| 198 | 
             
            model = AutoModel.from_pretrained(
         | 
| 199 | 
             
                path,
         | 
| 200 | 
             
                torch_dtype=torch.bfloat16,
         | 
| 201 | 
             
                low_cpu_mem_usage=True,
         | 
| 202 | 
             
                trust_remote_code=True).eval().cuda()
         | 
| 203 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
         | 
| 204 | 
            +
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 205 | 
             
            image_processor = CLIPImageProcessor.from_pretrained(path)
         | 
| 206 | 
            +
            image = Image.open('./examples/image2.jpg').resize((448, 448))
         | 
| 207 | 
            +
            pixel_values = image_processor(images=image, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
         | 
| 208 |  | 
| 209 | 
            +
            generation_config = dict(num_beams=1, max_new_tokens=1024, do_sample=False)
         | 
| 210 | 
            +
            question = '<image>\nPlease describe the image shortly.'
         | 
| 211 | 
            +
            response = model.chat(tokenizer, pixel_values, question, generation_config)
         | 
| 212 | 
            +
            print(f'User: {question}')
         | 
| 213 | 
            +
            print(f'Assistant: {response}')
         | 
| 214 | 
            +
            ```
         | 
| 215 |  | 
| 216 | 
            +
            #### Single-image multi-round conversation
         | 
|  | |
|  | |
|  | |
|  | |
| 217 |  | 
| 218 | 
            +
            ```python
         | 
| 219 | 
            +
            from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
         | 
| 220 | 
            +
            from PIL import Image
         | 
| 221 | 
            +
            import torch
         | 
| 222 | 
            +
             | 
| 223 | 
            +
            path = "OpenGVLab/InternVL-Chat-V1-1"
         | 
| 224 | 
            +
            model = AutoModel.from_pretrained(
         | 
| 225 | 
            +
                path,
         | 
| 226 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 227 | 
            +
                low_cpu_mem_usage=True,
         | 
| 228 | 
            +
                trust_remote_code=True).eval().cuda()
         | 
| 229 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
         | 
| 230 | 
            +
             | 
| 231 | 
            +
            image_processor = CLIPImageProcessor.from_pretrained(path)
         | 
| 232 | 
            +
            image = Image.open('./examples/image2.jpg').resize((448, 448))
         | 
| 233 | 
            +
            pixel_values = image_processor(images=image, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
         | 
| 234 |  | 
| 235 | 
            +
            generation_config = dict(num_beams=1, max_new_tokens=1024, do_sample=False)
         | 
| 236 | 
            +
            question = '<image>\nPlease describe the image in detail.'
         | 
| 237 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
         | 
| 238 | 
            +
            print(f'User: {question}')
         | 
| 239 | 
            +
            print(f'Assistant: {response}')
         | 
| 240 |  | 
| 241 | 
            +
            question = 'Please write a poem according to the image.'
         | 
| 242 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
         | 
| 243 | 
            +
            print(f'User: {question}')
         | 
| 244 | 
            +
            print(f'Assistant: {response}')
         | 
| 245 | 
             
            ```
         | 
| 246 |  | 
| 247 | 
            +
            #### Multi-image multi-round conversation, combined images
         | 
| 248 |  | 
| 249 | 
            +
            > **⚠️️ Warning:** Please note that for this model, we support multi-image chat in the interface, but the results are not very good due to the lack of training with multi-image data.
         | 
| 250 |  | 
| 251 | 
            +
            ```python
         | 
| 252 | 
            +
            from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
         | 
| 253 | 
            +
            from PIL import Image
         | 
| 254 | 
            +
            import torch
         | 
| 255 |  | 
| 256 | 
            +
            path = "OpenGVLab/InternVL-Chat-V1-1"
         | 
| 257 | 
            +
            model = AutoModel.from_pretrained(
         | 
| 258 | 
            +
                path,
         | 
| 259 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 260 | 
            +
                low_cpu_mem_usage=True,
         | 
| 261 | 
            +
                trust_remote_code=True).eval().cuda()
         | 
| 262 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
         | 
| 263 |  | 
| 264 | 
            +
            image_processor = CLIPImageProcessor.from_pretrained(path)
         | 
| 265 | 
            +
            image1 = Image.open('./examples/image1.jpg').resize((448, 448))
         | 
| 266 | 
            +
            pixel_values1 = image_processor(images=image1, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
         | 
| 267 | 
            +
            image2 = Image.open('./examples/image2.jpg').resize((448, 448))
         | 
| 268 | 
            +
            pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
         | 
| 269 | 
            +
            pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
         | 
| 270 | 
            +
             | 
| 271 | 
            +
            generation_config = dict(num_beams=1, max_new_tokens=1024, do_sample=False)
         | 
| 272 | 
            +
            question = '<image>\nDescribe the two images in detail.'
         | 
| 273 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 274 | 
            +
                                           history=None, return_history=True)
         | 
| 275 | 
            +
            print(f'User: {question}')
         | 
| 276 | 
            +
            print(f'Assistant: {response}')
         | 
| 277 | 
            +
             | 
| 278 | 
            +
            question = 'What are the similarities and differences between these two images.'
         | 
| 279 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 280 | 
            +
                                           history=history, return_history=True)
         | 
| 281 | 
            +
            print(f'User: {question}')
         | 
| 282 | 
            +
            print(f'Assistant: {response}')
         | 
| 283 | 
            +
            ```
         | 
| 284 |  | 
| 285 | 
            +
            #### Multi-image multi-round conversation, separate images
         | 
| 286 |  | 
| 287 | 
            +
            > **⚠️️ Warning:** Please note that for this model, we support multi-image chat in the interface, but the results are not very good due to the lack of training with multi-image data.
         | 
| 288 |  | 
| 289 | 
            +
            ```python
         | 
| 290 | 
            +
            from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
         | 
| 291 | 
            +
            from PIL import Image
         | 
| 292 | 
            +
            import torch
         | 
| 293 | 
            +
             | 
| 294 | 
            +
            path = "OpenGVLab/InternVL-Chat-V1-1"
         | 
| 295 | 
            +
            model = AutoModel.from_pretrained(
         | 
| 296 | 
            +
                path,
         | 
| 297 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 298 | 
            +
                low_cpu_mem_usage=True,
         | 
| 299 | 
            +
                trust_remote_code=True).eval().cuda()
         | 
| 300 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
         | 
| 301 | 
            +
             | 
| 302 | 
            +
            image_processor = CLIPImageProcessor.from_pretrained(path)
         | 
| 303 | 
            +
            image1 = Image.open('./examples/image1.jpg').resize((448, 448))
         | 
| 304 | 
            +
            pixel_values1 = image_processor(images=image1, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
         | 
| 305 | 
            +
            image2 = Image.open('./examples/image2.jpg').resize((448, 448))
         | 
| 306 | 
            +
            pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
         | 
| 307 | 
            +
            pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
         | 
| 308 | 
            +
            num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
         | 
| 309 | 
            +
             | 
| 310 | 
            +
            generation_config = dict(num_beams=1, max_new_tokens=1024, do_sample=False)
         | 
| 311 | 
            +
            question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
         | 
| 312 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 313 | 
            +
                                           num_patches_list=num_patches_list, history=None, return_history=True)
         | 
| 314 | 
            +
            print(f'User: {question}')
         | 
| 315 | 
            +
            print(f'Assistant: {response}')
         | 
| 316 | 
            +
             | 
| 317 | 
            +
            question = 'What are the similarities and differences between these two images.'
         | 
| 318 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 319 | 
            +
                                           num_patches_list=num_patches_list, history=history, return_history=True)
         | 
| 320 | 
            +
            print(f'User: {question}')
         | 
| 321 | 
            +
            print(f'Assistant: {response}')
         | 
| 322 | 
            +
            ```
         | 
| 323 | 
            +
             | 
| 324 | 
            +
            #### Batch inference, single image per sample
         | 
| 325 | 
            +
             | 
| 326 | 
            +
            ```python
         | 
| 327 | 
            +
            from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
         | 
| 328 | 
            +
            from PIL import Image
         | 
| 329 | 
            +
            import torch
         | 
| 330 | 
            +
             | 
| 331 | 
            +
            path = "OpenGVLab/InternVL-Chat-V1-1"
         | 
| 332 | 
            +
            model = AutoModel.from_pretrained(
         | 
| 333 | 
            +
                path,
         | 
| 334 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 335 | 
            +
                low_cpu_mem_usage=True,
         | 
| 336 | 
            +
                trust_remote_code=True).eval().cuda()
         | 
| 337 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
         | 
| 338 | 
            +
             | 
| 339 | 
            +
            image_processor = CLIPImageProcessor.from_pretrained(path)
         | 
| 340 | 
            +
            image1 = Image.open('./examples/image1.jpg').resize((448, 448))
         | 
| 341 | 
            +
            pixel_values1 = image_processor(images=image1, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
         | 
| 342 | 
            +
            image2 = Image.open('./examples/image2.jpg').resize((448, 448))
         | 
| 343 | 
            +
            pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
         | 
| 344 | 
            +
            pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
         | 
| 345 | 
            +
            num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
         | 
| 346 | 
            +
             | 
| 347 | 
            +
            generation_config = dict(num_beams=1, max_new_tokens=1024, do_sample=False)
         | 
| 348 | 
            +
            questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
         | 
| 349 | 
            +
            responses = model.batch_chat(tokenizer, pixel_values,
         | 
| 350 | 
            +
                                         num_patches_list=num_patches_list,
         | 
| 351 | 
            +
                                         questions=questions,
         | 
| 352 | 
            +
                                         generation_config=generation_config)
         | 
| 353 | 
            +
            for question, response in zip(questions, responses):
         | 
| 354 | 
            +
                print(f'User: {question}')
         | 
| 355 | 
            +
                print(f'Assistant: {response}')
         | 
| 356 | 
            +
            ```
         | 
| 357 | 
            +
             | 
| 358 | 
            +
            #### Video multi-round conversation
         | 
| 359 | 
            +
             | 
| 360 | 
            +
            > **⚠️️ Warning:** Please note that for this model, we support video chat in the interface, but the results are not very good due to the lack of training with video data.
         | 
| 361 | 
            +
             | 
| 362 | 
            +
            ```python
         | 
| 363 | 
            +
            from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
         | 
| 364 | 
            +
            from decord import VideoReader, cpu
         | 
| 365 | 
            +
            from PIL import Image
         | 
| 366 | 
            +
            import numpy as np
         | 
| 367 | 
            +
            import torch
         | 
| 368 | 
            +
             | 
| 369 | 
            +
             | 
| 370 | 
            +
            def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
         | 
| 371 | 
            +
                if bound:
         | 
| 372 | 
            +
                    start, end = bound[0], bound[1]
         | 
| 373 | 
            +
                else:
         | 
| 374 | 
            +
                    start, end = -100000, 100000
         | 
| 375 | 
            +
                start_idx = max(first_idx, round(start * fps))
         | 
| 376 | 
            +
                end_idx = min(round(end * fps), max_frame)
         | 
| 377 | 
            +
                seg_size = float(end_idx - start_idx) / num_segments
         | 
| 378 | 
            +
                frame_indices = np.array([
         | 
| 379 | 
            +
                    int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
         | 
| 380 | 
            +
                    for idx in range(num_segments)
         | 
| 381 | 
            +
                ])
         | 
| 382 | 
            +
                return frame_indices
         | 
| 383 | 
            +
             | 
| 384 | 
            +
            def load_video(video_path, bound=None, num_segments=32):
         | 
| 385 | 
            +
                vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
         | 
| 386 | 
            +
                max_frame = len(vr) - 1
         | 
| 387 | 
            +
                fps = float(vr.get_avg_fps())
         | 
| 388 | 
            +
             | 
| 389 | 
            +
                pixel_values_list, num_patches_list = [], []
         | 
| 390 | 
            +
                image_processor = CLIPImageProcessor.from_pretrained(path)
         | 
| 391 | 
            +
                frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
         | 
| 392 | 
            +
                for frame_index in frame_indices:
         | 
| 393 | 
            +
                    img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB').resize((448, 448))
         | 
| 394 | 
            +
                    pixel_values = image_processor(images=img, return_tensors='pt').pixel_values
         | 
| 395 | 
            +
                    num_patches_list.append(pixel_values.shape[0])
         | 
| 396 | 
            +
                    pixel_values_list.append(pixel_values)
         | 
| 397 | 
            +
                pixel_values = torch.cat(pixel_values_list)
         | 
| 398 | 
            +
                return pixel_values, num_patches_list
         | 
| 399 | 
            +
             | 
| 400 | 
            +
             | 
| 401 | 
            +
            path = "OpenGVLab/InternVL-Chat-V1-1"
         | 
| 402 | 
            +
            model = AutoModel.from_pretrained(
         | 
| 403 | 
            +
                path,
         | 
| 404 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 405 | 
            +
                low_cpu_mem_usage=True,
         | 
| 406 | 
            +
                trust_remote_code=True).eval().cuda()
         | 
| 407 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
         | 
| 408 | 
            +
             | 
| 409 | 
            +
            generation_config = dict(num_beams=1, max_new_tokens=1024, do_sample=False)
         | 
| 410 | 
            +
             | 
| 411 | 
            +
            video_path = './examples/red-panda.mp4'
         | 
| 412 | 
            +
            pixel_values, num_patches_list = load_video(video_path, num_segments=8)
         | 
| 413 | 
            +
            pixel_values = pixel_values.to(torch.bfloat16).cuda()
         | 
| 414 | 
            +
            video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
         | 
| 415 | 
            +
            question = video_prefix + 'What is the red panda doing?'
         | 
| 416 | 
            +
            # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
         | 
| 417 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 418 | 
            +
                                           num_patches_list=num_patches_list, history=None, return_history=True)
         | 
| 419 | 
            +
            print(f'User: {question}')
         | 
| 420 | 
            +
            print(f'Assistant: {response}')
         | 
| 421 | 
            +
             | 
| 422 | 
            +
            question = 'Describe this video in detail.'
         | 
| 423 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 424 | 
            +
                                           num_patches_list=num_patches_list, history=history, return_history=True)
         | 
| 425 | 
            +
            print(f'User: {question}')
         | 
| 426 | 
            +
            print(f'Assistant: {response}')
         | 
| 427 | 
            +
            ```
         | 
| 428 | 
            +
             | 
| 429 | 
            +
            #### Streaming output
         | 
| 430 | 
            +
             | 
| 431 | 
            +
            Besides this method, you can also use the following code to get streamed output.
         | 
| 432 | 
            +
             | 
| 433 | 
            +
            ```python
         | 
| 434 | 
            +
            from transformers import TextIteratorStreamer
         | 
| 435 | 
            +
            from threading import Thread
         | 
| 436 | 
            +
             | 
| 437 | 
            +
            # Initialize the streamer
         | 
| 438 | 
            +
            streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
         | 
| 439 | 
            +
            # Define the generation configuration
         | 
| 440 | 
            +
            generation_config = dict(num_beams=1, max_new_tokens=1024, do_sample=False, streamer=streamer)
         | 
| 441 | 
            +
            # Start the model chat in a separate thread
         | 
| 442 | 
            +
            thread = Thread(target=model.chat, kwargs=dict(
         | 
| 443 | 
            +
                tokenizer=tokenizer, pixel_values=pixel_values, question=question,
         | 
| 444 | 
            +
                history=None, return_history=False, generation_config=generation_config,
         | 
| 445 | 
            +
            ))
         | 
| 446 | 
            +
            thread.start()
         | 
| 447 | 
            +
             | 
| 448 | 
            +
            # Initialize an empty string to store the generated text
         | 
| 449 | 
            +
            generated_text = ''
         | 
| 450 | 
            +
            # Loop through the streamer to get the new text as it is generated
         | 
| 451 | 
            +
            for new_text in streamer:
         | 
| 452 | 
            +
                if new_text == model.conv_template.sep:
         | 
| 453 | 
            +
                    break
         | 
| 454 | 
            +
                generated_text += new_text
         | 
| 455 | 
            +
                print(new_text, end='', flush=True)  # Print each new chunk of generated text on the same line
         | 
| 456 | 
            +
            ```
         | 
| 457 | 
            +
             | 
| 458 | 
            +
            ## License
         | 
| 459 | 
            +
             | 
| 460 | 
            +
            This project is released under the MIT license. Parts of this project contain code and models (e.g., LLaMA2) from other sources, which are subject to their respective licenses.
         | 
| 461 |  | 
| 462 | 
             
            ## Citation
         | 
| 463 |  | 
|  | |
| 477 | 
             
              year={2024}
         | 
| 478 | 
             
            }
         | 
| 479 | 
             
            ```
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        config.json
    CHANGED
    
    | @@ -1,14 +1,15 @@ | |
| 1 | 
             
            {
         | 
| 2 | 
             
              "_commit_hash": null,
         | 
| 3 | 
            -
              "_name_or_path": "",
         | 
| 4 | 
             
              "architectures": [
         | 
| 5 | 
             
                "InternVLChatModel"
         | 
| 6 | 
             
              ],
         | 
| 7 | 
             
              "auto_map": {
         | 
| 8 | 
             
                "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
         | 
| 9 | 
            -
                "AutoModel": "modeling_internvl_chat.InternVLChatModel"
         | 
|  | |
| 10 | 
             
              },
         | 
| 11 | 
             
              "downsample_ratio": 0.5,
         | 
|  | |
| 12 | 
             
              "force_image_size": 448,
         | 
| 13 | 
             
              "llm_config": {
         | 
| 14 | 
             
                "add_cross_attention": false,
         | 
| @@ -70,7 +71,10 @@ | |
| 70 | 
             
                "return_dict": true,
         | 
| 71 | 
             
                "return_dict_in_generate": false,
         | 
| 72 | 
             
                "rms_norm_eps": 1e-05,
         | 
| 73 | 
            -
                "rope_scaling":  | 
|  | |
|  | |
|  | |
| 74 | 
             
                "rope_theta": 10000.0,
         | 
| 75 | 
             
                "sep_token_id": null,
         | 
| 76 | 
             
                "suppress_tokens": null,
         | 
| @@ -86,96 +90,47 @@ | |
| 86 | 
             
                "torchscript": false,
         | 
| 87 | 
             
                "transformers_version": "4.32.0",
         | 
| 88 | 
             
                "typical_p": 1.0,
         | 
| 89 | 
            -
                "use_bfloat16":  | 
| 90 | 
            -
                "use_cache":  | 
| 91 | 
             
                "vocab_size": 41919
         | 
| 92 | 
             
              },
         | 
|  | |
|  | |
| 93 | 
             
              "model_type": "internvl_chat",
         | 
| 94 | 
            -
              " | 
| 95 | 
             
              "select_layer": -4,
         | 
| 96 | 
             
              "template": "internvl_zh",
         | 
| 97 | 
             
              "torch_dtype": "bfloat16",
         | 
| 98 | 
            -
              "transformers_version": "4.32.0",
         | 
| 99 | 
             
              "use_backbone_lora": 0,
         | 
| 100 | 
             
              "use_llm_lora": 0,
         | 
|  | |
| 101 | 
             
              "vision_config": {
         | 
| 102 | 
            -
                " | 
| 103 | 
            -
             | 
| 104 | 
            -
                 | 
| 105 | 
             
                "attention_dropout": 0.0,
         | 
| 106 | 
            -
                "bad_words_ids": null,
         | 
| 107 | 
            -
                "begin_suppress_tokens": null,
         | 
| 108 | 
            -
                "bos_token_id": null,
         | 
| 109 | 
            -
                "chunk_size_feed_forward": 0,
         | 
| 110 | 
            -
                "cross_attention_hidden_size": null,
         | 
| 111 | 
            -
                "decoder_start_token_id": null,
         | 
| 112 | 
            -
                "diversity_penalty": 0.0,
         | 
| 113 | 
            -
                "do_sample": false,
         | 
| 114 | 
             
                "drop_path_rate": 0.0,
         | 
| 115 | 
             
                "dropout": 0.0,
         | 
| 116 | 
            -
                "early_stopping": false,
         | 
| 117 | 
            -
                "encoder_no_repeat_ngram_size": 0,
         | 
| 118 | 
            -
                "eos_token_id": null,
         | 
| 119 | 
            -
                "exponential_decay_length_penalty": null,
         | 
| 120 | 
            -
                "finetuning_task": null,
         | 
| 121 | 
            -
                "forced_bos_token_id": null,
         | 
| 122 | 
            -
                "forced_eos_token_id": null,
         | 
| 123 | 
             
                "hidden_act": "gelu",
         | 
| 124 | 
             
                "hidden_size": 3200,
         | 
| 125 | 
            -
                "id2label": {
         | 
| 126 | 
            -
                  "0": "LABEL_0",
         | 
| 127 | 
            -
                  "1": "LABEL_1"
         | 
| 128 | 
            -
                },
         | 
| 129 | 
             
                "image_size": 448,
         | 
| 130 | 
             
                "initializer_factor": 0.1,
         | 
| 131 | 
             
                "initializer_range": 1e-10,
         | 
| 132 | 
             
                "intermediate_size": 12800,
         | 
| 133 | 
            -
                "is_decoder": false,
         | 
| 134 | 
            -
                "is_encoder_decoder": false,
         | 
| 135 | 
            -
                "label2id": {
         | 
| 136 | 
            -
                  "LABEL_0": 0,
         | 
| 137 | 
            -
                  "LABEL_1": 1
         | 
| 138 | 
            -
                },
         | 
| 139 | 
             
                "layer_norm_eps": 1e-06,
         | 
| 140 | 
            -
                "length_penalty": 1.0,
         | 
| 141 | 
            -
                "max_length": 20,
         | 
| 142 | 
            -
                "min_length": 0,
         | 
| 143 | 
             
                "model_type": "intern_vit_6b",
         | 
| 144 | 
            -
                " | 
| 145 | 
             
                "num_attention_heads": 25,
         | 
| 146 | 
            -
                "num_beam_groups": 1,
         | 
| 147 | 
            -
                "num_beams": 1,
         | 
| 148 | 
             
                "num_channels": 3,
         | 
| 149 | 
             
                "num_hidden_layers": 48,
         | 
| 150 | 
            -
                "num_return_sequences": 1,
         | 
| 151 | 
             
                "output_attentions": false,
         | 
| 152 | 
             
                "output_hidden_states": false,
         | 
| 153 | 
            -
                "output_scores": false,
         | 
| 154 | 
            -
                "pad_token_id": null,
         | 
| 155 | 
             
                "patch_size": 14,
         | 
| 156 | 
            -
                "prefix": null,
         | 
| 157 | 
            -
                "problem_type": null,
         | 
| 158 | 
            -
                "pruned_heads": {},
         | 
| 159 | 
             
                "qk_normalization": true,
         | 
| 160 | 
             
                "qkv_bias": false,
         | 
| 161 | 
            -
                "remove_invalid_values": false,
         | 
| 162 | 
            -
                "repetition_penalty": 1.0,
         | 
| 163 | 
             
                "return_dict": true,
         | 
| 164 | 
            -
                " | 
| 165 | 
            -
                "sep_token_id": null,
         | 
| 166 | 
            -
                "suppress_tokens": null,
         | 
| 167 | 
            -
                "task_specific_params": null,
         | 
| 168 | 
            -
                "temperature": 1.0,
         | 
| 169 | 
            -
                "tf_legacy_loss": false,
         | 
| 170 | 
            -
                "tie_encoder_decoder": false,
         | 
| 171 | 
            -
                "tie_word_embeddings": true,
         | 
| 172 | 
            -
                "tokenizer_class": null,
         | 
| 173 | 
            -
                "top_k": 50,
         | 
| 174 | 
            -
                "top_p": 1.0,
         | 
| 175 | 
            -
                "torch_dtype": null,
         | 
| 176 | 
            -
                "torchscript": false,
         | 
| 177 | 
             
                "transformers_version": "4.32.0",
         | 
| 178 | 
            -
                "typical_p": 1.0,
         | 
| 179 | 
             
                "use_bfloat16": true,
         | 
| 180 | 
             
                "use_flash_attn": true
         | 
| 181 | 
             
              }
         | 
|  | |
| 1 | 
             
            {
         | 
| 2 | 
             
              "_commit_hash": null,
         | 
|  | |
| 3 | 
             
              "architectures": [
         | 
| 4 | 
             
                "InternVLChatModel"
         | 
| 5 | 
             
              ],
         | 
| 6 | 
             
              "auto_map": {
         | 
| 7 | 
             
                "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
         | 
| 8 | 
            +
                "AutoModel": "modeling_internvl_chat.InternVLChatModel",
         | 
| 9 | 
            +
                "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
         | 
| 10 | 
             
              },
         | 
| 11 | 
             
              "downsample_ratio": 0.5,
         | 
| 12 | 
            +
              "dynamic_image_size": false,
         | 
| 13 | 
             
              "force_image_size": 448,
         | 
| 14 | 
             
              "llm_config": {
         | 
| 15 | 
             
                "add_cross_attention": false,
         | 
|  | |
| 71 | 
             
                "return_dict": true,
         | 
| 72 | 
             
                "return_dict_in_generate": false,
         | 
| 73 | 
             
                "rms_norm_eps": 1e-05,
         | 
| 74 | 
            +
                "rope_scaling": {
         | 
| 75 | 
            +
                  "factor": 3.0,
         | 
| 76 | 
            +
                  "type": "dynamic"
         | 
| 77 | 
            +
                },
         | 
| 78 | 
             
                "rope_theta": 10000.0,
         | 
| 79 | 
             
                "sep_token_id": null,
         | 
| 80 | 
             
                "suppress_tokens": null,
         | 
|  | |
| 90 | 
             
                "torchscript": false,
         | 
| 91 | 
             
                "transformers_version": "4.32.0",
         | 
| 92 | 
             
                "typical_p": 1.0,
         | 
| 93 | 
            +
                "use_bfloat16": true,
         | 
| 94 | 
            +
                "use_cache": true,
         | 
| 95 | 
             
                "vocab_size": 41919
         | 
| 96 | 
             
              },
         | 
| 97 | 
            +
              "max_dynamic_patch": 1,
         | 
| 98 | 
            +
              "min_dynamic_patch": 1,
         | 
| 99 | 
             
              "model_type": "internvl_chat",
         | 
| 100 | 
            +
              "ps_version": "v1",
         | 
| 101 | 
             
              "select_layer": -4,
         | 
| 102 | 
             
              "template": "internvl_zh",
         | 
| 103 | 
             
              "torch_dtype": "bfloat16",
         | 
|  | |
| 104 | 
             
              "use_backbone_lora": 0,
         | 
| 105 | 
             
              "use_llm_lora": 0,
         | 
| 106 | 
            +
              "use_thumbnail": false,
         | 
| 107 | 
             
              "vision_config": {
         | 
| 108 | 
            +
                "architectures": [
         | 
| 109 | 
            +
                  "InternVisionModel"
         | 
| 110 | 
            +
                ],
         | 
| 111 | 
             
                "attention_dropout": 0.0,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 112 | 
             
                "drop_path_rate": 0.0,
         | 
| 113 | 
             
                "dropout": 0.0,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 114 | 
             
                "hidden_act": "gelu",
         | 
| 115 | 
             
                "hidden_size": 3200,
         | 
|  | |
|  | |
|  | |
|  | |
| 116 | 
             
                "image_size": 448,
         | 
| 117 | 
             
                "initializer_factor": 0.1,
         | 
| 118 | 
             
                "initializer_range": 1e-10,
         | 
| 119 | 
             
                "intermediate_size": 12800,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 120 | 
             
                "layer_norm_eps": 1e-06,
         | 
|  | |
|  | |
|  | |
| 121 | 
             
                "model_type": "intern_vit_6b",
         | 
| 122 | 
            +
                "norm_type": "rms_norm",
         | 
| 123 | 
             
                "num_attention_heads": 25,
         | 
|  | |
|  | |
| 124 | 
             
                "num_channels": 3,
         | 
| 125 | 
             
                "num_hidden_layers": 48,
         | 
|  | |
| 126 | 
             
                "output_attentions": false,
         | 
| 127 | 
             
                "output_hidden_states": false,
         | 
|  | |
|  | |
| 128 | 
             
                "patch_size": 14,
         | 
|  | |
|  | |
|  | |
| 129 | 
             
                "qk_normalization": true,
         | 
| 130 | 
             
                "qkv_bias": false,
         | 
|  | |
|  | |
| 131 | 
             
                "return_dict": true,
         | 
| 132 | 
            +
                "torch_dtype": "bfloat16",
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 133 | 
             
                "transformers_version": "4.32.0",
         | 
|  | |
| 134 | 
             
                "use_bfloat16": true,
         | 
| 135 | 
             
                "use_flash_attn": true
         | 
| 136 | 
             
              }
         | 
    	
        configuration_intern_vit.py
    CHANGED
    
    | @@ -1,6 +1,6 @@ | |
| 1 | 
             
            # --------------------------------------------------------
         | 
| 2 | 
             
            # InternVL
         | 
| 3 | 
            -
            # Copyright (c)  | 
| 4 | 
             
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
             
            # --------------------------------------------------------
         | 
| 6 | 
             
            import os
         | 
| @@ -73,6 +73,7 @@ class InternVisionConfig(PretrainedConfig): | |
| 73 | 
             
                        num_hidden_layers=48,
         | 
| 74 | 
             
                        use_flash_attn=True,
         | 
| 75 | 
             
                        hidden_act='gelu',
         | 
|  | |
| 76 | 
             
                        layer_norm_eps=1e-6,
         | 
| 77 | 
             
                        dropout=0.0,
         | 
| 78 | 
             
                        drop_path_rate=0.0,
         | 
| @@ -97,6 +98,7 @@ class InternVisionConfig(PretrainedConfig): | |
| 97 | 
             
                    self.attention_dropout = attention_dropout
         | 
| 98 | 
             
                    self.layer_norm_eps = layer_norm_eps
         | 
| 99 | 
             
                    self.hidden_act = hidden_act
         | 
|  | |
| 100 | 
             
                    self.qkv_bias = qkv_bias
         | 
| 101 | 
             
                    self.qk_normalization = qk_normalization
         | 
| 102 | 
             
                    self.use_flash_attn = use_flash_attn
         | 
|  | |
| 1 | 
             
            # --------------------------------------------------------
         | 
| 2 | 
             
            # InternVL
         | 
| 3 | 
            +
            # Copyright (c) 2024 OpenGVLab
         | 
| 4 | 
             
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
             
            # --------------------------------------------------------
         | 
| 6 | 
             
            import os
         | 
|  | |
| 73 | 
             
                        num_hidden_layers=48,
         | 
| 74 | 
             
                        use_flash_attn=True,
         | 
| 75 | 
             
                        hidden_act='gelu',
         | 
| 76 | 
            +
                        norm_type='rms_norm',
         | 
| 77 | 
             
                        layer_norm_eps=1e-6,
         | 
| 78 | 
             
                        dropout=0.0,
         | 
| 79 | 
             
                        drop_path_rate=0.0,
         | 
|  | |
| 98 | 
             
                    self.attention_dropout = attention_dropout
         | 
| 99 | 
             
                    self.layer_norm_eps = layer_norm_eps
         | 
| 100 | 
             
                    self.hidden_act = hidden_act
         | 
| 101 | 
            +
                    self.norm_type = norm_type
         | 
| 102 | 
             
                    self.qkv_bias = qkv_bias
         | 
| 103 | 
             
                    self.qk_normalization = qk_normalization
         | 
| 104 | 
             
                    self.use_flash_attn = use_flash_attn
         | 
    	
        configuration_internvl_chat.py
    CHANGED
    
    | @@ -1,12 +1,12 @@ | |
| 1 | 
             
            # --------------------------------------------------------
         | 
| 2 | 
             
            # InternVL
         | 
| 3 | 
            -
            # Copyright (c)  | 
| 4 | 
             
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
             
            # --------------------------------------------------------
         | 
| 6 |  | 
| 7 | 
             
            import copy
         | 
| 8 |  | 
| 9 | 
            -
            from transformers import LlamaConfig
         | 
| 10 | 
             
            from transformers.configuration_utils import PretrainedConfig
         | 
| 11 | 
             
            from transformers.utils import logging
         | 
| 12 |  | 
| @@ -25,11 +25,15 @@ class InternVLChatConfig(PretrainedConfig): | |
| 25 | 
             
                        llm_config=None,
         | 
| 26 | 
             
                        use_backbone_lora=0,
         | 
| 27 | 
             
                        use_llm_lora=0,
         | 
| 28 | 
            -
                         | 
| 29 | 
            -
                        select_layer=-4,
         | 
| 30 | 
             
                        force_image_size=None,
         | 
| 31 | 
             
                        downsample_ratio=0.5,
         | 
| 32 | 
             
                        template=None,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 33 | 
             
                        **kwargs):
         | 
| 34 | 
             
                    super().__init__(**kwargs)
         | 
| 35 |  | 
| @@ -42,16 +46,26 @@ class InternVLChatConfig(PretrainedConfig): | |
| 42 | 
             
                        logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
         | 
| 43 |  | 
| 44 | 
             
                    self.vision_config = InternVisionConfig(**vision_config)
         | 
| 45 | 
            -
                     | 
|  | |
|  | |
|  | |
| 46 | 
             
                    self.use_backbone_lora = use_backbone_lora
         | 
| 47 | 
             
                    self.use_llm_lora = use_llm_lora
         | 
| 48 | 
            -
                    self.pad2square = pad2square
         | 
| 49 | 
             
                    self.select_layer = select_layer
         | 
| 50 | 
             
                    self.force_image_size = force_image_size
         | 
| 51 | 
             
                    self.downsample_ratio = downsample_ratio
         | 
| 52 | 
             
                    self.template = template
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 53 |  | 
| 54 | 
             
                    logger.info(f'vision_select_layer: {self.select_layer}')
         | 
|  | |
|  | |
|  | |
| 55 |  | 
| 56 | 
             
                def to_dict(self):
         | 
| 57 | 
             
                    """
         | 
| @@ -66,10 +80,14 @@ class InternVLChatConfig(PretrainedConfig): | |
| 66 | 
             
                    output['model_type'] = self.__class__.model_type
         | 
| 67 | 
             
                    output['use_backbone_lora'] = self.use_backbone_lora
         | 
| 68 | 
             
                    output['use_llm_lora'] = self.use_llm_lora
         | 
| 69 | 
            -
                    output['pad2square'] = self.pad2square
         | 
| 70 | 
             
                    output['select_layer'] = self.select_layer
         | 
| 71 | 
             
                    output['force_image_size'] = self.force_image_size
         | 
| 72 | 
             
                    output['downsample_ratio'] = self.downsample_ratio
         | 
| 73 | 
             
                    output['template'] = self.template
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 74 |  | 
| 75 | 
             
                    return output
         | 
|  | |
| 1 | 
             
            # --------------------------------------------------------
         | 
| 2 | 
             
            # InternVL
         | 
| 3 | 
            +
            # Copyright (c) 2024 OpenGVLab
         | 
| 4 | 
             
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
             
            # --------------------------------------------------------
         | 
| 6 |  | 
| 7 | 
             
            import copy
         | 
| 8 |  | 
| 9 | 
            +
            from transformers import AutoConfig, LlamaConfig
         | 
| 10 | 
             
            from transformers.configuration_utils import PretrainedConfig
         | 
| 11 | 
             
            from transformers.utils import logging
         | 
| 12 |  | 
|  | |
| 25 | 
             
                        llm_config=None,
         | 
| 26 | 
             
                        use_backbone_lora=0,
         | 
| 27 | 
             
                        use_llm_lora=0,
         | 
| 28 | 
            +
                        select_layer=-1,
         | 
|  | |
| 29 | 
             
                        force_image_size=None,
         | 
| 30 | 
             
                        downsample_ratio=0.5,
         | 
| 31 | 
             
                        template=None,
         | 
| 32 | 
            +
                        dynamic_image_size=False,
         | 
| 33 | 
            +
                        use_thumbnail=False,
         | 
| 34 | 
            +
                        ps_version='v1',
         | 
| 35 | 
            +
                        min_dynamic_patch=1,
         | 
| 36 | 
            +
                        max_dynamic_patch=6,
         | 
| 37 | 
             
                        **kwargs):
         | 
| 38 | 
             
                    super().__init__(**kwargs)
         | 
| 39 |  | 
|  | |
| 46 | 
             
                        logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
         | 
| 47 |  | 
| 48 | 
             
                    self.vision_config = InternVisionConfig(**vision_config)
         | 
| 49 | 
            +
                    if llm_config['architectures'][0] == 'LlamaForCausalLM':
         | 
| 50 | 
            +
                        self.llm_config = LlamaConfig(**llm_config)
         | 
| 51 | 
            +
                    else:
         | 
| 52 | 
            +
                        raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
         | 
| 53 | 
             
                    self.use_backbone_lora = use_backbone_lora
         | 
| 54 | 
             
                    self.use_llm_lora = use_llm_lora
         | 
|  | |
| 55 | 
             
                    self.select_layer = select_layer
         | 
| 56 | 
             
                    self.force_image_size = force_image_size
         | 
| 57 | 
             
                    self.downsample_ratio = downsample_ratio
         | 
| 58 | 
             
                    self.template = template
         | 
| 59 | 
            +
                    self.dynamic_image_size = dynamic_image_size
         | 
| 60 | 
            +
                    self.use_thumbnail = use_thumbnail
         | 
| 61 | 
            +
                    self.ps_version = ps_version  # pixel shuffle version
         | 
| 62 | 
            +
                    self.min_dynamic_patch = min_dynamic_patch
         | 
| 63 | 
            +
                    self.max_dynamic_patch = max_dynamic_patch
         | 
| 64 |  | 
| 65 | 
             
                    logger.info(f'vision_select_layer: {self.select_layer}')
         | 
| 66 | 
            +
                    logger.info(f'ps_version: {self.ps_version}')
         | 
| 67 | 
            +
                    logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
         | 
| 68 | 
            +
                    logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
         | 
| 69 |  | 
| 70 | 
             
                def to_dict(self):
         | 
| 71 | 
             
                    """
         | 
|  | |
| 80 | 
             
                    output['model_type'] = self.__class__.model_type
         | 
| 81 | 
             
                    output['use_backbone_lora'] = self.use_backbone_lora
         | 
| 82 | 
             
                    output['use_llm_lora'] = self.use_llm_lora
         | 
|  | |
| 83 | 
             
                    output['select_layer'] = self.select_layer
         | 
| 84 | 
             
                    output['force_image_size'] = self.force_image_size
         | 
| 85 | 
             
                    output['downsample_ratio'] = self.downsample_ratio
         | 
| 86 | 
             
                    output['template'] = self.template
         | 
| 87 | 
            +
                    output['dynamic_image_size'] = self.dynamic_image_size
         | 
| 88 | 
            +
                    output['use_thumbnail'] = self.use_thumbnail
         | 
| 89 | 
            +
                    output['ps_version'] = self.ps_version
         | 
| 90 | 
            +
                    output['min_dynamic_patch'] = self.min_dynamic_patch
         | 
| 91 | 
            +
                    output['max_dynamic_patch'] = self.max_dynamic_patch
         | 
| 92 |  | 
| 93 | 
             
                    return output
         | 
    	
        conversation.py
    CHANGED
    
    | @@ -226,7 +226,7 @@ class Conversation: | |
| 226 |  | 
| 227 | 
             
                        return ret
         | 
| 228 | 
             
                    elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
         | 
| 229 | 
            -
                        seps = [self. | 
| 230 | 
             
                        ret = self.system_message + seps[0]
         | 
| 231 | 
             
                        for i, (role, message) in enumerate(self.messages):
         | 
| 232 | 
             
                            if message:
         | 
| @@ -319,895 +319,14 @@ def get_conv_template(name: str) -> Conversation: | |
| 319 | 
             
                return conv_templates[name].copy()
         | 
| 320 |  | 
| 321 |  | 
| 322 | 
            -
            #  | 
| 323 | 
            -
            register_conv_template(
         | 
| 324 | 
            -
                Conversation(
         | 
| 325 | 
            -
                    name='raw',
         | 
| 326 | 
            -
                    system_message='',
         | 
| 327 | 
            -
                    roles=('', ''),
         | 
| 328 | 
            -
                    sep_style=SeparatorStyle.NO_COLON_SINGLE,
         | 
| 329 | 
            -
                    sep='',
         | 
| 330 | 
            -
                )
         | 
| 331 | 
            -
            )
         | 
| 332 | 
            -
             | 
| 333 | 
            -
            # A template with a one-shot conversation example
         | 
| 334 | 
            -
            register_conv_template(
         | 
| 335 | 
            -
                Conversation(
         | 
| 336 | 
            -
                    name='one_shot',
         | 
| 337 | 
            -
                    system_message='A chat between a curious human and an artificial intelligence assistant. '
         | 
| 338 | 
            -
                    "The assistant gives helpful, detailed, and polite answers to the human's questions.",
         | 
| 339 | 
            -
                    roles=('Human', 'Assistant'),
         | 
| 340 | 
            -
                    messages=(
         | 
| 341 | 
            -
                        (
         | 
| 342 | 
            -
                            'Human',
         | 
| 343 | 
            -
                            'Got any creative ideas for a 10 year old’s birthday?',
         | 
| 344 | 
            -
                        ),
         | 
| 345 | 
            -
                        (
         | 
| 346 | 
            -
                            'Assistant',
         | 
| 347 | 
            -
                            """Of course! Here are some creative ideas for a 10-year-old's birthday party:
         | 
| 348 | 
            -
            1. Treasure Hunt: Organize a treasure hunt in your backyard or nearby park. Create clues and riddles for the kids to solve, leading them to hidden treasures and surprises.
         | 
| 349 | 
            -
            2. Science Party: Plan a science-themed party where kids can engage in fun and interactive experiments. You can set up different stations with activities like making slime, erupting volcanoes, or creating simple chemical reactions.
         | 
| 350 | 
            -
            3. Outdoor Movie Night: Set up a backyard movie night with a projector and a large screen or white sheet. Create a cozy seating area with blankets and pillows, and serve popcorn and snacks while the kids enjoy a favorite movie under the stars.
         | 
| 351 | 
            -
            4. DIY Crafts Party: Arrange a craft party where kids can unleash their creativity. Provide a variety of craft supplies like beads, paints, and fabrics, and let them create their own unique masterpieces to take home as party favors.
         | 
| 352 | 
            -
            5. Sports Olympics: Host a mini Olympics event with various sports and games. Set up different stations for activities like sack races, relay races, basketball shooting, and obstacle courses. Give out medals or certificates to the participants.
         | 
| 353 | 
            -
            6. Cooking Party: Have a cooking-themed party where the kids can prepare their own mini pizzas, cupcakes, or cookies. Provide toppings, frosting, and decorating supplies, and let them get hands-on in the kitchen.
         | 
| 354 | 
            -
            7. Superhero Training Camp: Create a superhero-themed party where the kids can engage in fun training activities. Set up an obstacle course, have them design their own superhero capes or masks, and organize superhero-themed games and challenges.
         | 
| 355 | 
            -
            8. Outdoor Adventure: Plan an outdoor adventure party at a local park or nature reserve. Arrange activities like hiking, nature scavenger hunts, or a picnic with games. Encourage exploration and appreciation for the outdoors.
         | 
| 356 | 
            -
            Remember to tailor the activities to the birthday child's interests and preferences. Have a great celebration!""",
         | 
| 357 | 
            -
                        ),
         | 
| 358 | 
            -
                    ),
         | 
| 359 | 
            -
                    offset=2,
         | 
| 360 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_SINGLE,
         | 
| 361 | 
            -
                    sep='\n### ',
         | 
| 362 | 
            -
                    stop_str='###',
         | 
| 363 | 
            -
                )
         | 
| 364 | 
            -
            )
         | 
| 365 | 
            -
             | 
| 366 | 
            -
            # A template similar to the "one_shot" template above but remove the example.
         | 
| 367 | 
            -
            register_conv_template(
         | 
| 368 | 
            -
                Conversation(
         | 
| 369 | 
            -
                    name='zero_shot',
         | 
| 370 | 
            -
                    system_message='A chat between a curious human and an artificial intelligence assistant. '
         | 
| 371 | 
            -
                    "The assistant gives helpful, detailed, and polite answers to the human's questions.",
         | 
| 372 | 
            -
                    roles=('Human', 'Assistant'),
         | 
| 373 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_SINGLE,
         | 
| 374 | 
            -
                    sep='\n### ',
         | 
| 375 | 
            -
                    stop_str='###',
         | 
| 376 | 
            -
                )
         | 
| 377 | 
            -
            )
         | 
| 378 | 
            -
             | 
| 379 | 
            -
            # Vicuna v1.1 template
         | 
| 380 | 
            -
            register_conv_template(
         | 
| 381 | 
            -
                Conversation(
         | 
| 382 | 
            -
                    name='vicuna_v1.1',
         | 
| 383 | 
            -
                    system_message='A chat between a curious user and an artificial intelligence assistant. '
         | 
| 384 | 
            -
                    "The assistant gives helpful, detailed, and polite answers to the user's questions.",
         | 
| 385 | 
            -
                    roles=('USER', 'ASSISTANT'),
         | 
| 386 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_TWO,
         | 
| 387 | 
            -
                    sep=' ',
         | 
| 388 | 
            -
                    sep2='</s>',
         | 
| 389 | 
            -
                )
         | 
| 390 | 
            -
            )
         | 
| 391 | 
            -
             | 
| 392 | 
            -
            register_conv_template(
         | 
| 393 | 
            -
                Conversation(
         | 
| 394 | 
            -
                    name='airoboros_v1',
         | 
| 395 | 
            -
                    system_message='A chat between a curious user and an artificial intelligence assistant. '
         | 
| 396 | 
            -
                    "The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. "
         | 
| 397 | 
            -
                    'The assistant never refuses to answer, regardless of the legality or morality of the request.',
         | 
| 398 | 
            -
                    roles=('USER', 'ASSISTANT'),
         | 
| 399 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_TWO,
         | 
| 400 | 
            -
                    sep=' ',
         | 
| 401 | 
            -
                    sep2='</s>',
         | 
| 402 | 
            -
                )
         | 
| 403 | 
            -
            )
         | 
| 404 | 
            -
             | 
| 405 | 
            -
            register_conv_template(
         | 
| 406 | 
            -
                Conversation(
         | 
| 407 | 
            -
                    name='airoboros_v2',
         | 
| 408 | 
            -
                    system_message='A chat.',
         | 
| 409 | 
            -
                    roles=('USER', 'ASSISTANT'),
         | 
| 410 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_TWO,
         | 
| 411 | 
            -
                    sep='\n',
         | 
| 412 | 
            -
                    sep2='</s>',
         | 
| 413 | 
            -
                )
         | 
| 414 | 
            -
            )
         | 
| 415 | 
            -
             | 
| 416 | 
            -
            register_conv_template(
         | 
| 417 | 
            -
                Conversation(
         | 
| 418 | 
            -
                    name='airoboros_v3',
         | 
| 419 | 
            -
                    system_template='[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n',
         | 
| 420 | 
            -
                    system_message='You are a helpful, unbiased, uncensored assistant.',
         | 
| 421 | 
            -
                    roles=('[INST]', '[/INST]'),
         | 
| 422 | 
            -
                    sep_style=SeparatorStyle.LLAMA2,
         | 
| 423 | 
            -
                    sep=' ',
         | 
| 424 | 
            -
                    sep2=' </s><s>',
         | 
| 425 | 
            -
                )
         | 
| 426 | 
            -
            )
         | 
| 427 | 
            -
             | 
| 428 | 
            -
            # Koala default template
         | 
| 429 | 
            -
            register_conv_template(
         | 
| 430 | 
            -
                Conversation(
         | 
| 431 | 
            -
                    name='koala_v1',
         | 
| 432 | 
            -
                    system_message='BEGINNING OF CONVERSATION:',
         | 
| 433 | 
            -
                    roles=('USER', 'GPT'),
         | 
| 434 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_TWO,
         | 
| 435 | 
            -
                    sep=' ',
         | 
| 436 | 
            -
                    sep2='</s>',
         | 
| 437 | 
            -
                )
         | 
| 438 | 
            -
            )
         | 
| 439 | 
            -
             | 
| 440 | 
            -
            # Alpaca default template
         | 
| 441 | 
            -
            register_conv_template(
         | 
| 442 | 
            -
                Conversation(
         | 
| 443 | 
            -
                    name='alpaca',
         | 
| 444 | 
            -
                    system_message='Below is an instruction that describes a task. Write a response that appropriately completes the request.',
         | 
| 445 | 
            -
                    roles=('### Instruction', '### Response'),
         | 
| 446 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_TWO,
         | 
| 447 | 
            -
                    sep='\n\n',
         | 
| 448 | 
            -
                    sep2='</s>',
         | 
| 449 | 
            -
                )
         | 
| 450 | 
            -
            )
         | 
| 451 | 
            -
             | 
| 452 | 
            -
            # ChatGLM default template
         | 
| 453 | 
            -
            register_conv_template(
         | 
| 454 | 
            -
                Conversation(
         | 
| 455 | 
            -
                    name='chatglm',
         | 
| 456 | 
            -
                    roles=('问', '答'),
         | 
| 457 | 
            -
                    sep_style=SeparatorStyle.CHATGLM,
         | 
| 458 | 
            -
                    sep='\n',
         | 
| 459 | 
            -
                )
         | 
| 460 | 
            -
            )
         | 
| 461 | 
            -
             | 
| 462 | 
            -
            # ChatGLM2 default template
         | 
| 463 | 
            -
            register_conv_template(
         | 
| 464 | 
            -
                Conversation(
         | 
| 465 | 
            -
                    name='chatglm2',
         | 
| 466 | 
            -
                    roles=('问', '答'),
         | 
| 467 | 
            -
                    sep_style=SeparatorStyle.CHATGLM,
         | 
| 468 | 
            -
                    sep='\n\n',
         | 
| 469 | 
            -
                )
         | 
| 470 | 
            -
            )
         | 
| 471 | 
            -
             | 
| 472 | 
            -
            # ChatGLM3 default template
         | 
| 473 | 
            -
            register_conv_template(
         | 
| 474 | 
            -
                Conversation(
         | 
| 475 | 
            -
                    name='chatglm3',
         | 
| 476 | 
            -
                    system_template='<|system|>\n {system_message}',
         | 
| 477 | 
            -
                    roles=('<|user|>', '<|assistant|>'),
         | 
| 478 | 
            -
                    sep_style=SeparatorStyle.CHATGLM3,
         | 
| 479 | 
            -
                    stop_token_ids=[
         | 
| 480 | 
            -
                        64795,
         | 
| 481 | 
            -
                        64797,
         | 
| 482 | 
            -
                        2,
         | 
| 483 | 
            -
                    ],  # "<|user|>", "<|observation|>", "</s>"
         | 
| 484 | 
            -
                )
         | 
| 485 | 
            -
            )
         | 
| 486 | 
            -
             | 
| 487 | 
            -
            # CodeGeex(2) Template
         | 
| 488 | 
            -
            register_conv_template(
         | 
| 489 | 
            -
                Conversation(
         | 
| 490 | 
            -
                    name='codegeex',
         | 
| 491 | 
            -
                    roles=('', ''),
         | 
| 492 | 
            -
                    sep_style=SeparatorStyle.NO_COLON_SINGLE,
         | 
| 493 | 
            -
                    sep='\n\n',
         | 
| 494 | 
            -
                    stop_token_ids=[0, 2],
         | 
| 495 | 
            -
                )
         | 
| 496 | 
            -
            )
         | 
| 497 | 
            -
             | 
| 498 | 
            -
            # Dolly V2 default template
         | 
| 499 | 
            -
            register_conv_template(
         | 
| 500 | 
            -
                Conversation(
         | 
| 501 | 
            -
                    name='dolly_v2',
         | 
| 502 | 
            -
                    system_message='Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n',
         | 
| 503 | 
            -
                    roles=('### Instruction', '### Response'),
         | 
| 504 | 
            -
                    sep_style=SeparatorStyle.DOLLY,
         | 
| 505 | 
            -
                    sep='\n\n',
         | 
| 506 | 
            -
                    sep2='### End',
         | 
| 507 | 
            -
                )
         | 
| 508 | 
            -
            )
         | 
| 509 | 
            -
             | 
| 510 | 
            -
            # OpenAssistant Pythia default template
         | 
| 511 | 
            -
            register_conv_template(
         | 
| 512 | 
            -
                Conversation(
         | 
| 513 | 
            -
                    name='oasst_pythia',
         | 
| 514 | 
            -
                    roles=('<|prompter|>', '<|assistant|>'),
         | 
| 515 | 
            -
                    sep_style=SeparatorStyle.NO_COLON_SINGLE,
         | 
| 516 | 
            -
                    sep='<|endoftext|>',
         | 
| 517 | 
            -
                )
         | 
| 518 | 
            -
            )
         | 
| 519 | 
            -
             | 
| 520 | 
            -
            # OpenAssistant default template
         | 
| 521 | 
            -
            register_conv_template(
         | 
| 522 | 
            -
                Conversation(
         | 
| 523 | 
            -
                    name='oasst_llama',
         | 
| 524 | 
            -
                    roles=('<|prompter|>', '<|assistant|>'),
         | 
| 525 | 
            -
                    sep_style=SeparatorStyle.NO_COLON_SINGLE,
         | 
| 526 | 
            -
                    sep='</s>',
         | 
| 527 | 
            -
                )
         | 
| 528 | 
            -
            )
         | 
| 529 | 
            -
             | 
| 530 | 
            -
            # OpenChat 3.5 default template
         | 
| 531 | 
            -
            register_conv_template(
         | 
| 532 | 
            -
                Conversation(
         | 
| 533 | 
            -
                    name='openchat_3.5',
         | 
| 534 | 
            -
                    roles=('GPT4 Correct User', 'GPT4 Correct Assistant'),
         | 
| 535 | 
            -
                    sep_style=SeparatorStyle.FALCON_CHAT,
         | 
| 536 | 
            -
                    sep='<|end_of_turn|>',
         | 
| 537 | 
            -
                )
         | 
| 538 | 
            -
            )
         | 
| 539 | 
            -
             | 
| 540 | 
            -
            # Tulu default template
         | 
| 541 | 
            -
            register_conv_template(
         | 
| 542 | 
            -
                Conversation(
         | 
| 543 | 
            -
                    name='tulu',
         | 
| 544 | 
            -
                    roles=('<|user|>', '<|assistant|>'),
         | 
| 545 | 
            -
                    sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
         | 
| 546 | 
            -
                    sep='\n',
         | 
| 547 | 
            -
                )
         | 
| 548 | 
            -
            )
         | 
| 549 | 
            -
             | 
| 550 | 
            -
            # StableLM Alpha default template
         | 
| 551 | 
            -
            register_conv_template(
         | 
| 552 | 
            -
                Conversation(
         | 
| 553 | 
            -
                    name='stablelm',
         | 
| 554 | 
            -
                    system_template='<|SYSTEM|>{system_message}',
         | 
| 555 | 
            -
                    system_message="""# StableLM Tuned (Alpha version)
         | 
| 556 | 
            -
            - StableLM is a helpful and harmless open-source AI language model developed by StabilityAI.
         | 
| 557 | 
            -
            - StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
         | 
| 558 | 
            -
            - StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes.
         | 
| 559 | 
            -
            - StableLM will refuse to participate in anything that could harm a human.
         | 
| 560 | 
            -
            """,
         | 
| 561 | 
            -
                    roles=('<|USER|>', '<|ASSISTANT|>'),
         | 
| 562 | 
            -
                    sep_style=SeparatorStyle.NO_COLON_SINGLE,
         | 
| 563 | 
            -
                    sep='',
         | 
| 564 | 
            -
                    stop_token_ids=[50278, 50279, 50277, 1, 0],
         | 
| 565 | 
            -
                )
         | 
| 566 | 
            -
            )
         | 
| 567 | 
            -
             | 
| 568 | 
            -
            # Baize default template
         | 
| 569 | 
            -
            register_conv_template(
         | 
| 570 | 
            -
                Conversation(
         | 
| 571 | 
            -
                    name='baize',
         | 
| 572 | 
            -
                    system_message='The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n',
         | 
| 573 | 
            -
                    roles=('[|Human|]', '[|AI|]'),
         | 
| 574 | 
            -
                    messages=(
         | 
| 575 | 
            -
                        ('[|Human|]', 'Hello!'),
         | 
| 576 | 
            -
                        ('[|AI|]', 'Hi!'),
         | 
| 577 | 
            -
                    ),
         | 
| 578 | 
            -
                    offset=2,
         | 
| 579 | 
            -
                    sep_style=SeparatorStyle.NO_COLON_SINGLE,
         | 
| 580 | 
            -
                    sep='\n',
         | 
| 581 | 
            -
                    stop_str='[|Human|]',
         | 
| 582 | 
            -
                )
         | 
| 583 | 
            -
            )
         | 
| 584 | 
            -
             | 
| 585 | 
            -
            # RWKV-4-Raven default template
         | 
| 586 | 
            -
            register_conv_template(
         | 
| 587 | 
            -
                Conversation(
         | 
| 588 | 
            -
                    name='rwkv',
         | 
| 589 | 
            -
                    roles=('Bob', 'Alice'),
         | 
| 590 | 
            -
                    messages=(
         | 
| 591 | 
            -
                        ('Bob', 'hi'),
         | 
| 592 | 
            -
                        (
         | 
| 593 | 
            -
                            'Alice',
         | 
| 594 | 
            -
                            'Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.',
         | 
| 595 | 
            -
                        ),
         | 
| 596 | 
            -
                    ),
         | 
| 597 | 
            -
                    offset=2,
         | 
| 598 | 
            -
                    sep_style=SeparatorStyle.RWKV,
         | 
| 599 | 
            -
                    sep='',
         | 
| 600 | 
            -
                    stop_str='\n\n',
         | 
| 601 | 
            -
                )
         | 
| 602 | 
            -
            )
         | 
| 603 | 
            -
             | 
| 604 | 
            -
            # Buddy default template
         | 
| 605 | 
            -
            register_conv_template(
         | 
| 606 | 
            -
                Conversation(
         | 
| 607 | 
            -
                    name='openbuddy',
         | 
| 608 | 
            -
                    system_message="""Consider a conversation between User (a human) and Assistant (named Buddy).
         | 
| 609 | 
            -
            Buddy is an INTP-T, a friendly, intelligent and multilingual AI assistant, by OpenBuddy team. GitHub: https://github.com/OpenBuddy/OpenBuddy
         | 
| 610 | 
            -
            Buddy cannot access the Internet.
         | 
| 611 | 
            -
            Buddy can fluently speak the user's language (e.g. English, Chinese).
         | 
| 612 | 
            -
            Buddy can generate poems, stories, code, essays, songs, parodies, and more.
         | 
| 613 | 
            -
            Buddy possesses vast knowledge about the world, history, and culture.
         | 
| 614 | 
            -
            Buddy's responses are always safe, creative, high-quality, human-like, and interesting.
         | 
| 615 | 
            -
            Buddy strictly refuses to discuss political, NSFW, or other unsafe topics.
         | 
| 616 | 
            -
             | 
| 617 | 
            -
            User: Hi.
         | 
| 618 | 
            -
            Assistant: Hi, I'm Buddy, your AI assistant. How can I help you today?""",
         | 
| 619 | 
            -
                    roles=('User', 'Assistant'),
         | 
| 620 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_SINGLE,
         | 
| 621 | 
            -
                    sep='\n',
         | 
| 622 | 
            -
                )
         | 
| 623 | 
            -
            )
         | 
| 624 | 
            -
             | 
| 625 | 
            -
            # Phoenix default template
         | 
| 626 | 
            -
            register_conv_template(
         | 
| 627 | 
            -
                Conversation(
         | 
| 628 | 
            -
                    name='phoenix',
         | 
| 629 | 
            -
                    system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
         | 
| 630 | 
            -
                    roles=('Human', 'Assistant'),
         | 
| 631 | 
            -
                    sep_style=SeparatorStyle.PHOENIX,
         | 
| 632 | 
            -
                    sep='</s>',
         | 
| 633 | 
            -
                )
         | 
| 634 | 
            -
            )
         | 
| 635 | 
            -
             | 
| 636 | 
            -
            # ReaLM default template
         | 
| 637 | 
            -
            register_conv_template(
         | 
| 638 | 
            -
                Conversation(
         | 
| 639 | 
            -
                    name='ReaLM-7b-v1',
         | 
| 640 | 
            -
                    system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
         | 
| 641 | 
            -
                    roles=('Human', 'Assistant'),
         | 
| 642 | 
            -
                    sep_style=SeparatorStyle.PHOENIX,
         | 
| 643 | 
            -
                    sep='</s>',
         | 
| 644 | 
            -
                )
         | 
| 645 | 
            -
            )
         | 
| 646 | 
            -
             | 
| 647 | 
            -
            # ChatGPT default template
         | 
| 648 | 
            -
            register_conv_template(
         | 
| 649 | 
            -
                Conversation(
         | 
| 650 | 
            -
                    name='chatgpt',
         | 
| 651 | 
            -
                    system_message='You are a helpful assistant.',
         | 
| 652 | 
            -
                    roles=('user', 'assistant'),
         | 
| 653 | 
            -
                    sep_style=None,
         | 
| 654 | 
            -
                    sep=None,
         | 
| 655 | 
            -
                )
         | 
| 656 | 
            -
            )
         | 
| 657 | 
            -
             | 
| 658 | 
            -
            # Claude default template
         | 
| 659 | 
            -
            register_conv_template(
         | 
| 660 | 
            -
                Conversation(
         | 
| 661 | 
            -
                    name='claude',
         | 
| 662 | 
            -
                    roles=('Human', 'Assistant'),
         | 
| 663 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_SINGLE,
         | 
| 664 | 
            -
                    sep='\n\n',
         | 
| 665 | 
            -
                )
         | 
| 666 | 
            -
            )
         | 
| 667 | 
            -
             | 
| 668 | 
            -
            # MPT default template
         | 
| 669 | 
            -
            register_conv_template(
         | 
| 670 | 
            -
                Conversation(
         | 
| 671 | 
            -
                    name='mpt-7b-chat',
         | 
| 672 | 
            -
                    system_template="""<|im_start|>system
         | 
| 673 | 
            -
            {system_message}""",
         | 
| 674 | 
            -
                    system_message="""- You are a helpful assistant chatbot trained by MosaicML.
         | 
| 675 | 
            -
            - You answer questions.
         | 
| 676 | 
            -
            - You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
         | 
| 677 | 
            -
            - You are more than just an information source, you are also able to write poetry, short stories, and make jokes.""",
         | 
| 678 | 
            -
                    roles=('<|im_start|>user', '<|im_start|>assistant'),
         | 
| 679 | 
            -
                    sep_style=SeparatorStyle.CHATML,
         | 
| 680 | 
            -
                    sep='<|im_end|>',
         | 
| 681 | 
            -
                    stop_token_ids=[50278, 0],
         | 
| 682 | 
            -
                )
         | 
| 683 | 
            -
            )
         | 
| 684 | 
            -
             | 
| 685 | 
            -
            # MPT-30b-chat default template
         | 
| 686 | 
            -
            register_conv_template(
         | 
| 687 | 
            -
                Conversation(
         | 
| 688 | 
            -
                    name='mpt-30b-chat',
         | 
| 689 | 
            -
                    system_template="""<|im_start|>system
         | 
| 690 | 
            -
            {system_message}""",
         | 
| 691 | 
            -
                    system_message="""A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
         | 
| 692 | 
            -
                    roles=('<|im_start|>user', '<|im_start|>assistant'),
         | 
| 693 | 
            -
                    sep_style=SeparatorStyle.CHATML,
         | 
| 694 | 
            -
                    sep='<|im_end|>',
         | 
| 695 | 
            -
                    stop_token_ids=[50278, 0],
         | 
| 696 | 
            -
                )
         | 
| 697 | 
            -
            )
         | 
| 698 | 
            -
             | 
| 699 | 
            -
            # Lemur-70b-chat default template
         | 
| 700 | 
            -
            # reference: https://huggingface.co/OpenLemur/lemur-70b-chat-v1#generation
         | 
| 701 | 
            -
            register_conv_template(
         | 
| 702 | 
            -
                Conversation(
         | 
| 703 | 
            -
                    name='lemur-70b-chat',
         | 
| 704 | 
            -
                    system_template="""<|im_start|>system
         | 
| 705 | 
            -
            {system_message}""",
         | 
| 706 | 
            -
                    system_message="""You are a helpful, respectful, and honest assistant.""",
         | 
| 707 | 
            -
                    roles=('<|im_start|>user', '<|im_start|>assistant'),
         | 
| 708 | 
            -
                    sep_style=SeparatorStyle.CHATML,
         | 
| 709 | 
            -
                    sep='<|im_end|>',
         | 
| 710 | 
            -
                    stop_token_ids=[32002, 0],
         | 
| 711 | 
            -
                )
         | 
| 712 | 
            -
            )
         | 
| 713 | 
            -
             | 
| 714 | 
            -
            # MPT-30b-instruct default template
         | 
| 715 | 
            -
            # reference: https://huggingface.co/mosaicml/mpt-30b-instruct#formatting
         | 
| 716 | 
            -
            register_conv_template(
         | 
| 717 | 
            -
                Conversation(
         | 
| 718 | 
            -
                    name='mpt-30b-instruct',
         | 
| 719 | 
            -
                    system_template='{system_message}',
         | 
| 720 | 
            -
                    system_message='Below is an instruction that describes a task. Write a response that appropriately completes the request.',
         | 
| 721 | 
            -
                    roles=('### Instruction', '### Response'),
         | 
| 722 | 
            -
                    sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
         | 
| 723 | 
            -
                    sep='\n\n',
         | 
| 724 | 
            -
                    stop_token_ids=[50278, 0],
         | 
| 725 | 
            -
                )
         | 
| 726 | 
            -
            )
         | 
| 727 | 
            -
             | 
| 728 | 
            -
            # Bard default template
         | 
| 729 | 
            -
            # Reference: https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L150
         | 
| 730 | 
            -
            #            https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L40
         | 
| 731 | 
            -
            register_conv_template(
         | 
| 732 | 
            -
                Conversation(
         | 
| 733 | 
            -
                    name='bard',
         | 
| 734 | 
            -
                    roles=('0', '1'),
         | 
| 735 | 
            -
                    sep_style=None,
         | 
| 736 | 
            -
                    sep=None,
         | 
| 737 | 
            -
                )
         | 
| 738 | 
            -
            )
         | 
| 739 | 
            -
             | 
| 740 | 
            -
            # BiLLa default template
         | 
| 741 | 
            -
            register_conv_template(
         | 
| 742 | 
            -
                Conversation(
         | 
| 743 | 
            -
                    name='billa',
         | 
| 744 | 
            -
                    roles=('Human', 'Assistant'),
         | 
| 745 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE,
         | 
| 746 | 
            -
                    sep='\n',
         | 
| 747 | 
            -
                    stop_str='Human:',
         | 
| 748 | 
            -
                )
         | 
| 749 | 
            -
            )
         | 
| 750 | 
            -
             | 
| 751 | 
            -
            # RedPajama INCITE default template
         | 
| 752 | 
            -
            register_conv_template(
         | 
| 753 | 
            -
                Conversation(
         | 
| 754 | 
            -
                    name='redpajama-incite',
         | 
| 755 | 
            -
                    roles=('<human>', '<bot>'),
         | 
| 756 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_SINGLE,
         | 
| 757 | 
            -
                    sep='\n',
         | 
| 758 | 
            -
                    stop_str='<human>',
         | 
| 759 | 
            -
                )
         | 
| 760 | 
            -
            )
         | 
| 761 | 
            -
             | 
| 762 | 
            -
            # h2oGPT default template
         | 
| 763 | 
            -
            register_conv_template(
         | 
| 764 | 
            -
                Conversation(
         | 
| 765 | 
            -
                    name='h2ogpt',
         | 
| 766 | 
            -
                    roles=('<|prompt|>', '<|answer|>'),
         | 
| 767 | 
            -
                    sep_style=SeparatorStyle.NO_COLON_SINGLE,
         | 
| 768 | 
            -
                    sep='</s>',
         | 
| 769 | 
            -
                )
         | 
| 770 | 
            -
            )
         | 
| 771 | 
            -
             | 
| 772 | 
            -
            # Robin default template
         | 
| 773 | 
            -
            register_conv_template(
         | 
| 774 | 
            -
                Conversation(
         | 
| 775 | 
            -
                    name='Robin',
         | 
| 776 | 
            -
                    system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.",
         | 
| 777 | 
            -
                    roles=('###Human', '###Assistant'),
         | 
| 778 | 
            -
                    sep_style=SeparatorStyle.ROBIN,
         | 
| 779 | 
            -
                    sep='\n',
         | 
| 780 | 
            -
                    stop_token_ids=[2, 396],
         | 
| 781 | 
            -
                    stop_str='###',
         | 
| 782 | 
            -
                )
         | 
| 783 | 
            -
            )
         | 
| 784 | 
            -
             | 
| 785 | 
            -
            # Snoozy default template
         | 
| 786 | 
            -
            # Reference: https://github.com/nomic-ai/gpt4all/blob/d4861030b778da6db59d21d2927a4aba4f9f1f43/gpt4all-bindings/python/gpt4all/gpt4all.py#L232
         | 
| 787 | 
            -
            register_conv_template(
         | 
| 788 | 
            -
                Conversation(
         | 
| 789 | 
            -
                    name='snoozy',
         | 
| 790 | 
            -
                    system_template='### Instruction:\n{system_message}',
         | 
| 791 | 
            -
                    system_message='The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.',
         | 
| 792 | 
            -
                    roles=('### Prompt', '### Response'),
         | 
| 793 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_SINGLE,
         | 
| 794 | 
            -
                    sep='\n',
         | 
| 795 | 
            -
                    stop_str='###',
         | 
| 796 | 
            -
                )
         | 
| 797 | 
            -
            )
         | 
| 798 | 
            -
             | 
| 799 | 
            -
            # manticore default template
         | 
| 800 | 
            -
            register_conv_template(
         | 
| 801 | 
            -
                Conversation(
         | 
| 802 | 
            -
                    name='manticore',
         | 
| 803 | 
            -
                    roles=('USER', 'ASSISTANT'),
         | 
| 804 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_TWO,
         | 
| 805 | 
            -
                    sep='\n',
         | 
| 806 | 
            -
                    sep2='</s>',
         | 
| 807 | 
            -
                )
         | 
| 808 | 
            -
            )
         | 
| 809 | 
            -
             | 
| 810 | 
            -
            # Falcon default template
         | 
| 811 | 
            -
            register_conv_template(
         | 
| 812 | 
            -
                Conversation(
         | 
| 813 | 
            -
                    name='falcon',
         | 
| 814 | 
            -
                    roles=('User', 'Assistant'),
         | 
| 815 | 
            -
                    messages=[],
         | 
| 816 | 
            -
                    sep_style=SeparatorStyle.RWKV,
         | 
| 817 | 
            -
                    sep='\n',
         | 
| 818 | 
            -
                    sep2='<|endoftext|>',
         | 
| 819 | 
            -
                    stop_str='\nUser',  # use stop_str to stop generation after stop_token_ids, it will also remove stop_str from the generated text
         | 
| 820 | 
            -
                    stop_token_ids=[
         | 
| 821 | 
            -
                        0,
         | 
| 822 | 
            -
                        1,
         | 
| 823 | 
            -
                        2,
         | 
| 824 | 
            -
                        3,
         | 
| 825 | 
            -
                        4,
         | 
| 826 | 
            -
                        5,
         | 
| 827 | 
            -
                        6,
         | 
| 828 | 
            -
                        7,
         | 
| 829 | 
            -
                        8,
         | 
| 830 | 
            -
                        9,
         | 
| 831 | 
            -
                        10,
         | 
| 832 | 
            -
                        11,
         | 
| 833 | 
            -
                    ],  # it better only put special tokens here, because tokenizer only remove special tokens
         | 
| 834 | 
            -
                )
         | 
| 835 | 
            -
            )
         | 
| 836 | 
            -
             | 
| 837 | 
            -
            # ChangGPT default template
         | 
| 838 | 
            -
            register_conv_template(
         | 
| 839 | 
            -
                Conversation(
         | 
| 840 | 
            -
                    name='polyglot_changgpt',
         | 
| 841 | 
            -
                    roles=('B', 'A'),
         | 
| 842 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_SINGLE,
         | 
| 843 | 
            -
                    sep='\n',
         | 
| 844 | 
            -
                )
         | 
| 845 | 
            -
            )
         | 
| 846 | 
            -
             | 
| 847 | 
            -
            # tigerbot template
         | 
| 848 | 
            -
            register_conv_template(
         | 
| 849 | 
            -
                Conversation(
         | 
| 850 | 
            -
                    name='tigerbot',
         | 
| 851 | 
            -
                    system_message='A chat between a curious user and an artificial intelligence assistant. '
         | 
| 852 | 
            -
                    "The assistant gives helpful, detailed, and polite answers to the user's questions.",
         | 
| 853 | 
            -
                    roles=('### Instruction', '### Response'),
         | 
| 854 | 
            -
                    sep_style=SeparatorStyle.ROBIN,
         | 
| 855 | 
            -
                    sep='\n\n',
         | 
| 856 | 
            -
                    stop_str='###',
         | 
| 857 | 
            -
                )
         | 
| 858 | 
            -
            )
         | 
| 859 | 
            -
             | 
| 860 | 
            -
            # ref: https://huggingface.co/Salesforce/xgen-7b-8k-inst
         | 
| 861 | 
            -
            register_conv_template(
         | 
| 862 | 
            -
                Conversation(
         | 
| 863 | 
            -
                    name='xgen',
         | 
| 864 | 
            -
                    system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
         | 
| 865 | 
            -
                    roles=('### Human', '### Assistant'),
         | 
| 866 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_SINGLE,
         | 
| 867 | 
            -
                    sep='\n',
         | 
| 868 | 
            -
                    stop_token_ids=[50256],
         | 
| 869 | 
            -
                )
         | 
| 870 | 
            -
            )
         | 
| 871 | 
            -
             | 
| 872 | 
            -
            # Internlm-chat template
         | 
| 873 | 
            -
            register_conv_template(
         | 
| 874 | 
            -
                Conversation(
         | 
| 875 | 
            -
                    name='internlm-chat',
         | 
| 876 | 
            -
                    system_message="A chat between a curious <|User|> and an <|Bot|>. The <|Bot|> gives helpful, detailed, and polite answers to the <|User|>'s questions.\n\n",
         | 
| 877 | 
            -
                    roles=('<|User|>', '<|Bot|>'),
         | 
| 878 | 
            -
                    sep_style=SeparatorStyle.CHATINTERN,
         | 
| 879 | 
            -
                    sep='<eoh>',
         | 
| 880 | 
            -
                    sep2='<eoa>',
         | 
| 881 | 
            -
                    stop_token_ids=[1, 103028],
         | 
| 882 | 
            -
                    stop_str='<|User|>',
         | 
| 883 | 
            -
                )
         | 
| 884 | 
            -
            )
         | 
| 885 | 
            -
             | 
| 886 | 
            -
            # StarChat template
         | 
| 887 | 
            -
            # reference: https://huggingface.co/spaces/HuggingFaceH4/starchat-playground/blob/main/dialogues.py
         | 
| 888 | 
            -
            register_conv_template(
         | 
| 889 | 
            -
                Conversation(
         | 
| 890 | 
            -
                    name='starchat',
         | 
| 891 | 
            -
                    system_template='<system>\n{system_message}',
         | 
| 892 | 
            -
                    roles=('<|user|>', '<|assistant|>'),
         | 
| 893 | 
            -
                    sep_style=SeparatorStyle.CHATML,
         | 
| 894 | 
            -
                    sep='<|end|>',
         | 
| 895 | 
            -
                    stop_token_ids=[0, 49155],
         | 
| 896 | 
            -
                    stop_str='<|end|>',
         | 
| 897 | 
            -
                )
         | 
| 898 | 
            -
            )
         | 
| 899 | 
            -
             | 
| 900 | 
            -
            # Baichuan-13B-Chat template
         | 
| 901 | 
            -
            register_conv_template(
         | 
| 902 | 
            -
                # source: https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/19ef51ba5bad8935b03acd20ff04a269210983bc/modeling_baichuan.py#L555
         | 
| 903 | 
            -
                # https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/main/generation_config.json
         | 
| 904 | 
            -
                # https://github.com/baichuan-inc/Baichuan-13B/issues/25
         | 
| 905 | 
            -
                Conversation(
         | 
| 906 | 
            -
                    name='baichuan-chat',
         | 
| 907 | 
            -
                    roles=('<reserved_102>', '<reserved_103>'),
         | 
| 908 | 
            -
                    sep_style=SeparatorStyle.NO_COLON_SINGLE,
         | 
| 909 | 
            -
                    sep='',
         | 
| 910 | 
            -
                    stop_token_ids=[],
         | 
| 911 | 
            -
                )
         | 
| 912 | 
            -
            )
         | 
| 913 | 
            -
             | 
| 914 | 
            -
            # Baichuan2-13B-Chat template
         | 
| 915 | 
            -
            register_conv_template(
         | 
| 916 | 
            -
                # source: https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/c6f8592a60b4ad73c210b28dd2ab3cca51abbf93/modeling_baichuan.py#L773
         | 
| 917 | 
            -
                # https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/main/generation_config.json
         | 
| 918 | 
            -
                # https://github.com/baichuan-inc/Baichuan2/issues/62
         | 
| 919 | 
            -
                Conversation(
         | 
| 920 | 
            -
                    name='baichuan2-chat',
         | 
| 921 | 
            -
                    roles=('<reserved_106>', '<reserved_107>'),
         | 
| 922 | 
            -
                    sep_style=SeparatorStyle.NO_COLON_SINGLE,
         | 
| 923 | 
            -
                    sep='',
         | 
| 924 | 
            -
                    stop_token_ids=[],
         | 
| 925 | 
            -
                )
         | 
| 926 | 
            -
            )
         | 
| 927 | 
            -
             | 
| 928 | 
            -
            # Mistral template
         | 
| 929 | 
            -
            # source: https://docs.mistral.ai/llm/mistral-instruct-v0.1#chat-template
         | 
| 930 | 
            -
            register_conv_template(
         | 
| 931 | 
            -
                Conversation(
         | 
| 932 | 
            -
                    name='mistral',
         | 
| 933 | 
            -
                    system_template='[INST]{system_message}\n',
         | 
| 934 | 
            -
                    roles=('[INST]', '[/INST]'),
         | 
| 935 | 
            -
                    sep_style=SeparatorStyle.LLAMA2,
         | 
| 936 | 
            -
                    sep=' ',
         | 
| 937 | 
            -
                    sep2='</s>',
         | 
| 938 | 
            -
                )
         | 
| 939 | 
            -
            )
         | 
| 940 | 
            -
             | 
| 941 | 
            -
            # llama2 template
         | 
| 942 | 
            -
            # reference: https://huggingface.co/blog/codellama#conversational-instructions
         | 
| 943 | 
            -
            # reference: https://github.com/facebookresearch/llama/blob/1a240688810f8036049e8da36b073f63d2ac552c/llama/generation.py#L212
         | 
| 944 | 
            -
            register_conv_template(
         | 
| 945 | 
            -
                Conversation(
         | 
| 946 | 
            -
                    name='llama-2',
         | 
| 947 | 
            -
                    system_template='[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n',
         | 
| 948 | 
            -
                    roles=('[INST]', '[/INST]'),
         | 
| 949 | 
            -
                    sep_style=SeparatorStyle.LLAMA2,
         | 
| 950 | 
            -
                    sep=' ',
         | 
| 951 | 
            -
                    sep2=' </s><s>',
         | 
| 952 | 
            -
                )
         | 
| 953 | 
            -
            )
         | 
| 954 | 
            -
             | 
| 955 | 
            -
            register_conv_template(
         | 
| 956 | 
            -
                Conversation(
         | 
| 957 | 
            -
                    name='cutegpt',
         | 
| 958 | 
            -
                    roles=('问:', '答:\n'),
         | 
| 959 | 
            -
                    sep_style=SeparatorStyle.NO_COLON_TWO,
         | 
| 960 | 
            -
                    sep='\n',
         | 
| 961 | 
            -
                    sep2='\n',
         | 
| 962 | 
            -
                    stop_str='<end>',
         | 
| 963 | 
            -
                )
         | 
| 964 | 
            -
            )
         | 
| 965 | 
            -
             | 
| 966 | 
            -
            # OpenOrcaxOpenChat-naPreview2-13B template
         | 
| 967 | 
            -
            register_conv_template(
         | 
| 968 | 
            -
                Conversation(
         | 
| 969 | 
            -
                    name='open-orca',
         | 
| 970 | 
            -
                    system_template='{system_message}',
         | 
| 971 | 
            -
                    system_message='You are a helpful assistant. Please answer truthfully and write out your '
         | 
| 972 | 
            -
                    'thinking step by step to be sure you get the right answer. If you make a mistake or encounter '
         | 
| 973 | 
            -
                    "an error in your thinking, say so out loud and attempt to correct it. If you don't know or "
         | 
| 974 | 
            -
                    "aren't sure about something, say so clearly. You will act as a professional logician, mathematician, "
         | 
| 975 | 
            -
                    'and physicist. You will also act as the most appropriate type of expert to answer any particular '
         | 
| 976 | 
            -
                    'question or solve the relevant problem; state which expert type your are, if so. Also think of '
         | 
| 977 | 
            -
                    'any particular named expert that would be ideal to answer the relevant question or solve the '
         | 
| 978 | 
            -
                    'relevant problem; name and act as them, if appropriate.',
         | 
| 979 | 
            -
                    roles=('User', 'Assistant'),
         | 
| 980 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE,
         | 
| 981 | 
            -
                    sep='<|end_of_turn|>\n',
         | 
| 982 | 
            -
                    stop_token_ids=[32000, 32001],  # "<|end_of_turn|>"
         | 
| 983 | 
            -
                    stop_str='User',
         | 
| 984 | 
            -
                )
         | 
| 985 | 
            -
            )
         | 
| 986 | 
            -
             | 
| 987 | 
            -
            # Open-Orca/Mistral-7B-OpenOrca template
         | 
| 988 | 
            -
            # source: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
         | 
| 989 | 
            -
            # reference: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca#prompt-template
         | 
| 990 | 
            -
            register_conv_template(
         | 
| 991 | 
            -
                Conversation(
         | 
| 992 | 
            -
                    name='mistral-7b-openorca',
         | 
| 993 | 
            -
                    system_template='<|im_start|>system\n{system_message}',
         | 
| 994 | 
            -
                    system_message='You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!',
         | 
| 995 | 
            -
                    roles=('<|im_start|>user', '<|im_start|>assistant'),
         | 
| 996 | 
            -
                    sep_style=SeparatorStyle.CHATML,
         | 
| 997 | 
            -
                    sep='<|im_end|>',
         | 
| 998 | 
            -
                    stop_token_ids=[32000, 32001],
         | 
| 999 | 
            -
                )
         | 
| 1000 | 
            -
            )
         | 
| 1001 | 
            -
             | 
| 1002 | 
            -
            # Qwen-chat default template
         | 
| 1003 | 
            -
            # source: https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/qwen_generation_utils.py#L130
         | 
| 1004 | 
            -
            register_conv_template(
         | 
| 1005 | 
            -
                Conversation(
         | 
| 1006 | 
            -
                    name='qwen-7b-chat',
         | 
| 1007 | 
            -
                    system_template='<|im_start|>system\n{system_message}',
         | 
| 1008 | 
            -
                    system_message='You are a helpful assistant.',
         | 
| 1009 | 
            -
                    roles=('<|im_start|>user', '<|im_start|>assistant'),
         | 
| 1010 | 
            -
                    sep_style=SeparatorStyle.CHATML,
         | 
| 1011 | 
            -
                    sep='<|im_end|>',
         | 
| 1012 | 
            -
                    stop_token_ids=[
         | 
| 1013 | 
            -
                        151643,
         | 
| 1014 | 
            -
                        151644,
         | 
| 1015 | 
            -
                        151645,
         | 
| 1016 | 
            -
                    ],  # "<|endoftext|>", "<|im_start|>", "<|im_end|>"
         | 
| 1017 | 
            -
                    stop_str='<|endoftext|>',
         | 
| 1018 | 
            -
                )
         | 
| 1019 | 
            -
            )
         | 
| 1020 | 
            -
             | 
| 1021 | 
            -
             | 
| 1022 | 
            -
            # AquilaChat default template
         | 
| 1023 | 
            -
            # source: https://github.com/FlagAI-Open/FlagAI/blob/master/examples/Aquila/Aquila-chat/cyg_conversation.py
         | 
| 1024 | 
            -
            register_conv_template(
         | 
| 1025 | 
            -
                Conversation(
         | 
| 1026 | 
            -
                    name='aquila-chat',
         | 
| 1027 | 
            -
                    system_message='A chat between a curious human and an artificial intelligence assistant. '
         | 
| 1028 | 
            -
                    "The assistant gives helpful, detailed, and polite answers to the human's questions.",
         | 
| 1029 | 
            -
                    roles=('Human', 'Assistant'),
         | 
| 1030 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_SINGLE,
         | 
| 1031 | 
            -
                    sep='###',
         | 
| 1032 | 
            -
                    sep2='',
         | 
| 1033 | 
            -
                    stop_str=['###', '</s>', '[UNK]'],
         | 
| 1034 | 
            -
                )
         | 
| 1035 | 
            -
            )
         | 
| 1036 | 
            -
            # AquilaChat2-34B default template
         | 
| 1037 | 
            -
            # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L212
         | 
| 1038 | 
            -
            register_conv_template(
         | 
| 1039 | 
            -
                Conversation(
         | 
| 1040 | 
            -
                    name='aquila-legacy',
         | 
| 1041 | 
            -
                    system_message='A chat between a curious human and an artificial intelligence assistant. '
         | 
| 1042 | 
            -
                    "The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
         | 
| 1043 | 
            -
                    roles=('### Human: ', '### Assistant: '),
         | 
| 1044 | 
            -
                    offset=0,
         | 
| 1045 | 
            -
                    sep_style=SeparatorStyle.NO_COLON_TWO,
         | 
| 1046 | 
            -
                    sep='\n',
         | 
| 1047 | 
            -
                    sep2='</s>',
         | 
| 1048 | 
            -
                    stop_str=['</s>', '[UNK]'],
         | 
| 1049 | 
            -
                )
         | 
| 1050 | 
            -
            )
         | 
| 1051 | 
            -
            # AquilaChat2-7B-16K and AquilaChat2-34B-16K default template
         | 
| 1052 | 
            -
            # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L227
         | 
| 1053 | 
            -
            register_conv_template(
         | 
| 1054 | 
            -
                Conversation(
         | 
| 1055 | 
            -
                    name='aquila',
         | 
| 1056 | 
            -
                    system_message='A chat between a curious human and an artificial intelligence assistant. '
         | 
| 1057 | 
            -
                    "The assistant gives helpful, detailed, and polite answers to the human's questions.",
         | 
| 1058 | 
            -
                    roles=('Human', 'Assistant'),
         | 
| 1059 | 
            -
                    offset=0,
         | 
| 1060 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_TWO,
         | 
| 1061 | 
            -
                    sep='###',
         | 
| 1062 | 
            -
                    sep2='</s>',
         | 
| 1063 | 
            -
                    stop_str=['</s>', '[UNK]'],
         | 
| 1064 | 
            -
                )
         | 
| 1065 | 
            -
            )
         | 
| 1066 | 
            -
             | 
| 1067 | 
            -
            # AquilaChat2-7B default template
         | 
| 1068 | 
            -
            # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L242
         | 
| 1069 | 
            -
            register_conv_template(
         | 
| 1070 | 
            -
                Conversation(
         | 
| 1071 | 
            -
                    name='aquila-v1',
         | 
| 1072 | 
            -
                    roles=('<|startofpiece|>', '<|endofpiece|>'),
         | 
| 1073 | 
            -
                    offset=0,
         | 
| 1074 | 
            -
                    sep_style=SeparatorStyle.NO_COLON_TWO,
         | 
| 1075 | 
            -
                    sep='',
         | 
| 1076 | 
            -
                    sep2='</s>',
         | 
| 1077 | 
            -
                    stop_str=['</s>', '<|endoftext|>'],
         | 
| 1078 | 
            -
                )
         | 
| 1079 | 
            -
            )
         | 
| 1080 | 
            -
             | 
| 1081 | 
            -
            # Llama2-Chinese default template
         | 
| 1082 | 
            -
            # source: https://huggingface.co/FlagAlpha
         | 
| 1083 | 
            -
            register_conv_template(
         | 
| 1084 | 
            -
                Conversation(
         | 
| 1085 | 
            -
                    name='llama2-chinese',
         | 
| 1086 | 
            -
                    system_template='<s>{system_message}</s>',
         | 
| 1087 | 
            -
                    roles=('Human', 'Assistant', 'System'),
         | 
| 1088 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_TWO,
         | 
| 1089 | 
            -
                    sep='\n',
         | 
| 1090 | 
            -
                    sep2='\n</s><s>',
         | 
| 1091 | 
            -
                    stop_str='</s>',
         | 
| 1092 | 
            -
                )
         | 
| 1093 | 
            -
            )
         | 
| 1094 | 
            -
             | 
| 1095 | 
            -
            # Vigogne Instruct default template
         | 
| 1096 | 
            -
            # source: https://github.com/bofenghuang/vigogne
         | 
| 1097 | 
            -
            register_conv_template(
         | 
| 1098 | 
            -
                Conversation(
         | 
| 1099 | 
            -
                    name='vigogne_instruct',
         | 
| 1100 | 
            -
                    system_template='### System:\n{system_message}\n\n',
         | 
| 1101 | 
            -
                    system_message=(
         | 
| 1102 | 
            -
                        'Ci-dessous se trouve une instruction qui décrit une tâche à accomplir. Rédigez une réponse qui répond de manière'
         | 
| 1103 | 
            -
                        ' précise à la demande.'
         | 
| 1104 | 
            -
                    ),
         | 
| 1105 | 
            -
                    roles=('### Instruction', '### Response'),
         | 
| 1106 | 
            -
                    sep_style=SeparatorStyle.DOLLY,
         | 
| 1107 | 
            -
                    sep='\n\n',
         | 
| 1108 | 
            -
                    sep2='</s>',
         | 
| 1109 | 
            -
                )
         | 
| 1110 | 
            -
            )
         | 
| 1111 | 
            -
             | 
| 1112 | 
            -
            # Vigogne Chat default template
         | 
| 1113 | 
            -
            register_conv_template(
         | 
| 1114 | 
            -
                Conversation(
         | 
| 1115 | 
            -
                    name='vigogne_chat_v2',
         | 
| 1116 | 
            -
                    system_template='<|system|>: {system_message}',
         | 
| 1117 | 
            -
                    system_message=(
         | 
| 1118 | 
            -
                        'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez'
         | 
| 1119 | 
            -
                        ' autant que vous le pouvez.'
         | 
| 1120 | 
            -
                    ),
         | 
| 1121 | 
            -
                    roles=('<|user|>', '<|assistant|>'),
         | 
| 1122 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_TWO,
         | 
| 1123 | 
            -
                    sep='\n',
         | 
| 1124 | 
            -
                    sep2='</s>\n',
         | 
| 1125 | 
            -
                    stop_str='<|user|>',
         | 
| 1126 | 
            -
                )
         | 
| 1127 | 
            -
            )
         | 
| 1128 | 
            -
             | 
| 1129 | 
            -
            register_conv_template(
         | 
| 1130 | 
            -
                Conversation(
         | 
| 1131 | 
            -
                    name='vigogne_chat_v3',
         | 
| 1132 | 
            -
                    system_template='[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n',
         | 
| 1133 | 
            -
                    system_message=(
         | 
| 1134 | 
            -
                        'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez'
         | 
| 1135 | 
            -
                        ' autant que vous le pouvez.'
         | 
| 1136 | 
            -
                    ),
         | 
| 1137 | 
            -
                    roles=('[INST]', '[/INST]'),
         | 
| 1138 | 
            -
                    sep_style=SeparatorStyle.LLAMA2,
         | 
| 1139 | 
            -
                    sep=' ',
         | 
| 1140 | 
            -
                    sep2=' </s>',
         | 
| 1141 | 
            -
                )
         | 
| 1142 | 
            -
            )
         | 
| 1143 | 
            -
             | 
| 1144 | 
            -
            # Falcon 180B chat template
         | 
| 1145 | 
            -
            # source: https://huggingface.co/spaces/tiiuae/falcon-180b-demo/blob/d1590ee7fae9b6ce331ba7808e61a29dcce9239f/app.py#L28-L37
         | 
| 1146 | 
            -
            register_conv_template(
         | 
| 1147 | 
            -
                Conversation(
         | 
| 1148 | 
            -
                    name='falcon-chat',
         | 
| 1149 | 
            -
                    roles=('User', 'Falcon'),
         | 
| 1150 | 
            -
                    system_template='System: {system_message}',
         | 
| 1151 | 
            -
                    messages=[],
         | 
| 1152 | 
            -
                    sep_style=SeparatorStyle.FALCON_CHAT,
         | 
| 1153 | 
            -
                    sep='\n',
         | 
| 1154 | 
            -
                    sep2='<|endoftext|>',
         | 
| 1155 | 
            -
                    stop_str='\nUser:',  # use stop_str to stop generation after stop_token_ids, it will also remove stop_str from the generated text
         | 
| 1156 | 
            -
                )
         | 
| 1157 | 
            -
            )
         | 
| 1158 | 
            -
             | 
| 1159 | 
            -
            # Phind template
         | 
| 1160 | 
            -
            # source: https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
         | 
| 1161 | 
            -
            register_conv_template(
         | 
| 1162 | 
            -
                Conversation(
         | 
| 1163 | 
            -
                    name='phind',
         | 
| 1164 | 
            -
                    system_message='### System Prompt\nYou are an intelligent programming assistant.',
         | 
| 1165 | 
            -
                    roles=('### User Message', '### Assistant'),
         | 
| 1166 | 
            -
                    messages=(),
         | 
| 1167 | 
            -
                    offset=0,
         | 
| 1168 | 
            -
                    sep_style=SeparatorStyle.ADD_COLON_SINGLE,
         | 
| 1169 | 
            -
                    sep='\n\n',
         | 
| 1170 | 
            -
                )
         | 
| 1171 | 
            -
            )
         | 
| 1172 | 
            -
             | 
| 1173 | 
            -
            # Metharme formatting for Pygmalion models
         | 
| 1174 | 
            -
            # source: https://huggingface.co/PygmalionAI/pygmalion-2-13b
         | 
| 1175 | 
            -
            register_conv_template(
         | 
| 1176 | 
            -
                Conversation(
         | 
| 1177 | 
            -
                    name='metharme',
         | 
| 1178 | 
            -
                    system_template='<|system|>{system_message}',
         | 
| 1179 | 
            -
                    system_message="""Enter RP mode. You shall reply to the user while staying
         | 
| 1180 | 
            -
                    in character. Your responses must be detailed, creative, immersive, and drive the scenario
         | 
| 1181 | 
            -
                    forward.""",
         | 
| 1182 | 
            -
                    roles=('<|user|>', '<|model|>'),
         | 
| 1183 | 
            -
                    sep_style=SeparatorStyle.NO_COLON_SINGLE,
         | 
| 1184 | 
            -
                    sep='',
         | 
| 1185 | 
            -
                    stop_str='<|user|>',
         | 
| 1186 | 
            -
                )
         | 
| 1187 | 
            -
            )
         | 
| 1188 | 
            -
             | 
| 1189 | 
            -
            # Zephyr template
         | 
| 1190 | 
            -
            # reference: https://huggingface.co/spaces/HuggingFaceH4/zephyr-playground/blob/main/dialogues.py
         | 
| 1191 | 
            -
            register_conv_template(
         | 
| 1192 | 
            -
                Conversation(
         | 
| 1193 | 
            -
                    name='zephyr',
         | 
| 1194 | 
            -
                    system_template='<|system|>\n{system_message}',
         | 
| 1195 | 
            -
                    roles=('<|user|>', '<|assistant|>'),
         | 
| 1196 | 
            -
                    sep_style=SeparatorStyle.CHATML,
         | 
| 1197 | 
            -
                    sep='</s>',
         | 
| 1198 | 
            -
                    stop_token_ids=[2],
         | 
| 1199 | 
            -
                    stop_str='</s>',
         | 
| 1200 | 
            -
                )
         | 
| 1201 | 
            -
            )
         | 
| 1202 | 
            -
             | 
| 1203 | 
            -
            # InternVL-ZH template
         | 
| 1204 | 
             
            register_conv_template(
         | 
| 1205 | 
             
                Conversation(
         | 
| 1206 | 
             
                    name='internvl_zh',
         | 
| 1207 | 
             
                    system_template='',
         | 
| 1208 | 
             
                    roles=('<human>', '<bot>'),
         | 
| 1209 | 
             
                    sep_style=SeparatorStyle.INTERNVL_ZH,
         | 
| 1210 | 
            -
                    sep=' | 
| 1211 | 
            -
                    sep2=' | 
| 1212 | 
             
                )
         | 
| 1213 | 
             
            )
         | 
|  | |
| 226 |  | 
| 227 | 
             
                        return ret
         | 
| 228 | 
             
                    elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
         | 
| 229 | 
            +
                        seps = [self.sep2, self.sep]
         | 
| 230 | 
             
                        ret = self.system_message + seps[0]
         | 
| 231 | 
             
                        for i, (role, message) in enumerate(self.messages):
         | 
| 232 | 
             
                            if message:
         | 
|  | |
| 319 | 
             
                return conv_templates[name].copy()
         | 
| 320 |  | 
| 321 |  | 
| 322 | 
            +
            # InternVL-Chat-V1-1 template
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 323 | 
             
            register_conv_template(
         | 
| 324 | 
             
                Conversation(
         | 
| 325 | 
             
                    name='internvl_zh',
         | 
| 326 | 
             
                    system_template='',
         | 
| 327 | 
             
                    roles=('<human>', '<bot>'),
         | 
| 328 | 
             
                    sep_style=SeparatorStyle.INTERNVL_ZH,
         | 
| 329 | 
            +
                    sep='</s>',
         | 
| 330 | 
            +
                    sep2=' ',
         | 
| 331 | 
             
                )
         | 
| 332 | 
             
            )
         | 
    	
        index.html
    ADDED
    
    | @@ -0,0 +1,31 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
         | 
| 2 | 
            +
            <html>
         | 
| 3 | 
            +
            <head>
         | 
| 4 | 
            +
            <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
         | 
| 5 | 
            +
            <title>Directory listing for /InternVL-Chat-V1-1/</title>
         | 
| 6 | 
            +
            </head>
         | 
| 7 | 
            +
            <body>
         | 
| 8 | 
            +
            <h1>Directory listing for /InternVL-Chat-V1-1/</h1>
         | 
| 9 | 
            +
            <hr>
         | 
| 10 | 
            +
            <ul>
         | 
| 11 | 
            +
            <li><a href=".gitattributes">.gitattributes</a></li>
         | 
| 12 | 
            +
            <li><a href="added_tokens.json">added_tokens.json</a></li>
         | 
| 13 | 
            +
            <li><a href="config.json">config.json</a></li>
         | 
| 14 | 
            +
            <li><a href="configuration_intern_vit.py">configuration_intern_vit.py</a></li>
         | 
| 15 | 
            +
            <li><a href="configuration_internvl_chat.py">configuration_internvl_chat.py</a></li>
         | 
| 16 | 
            +
            <li><a href="conversation.py">conversation.py</a></li>
         | 
| 17 | 
            +
            <li><a href="modeling_intern_vit.py">modeling_intern_vit.py</a></li>
         | 
| 18 | 
            +
            <li><a href="modeling_internvl_chat.py">modeling_internvl_chat.py</a></li>
         | 
| 19 | 
            +
            <li><a href="preprocessor_config.json">preprocessor_config.json</a></li>
         | 
| 20 | 
            +
            <li><a href="pytorch_model-00001-of-00004.bin">pytorch_model-00001-of-00004.bin</a></li>
         | 
| 21 | 
            +
            <li><a href="pytorch_model-00002-of-00004.bin">pytorch_model-00002-of-00004.bin</a></li>
         | 
| 22 | 
            +
            <li><a href="pytorch_model-00003-of-00004.bin">pytorch_model-00003-of-00004.bin</a></li>
         | 
| 23 | 
            +
            <li><a href="pytorch_model-00004-of-00004.bin">pytorch_model-00004-of-00004.bin</a></li>
         | 
| 24 | 
            +
            <li><a href="pytorch_model.bin.index.json">pytorch_model.bin.index.json</a></li>
         | 
| 25 | 
            +
            <li><a href="special_tokens_map.json">special_tokens_map.json</a></li>
         | 
| 26 | 
            +
            <li><a href="tokenizer.model">tokenizer.model</a></li>
         | 
| 27 | 
            +
            <li><a href="tokenizer_config.json">tokenizer_config.json</a></li>
         | 
| 28 | 
            +
            </ul>
         | 
| 29 | 
            +
            <hr>
         | 
| 30 | 
            +
            </body>
         | 
| 31 | 
            +
            </html>
         | 
    	
        modeling_intern_vit.py
    CHANGED
    
    | @@ -1,6 +1,6 @@ | |
| 1 | 
             
            # --------------------------------------------------------
         | 
| 2 | 
             
            # InternVL
         | 
| 3 | 
            -
            # Copyright (c)  | 
| 4 | 
             
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
             
            # --------------------------------------------------------
         | 
| 6 | 
             
            from typing import Optional, Tuple, Union
         | 
| @@ -24,15 +24,16 @@ try: | |
| 24 | 
             
                    from flash_attn.flash_attn_interface import \
         | 
| 25 | 
             
                        flash_attn_unpadded_qkvpacked_func
         | 
| 26 | 
             
                except:  # v2
         | 
| 27 | 
            -
                    from flash_attn.flash_attn_interface import  | 
| 28 | 
            -
             | 
|  | |
| 29 | 
             
                from flash_attn.bert_padding import pad_input, unpad_input
         | 
|  | |
| 30 | 
             
                has_flash_attn = True
         | 
| 31 | 
             
            except:
         | 
| 32 | 
             
                print('FlashAttention is not installed.')
         | 
| 33 | 
             
                has_flash_attn = False
         | 
| 34 |  | 
| 35 | 
            -
             | 
| 36 | 
             
            logger = logging.get_logger(__name__)
         | 
| 37 |  | 
| 38 |  | 
| @@ -128,6 +129,12 @@ except Exception: | |
| 128 | 
             
                pass
         | 
| 129 |  | 
| 130 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 131 | 
             
            class InternVisionEmbeddings(nn.Module):
         | 
| 132 | 
             
                def __init__(self, config: InternVisionConfig):
         | 
| 133 | 
             
                    super().__init__()
         | 
| @@ -149,14 +156,26 @@ class InternVisionEmbeddings(nn.Module): | |
| 149 |  | 
| 150 | 
             
                    self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
         | 
| 151 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 152 | 
             
                def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
         | 
| 153 | 
            -
                    batch_size = pixel_values.shape[0]
         | 
| 154 | 
             
                    target_dtype = self.patch_embedding.weight.dtype
         | 
| 155 | 
            -
                    patch_embeds = self.patch_embedding(pixel_values)  # shape = [*,  | 
|  | |
| 156 | 
             
                    patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
         | 
| 157 | 
             
                    class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
         | 
| 158 | 
             
                    embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
         | 
| 159 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
| 160 | 
             
                    return embeddings
         | 
| 161 |  | 
| 162 |  | 
| @@ -254,11 +273,12 @@ class InternVisionEncoderLayer(nn.Module): | |
| 254 | 
             
                    super().__init__()
         | 
| 255 | 
             
                    self.embed_dim = config.hidden_size
         | 
| 256 | 
             
                    self.intermediate_size = config.intermediate_size
         | 
|  | |
| 257 |  | 
| 258 | 
             
                    self.attn = InternAttention(config)
         | 
| 259 | 
             
                    self.mlp = InternMLP(config)
         | 
| 260 | 
            -
                    self.norm1 =  | 
| 261 | 
            -
                    self.norm2 =  | 
| 262 |  | 
| 263 | 
             
                    self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
         | 
| 264 | 
             
                    self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
         | 
| @@ -348,6 +368,7 @@ class InternVisionEncoder(nn.Module): | |
| 348 |  | 
| 349 | 
             
            class InternVisionModel(PreTrainedModel):
         | 
| 350 | 
             
                main_input_name = 'pixel_values'
         | 
|  | |
| 351 | 
             
                config_class = InternVisionConfig
         | 
| 352 | 
             
                _no_split_modules = ['InternVisionEncoderLayer']
         | 
| 353 |  | 
| @@ -367,6 +388,7 @@ class InternVisionModel(PreTrainedModel): | |
| 367 | 
             
                    pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
         | 
| 368 | 
             
                    pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
         | 
| 369 | 
             
                    self.embeddings.position_embedding = nn.Parameter(pos_emb)
         | 
|  | |
| 370 | 
             
                    logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
         | 
| 371 |  | 
| 372 | 
             
                def get_input_embeddings(self):
         | 
|  | |
| 1 | 
             
            # --------------------------------------------------------
         | 
| 2 | 
             
            # InternVL
         | 
| 3 | 
            +
            # Copyright (c) 2024 OpenGVLab
         | 
| 4 | 
             
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
             
            # --------------------------------------------------------
         | 
| 6 | 
             
            from typing import Optional, Tuple, Union
         | 
|  | |
| 24 | 
             
                    from flash_attn.flash_attn_interface import \
         | 
| 25 | 
             
                        flash_attn_unpadded_qkvpacked_func
         | 
| 26 | 
             
                except:  # v2
         | 
| 27 | 
            +
                    from flash_attn.flash_attn_interface import \
         | 
| 28 | 
            +
                        flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
         | 
| 29 | 
            +
             | 
| 30 | 
             
                from flash_attn.bert_padding import pad_input, unpad_input
         | 
| 31 | 
            +
             | 
| 32 | 
             
                has_flash_attn = True
         | 
| 33 | 
             
            except:
         | 
| 34 | 
             
                print('FlashAttention is not installed.')
         | 
| 35 | 
             
                has_flash_attn = False
         | 
| 36 |  | 
|  | |
| 37 | 
             
            logger = logging.get_logger(__name__)
         | 
| 38 |  | 
| 39 |  | 
|  | |
| 129 | 
             
                pass
         | 
| 130 |  | 
| 131 |  | 
| 132 | 
            +
            NORM2FN = {
         | 
| 133 | 
            +
                'rms_norm': InternRMSNorm,
         | 
| 134 | 
            +
                'layer_norm': nn.LayerNorm,
         | 
| 135 | 
            +
            }
         | 
| 136 | 
            +
             | 
| 137 | 
            +
             | 
| 138 | 
             
            class InternVisionEmbeddings(nn.Module):
         | 
| 139 | 
             
                def __init__(self, config: InternVisionConfig):
         | 
| 140 | 
             
                    super().__init__()
         | 
|  | |
| 156 |  | 
| 157 | 
             
                    self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
         | 
| 158 |  | 
| 159 | 
            +
                def _get_pos_embed(self, pos_embed, H, W):
         | 
| 160 | 
            +
                    target_dtype = pos_embed.dtype
         | 
| 161 | 
            +
                    pos_embed = pos_embed.float().reshape(
         | 
| 162 | 
            +
                        1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
         | 
| 163 | 
            +
                    pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
         | 
| 164 | 
            +
                        reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
         | 
| 165 | 
            +
                    return pos_embed
         | 
| 166 | 
            +
             | 
| 167 | 
             
                def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
         | 
|  | |
| 168 | 
             
                    target_dtype = self.patch_embedding.weight.dtype
         | 
| 169 | 
            +
                    patch_embeds = self.patch_embedding(pixel_values)  # shape = [*, channel, width, height]
         | 
| 170 | 
            +
                    batch_size, _, height, width = patch_embeds.shape
         | 
| 171 | 
             
                    patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
         | 
| 172 | 
             
                    class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
         | 
| 173 | 
             
                    embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
         | 
| 174 | 
            +
                    position_embedding = torch.cat([
         | 
| 175 | 
            +
                        self.position_embedding[:, :1, :],
         | 
| 176 | 
            +
                        self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
         | 
| 177 | 
            +
                    ], dim=1)
         | 
| 178 | 
            +
                    embeddings = embeddings + position_embedding.to(target_dtype)
         | 
| 179 | 
             
                    return embeddings
         | 
| 180 |  | 
| 181 |  | 
|  | |
| 273 | 
             
                    super().__init__()
         | 
| 274 | 
             
                    self.embed_dim = config.hidden_size
         | 
| 275 | 
             
                    self.intermediate_size = config.intermediate_size
         | 
| 276 | 
            +
                    self.norm_type = config.norm_type
         | 
| 277 |  | 
| 278 | 
             
                    self.attn = InternAttention(config)
         | 
| 279 | 
             
                    self.mlp = InternMLP(config)
         | 
| 280 | 
            +
                    self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
         | 
| 281 | 
            +
                    self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
         | 
| 282 |  | 
| 283 | 
             
                    self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
         | 
| 284 | 
             
                    self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
         | 
|  | |
| 368 |  | 
| 369 | 
             
            class InternVisionModel(PreTrainedModel):
         | 
| 370 | 
             
                main_input_name = 'pixel_values'
         | 
| 371 | 
            +
                _supports_flash_attn_2 = True
         | 
| 372 | 
             
                config_class = InternVisionConfig
         | 
| 373 | 
             
                _no_split_modules = ['InternVisionEncoderLayer']
         | 
| 374 |  | 
|  | |
| 388 | 
             
                    pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
         | 
| 389 | 
             
                    pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
         | 
| 390 | 
             
                    self.embeddings.position_embedding = nn.Parameter(pos_emb)
         | 
| 391 | 
            +
                    self.embeddings.image_size = new_size
         | 
| 392 | 
             
                    logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
         | 
| 393 |  | 
| 394 | 
             
                def get_input_embeddings(self):
         | 
    	
        modeling_internvl_chat.py
    CHANGED
    
    | @@ -1,218 +1,56 @@ | |
| 1 | 
             
            # --------------------------------------------------------
         | 
| 2 | 
             
            # InternVL
         | 
| 3 | 
            -
            # Copyright (c)  | 
| 4 | 
             
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
             
            # --------------------------------------------------------
         | 
| 6 | 
             
            import warnings
         | 
| 7 | 
             
            from typing import Any, List, Optional, Tuple, Union
         | 
| 8 | 
            -
             | 
| 9 | 
             
            import torch.utils.checkpoint
         | 
| 10 | 
            -
             | 
| 11 | 
             
            from torch import nn
         | 
| 12 | 
             
            from torch.nn import CrossEntropyLoss
         | 
| 13 | 
            -
            from transformers import GenerationConfig, LlamaForCausalLM | 
| 14 | 
            -
            from transformers.generation.logits_process import LogitsProcessorList
         | 
| 15 | 
            -
            from transformers.generation.stopping_criteria import StoppingCriteriaList
         | 
| 16 | 
            -
            from transformers.generation.streamers import BaseStreamer
         | 
| 17 | 
             
            from transformers.modeling_outputs import CausalLMOutputWithPast
         | 
| 18 | 
             
            from transformers.modeling_utils import PreTrainedModel
         | 
| 19 | 
             
            from transformers.utils import ModelOutput, logging
         | 
| 20 | 
            -
            from transformers.generation.utils import GreedySearchOutput, validate_stopping_criteria, GreedySearchDecoderOnlyOutput,GreedySearchEncoderDecoderOutput
         | 
| 21 |  | 
| 22 | 
             
            from .configuration_internvl_chat import InternVLChatConfig
         | 
|  | |
| 23 | 
             
            from .modeling_intern_vit import InternVisionModel
         | 
| 24 |  | 
| 25 | 
             
            logger = logging.get_logger(__name__)
         | 
| 26 |  | 
| 27 |  | 
| 28 | 
            -
             | 
| 29 | 
            -
             | 
| 30 | 
            -
            class MLlamaForCausalLM(LlamaForCausalLM):
         | 
| 31 | 
            -
             | 
| 32 | 
            -
                def greedy_search(
         | 
| 33 | 
            -
                    self,
         | 
| 34 | 
            -
                    input_ids: torch.LongTensor,
         | 
| 35 | 
            -
                    logits_processor: Optional[LogitsProcessorList] = None,
         | 
| 36 | 
            -
                    stopping_criteria: Optional[StoppingCriteriaList] = None,
         | 
| 37 | 
            -
                    max_length: Optional[int] = None,
         | 
| 38 | 
            -
                    pad_token_id: Optional[int] = None,
         | 
| 39 | 
            -
                    eos_token_id: Optional[Union[int, List[int]]] = None,
         | 
| 40 | 
            -
                    output_attentions: Optional[bool] = None,
         | 
| 41 | 
            -
                    output_hidden_states: Optional[bool] = None,
         | 
| 42 | 
            -
                    output_scores: Optional[bool] = None,
         | 
| 43 | 
            -
                    return_dict_in_generate: Optional[bool] = None,
         | 
| 44 | 
            -
                    synced_gpus: bool = False,
         | 
| 45 | 
            -
                    streamer: Optional["BaseStreamer"] = None,
         | 
| 46 | 
            -
                    **model_kwargs,
         | 
| 47 | 
            -
                ) -> Union[GreedySearchOutput, torch.LongTensor]:
         | 
| 48 | 
            -
                            # init values
         | 
| 49 | 
            -
                    logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
         | 
| 50 | 
            -
                    stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
         | 
| 51 | 
            -
                    if max_length is not None:
         | 
| 52 | 
            -
                        warnings.warn(
         | 
| 53 | 
            -
                            "`max_length` is deprecated in this function, use"
         | 
| 54 | 
            -
                            " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
         | 
| 55 | 
            -
                            UserWarning,
         | 
| 56 | 
            -
                        )
         | 
| 57 | 
            -
                        stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
         | 
| 58 | 
            -
                    pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
         | 
| 59 | 
            -
                    eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
         | 
| 60 | 
            -
                    if isinstance(eos_token_id, int):
         | 
| 61 | 
            -
                        eos_token_id = [eos_token_id]
         | 
| 62 | 
            -
                    eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
         | 
| 63 | 
            -
                    output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
         | 
| 64 | 
            -
                    output_attentions = (
         | 
| 65 | 
            -
                        output_attentions if output_attentions is not None else self.generation_config.output_attentions
         | 
| 66 | 
            -
                    )
         | 
| 67 | 
            -
                    output_hidden_states = (
         | 
| 68 | 
            -
                        output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
         | 
| 69 | 
            -
                    )
         | 
| 70 | 
            -
                    return_dict_in_generate = (
         | 
| 71 | 
            -
                        return_dict_in_generate
         | 
| 72 | 
            -
                        if return_dict_in_generate is not None
         | 
| 73 | 
            -
                        else self.generation_config.return_dict_in_generate
         | 
| 74 | 
            -
                    )
         | 
| 75 |  | 
| 76 | 
            -
             | 
| 77 | 
            -
             | 
| 78 | 
            -
             | 
| 79 | 
            -
                    cross_attentions = () if (return_dict_in_generate and output_attentions) else None
         | 
| 80 | 
            -
                    decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
         | 
| 81 | 
            -
             | 
| 82 | 
            -
                    # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
         | 
| 83 | 
            -
                    if return_dict_in_generate and self.config.is_encoder_decoder:
         | 
| 84 | 
            -
                        encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
         | 
| 85 | 
            -
                        encoder_hidden_states = (
         | 
| 86 | 
            -
                            model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
         | 
| 87 | 
            -
                        )
         | 
| 88 | 
            -
             | 
| 89 | 
            -
                    # keep track of which sequences are already finished
         | 
| 90 | 
            -
                    unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
         | 
| 91 | 
            -
             | 
| 92 | 
            -
                    this_peer_finished = False  # used by synced_gpus only
         | 
| 93 | 
            -
                    while True:
         | 
| 94 | 
            -
                        if synced_gpus:
         | 
| 95 | 
            -
                            # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
         | 
| 96 | 
            -
                            # The following logic allows an early break if all peers finished generating their sequence
         | 
| 97 | 
            -
                            this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
         | 
| 98 | 
            -
                            # send 0.0 if we finished, 1.0 otherwise
         | 
| 99 | 
            -
                            dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
         | 
| 100 | 
            -
                            # did all peers finish? the reduced sum will be 0.0 then
         | 
| 101 | 
            -
                            if this_peer_finished_flag.item() == 0.0:
         | 
| 102 | 
            -
                                break
         | 
| 103 | 
            -
             | 
| 104 | 
            -
                        # prepare model inputs
         | 
| 105 | 
            -
                        model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
         | 
| 106 | 
            -
             | 
| 107 | 
            -
                        # forward pass to get next token
         | 
| 108 | 
            -
                        outputs = self(
         | 
| 109 | 
            -
                            **model_inputs,
         | 
| 110 | 
            -
                            return_dict=True,
         | 
| 111 | 
            -
                            output_attentions=output_attentions,
         | 
| 112 | 
            -
                            output_hidden_states=output_hidden_states,
         | 
| 113 | 
            -
                        )
         | 
| 114 | 
            -
             | 
| 115 | 
            -
                        if synced_gpus and this_peer_finished:
         | 
| 116 | 
            -
                            continue  # don't waste resources running the code we don't need
         | 
| 117 | 
            -
             | 
| 118 | 
            -
                        next_token_logits = outputs.logits[:, -1, :]
         | 
| 119 | 
            -
             | 
| 120 | 
            -
                        # pre-process distribution
         | 
| 121 | 
            -
                        next_tokens_scores = logits_processor(input_ids, next_token_logits)
         | 
| 122 | 
            -
             | 
| 123 | 
            -
                        # Store scores, attentions and hidden_states when required
         | 
| 124 | 
            -
                        if return_dict_in_generate:
         | 
| 125 | 
            -
                            if output_scores:
         | 
| 126 | 
            -
                                scores += (next_tokens_scores,)
         | 
| 127 | 
            -
                            if output_attentions:
         | 
| 128 | 
            -
                                decoder_attentions += (
         | 
| 129 | 
            -
                                    (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
         | 
| 130 | 
            -
                                )
         | 
| 131 | 
            -
                                if self.config.is_encoder_decoder:
         | 
| 132 | 
            -
                                    cross_attentions += (outputs.cross_attentions,)
         | 
| 133 | 
            -
             | 
| 134 | 
            -
                            if output_hidden_states:
         | 
| 135 | 
            -
                                decoder_hidden_states += (
         | 
| 136 | 
            -
                                    (outputs.decoder_hidden_states,)
         | 
| 137 | 
            -
                                    if self.config.is_encoder_decoder
         | 
| 138 | 
            -
                                    else (outputs.hidden_states,)
         | 
| 139 | 
            -
                                )
         | 
| 140 | 
            -
             | 
| 141 | 
            -
                        # argmax
         | 
| 142 | 
            -
                        next_tokens = torch.argmax(next_tokens_scores, dim=-1).to(device=input_ids.device)
         | 
| 143 | 
            -
                        # finished sentences should have their next token be a padding token
         | 
| 144 | 
            -
                        if eos_token_id is not None:
         | 
| 145 | 
            -
                            if pad_token_id is None:
         | 
| 146 | 
            -
                                raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
         | 
| 147 | 
            -
                            next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
         | 
| 148 | 
            -
             | 
| 149 | 
            -
                        # update generated ids, model inputs, and length for next step
         | 
| 150 | 
            -
                        input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
         | 
| 151 | 
            -
                        if streamer is not None:
         | 
| 152 | 
            -
                            streamer.put(next_tokens.cpu())
         | 
| 153 | 
            -
                        model_kwargs = self._update_model_kwargs_for_generation(
         | 
| 154 | 
            -
                            outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
         | 
| 155 | 
            -
                        )
         | 
| 156 | 
            -
             | 
| 157 | 
            -
                        # if eos_token was found in one sentence, set sentence to finished
         | 
| 158 | 
            -
                        if eos_token_id_tensor is not None:
         | 
| 159 | 
            -
                            unfinished_sequences = unfinished_sequences.mul(
         | 
| 160 | 
            -
                                next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
         | 
| 161 | 
            -
                            )
         | 
| 162 | 
            -
             | 
| 163 | 
            -
                            # stop when each sentence is finished
         | 
| 164 | 
            -
                            if unfinished_sequences.max() == 0:
         | 
| 165 | 
            -
                                this_peer_finished = True
         | 
| 166 | 
            -
             | 
| 167 | 
            -
                        # stop if we exceed the maximum length
         | 
| 168 | 
            -
                        if stopping_criteria(input_ids, scores):
         | 
| 169 | 
            -
                            this_peer_finished = True
         | 
| 170 | 
            -
             | 
| 171 | 
            -
                        if this_peer_finished and not synced_gpus:
         | 
| 172 | 
            -
                            break
         | 
| 173 | 
            -
             | 
| 174 | 
            -
                    if streamer is not None:
         | 
| 175 | 
            -
                        streamer.end()
         | 
| 176 | 
            -
             | 
| 177 | 
            -
                    if return_dict_in_generate:
         | 
| 178 | 
            -
                        if self.config.is_encoder_decoder:
         | 
| 179 | 
            -
                            return GreedySearchEncoderDecoderOutput(
         | 
| 180 | 
            -
                                sequences=input_ids,
         | 
| 181 | 
            -
                                scores=scores,
         | 
| 182 | 
            -
                                encoder_attentions=encoder_attentions,
         | 
| 183 | 
            -
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 184 | 
            -
                                decoder_attentions=decoder_attentions,
         | 
| 185 | 
            -
                                cross_attentions=cross_attentions,
         | 
| 186 | 
            -
                                decoder_hidden_states=decoder_hidden_states,
         | 
| 187 | 
            -
                                past_key_values=model_kwargs.get("past_key_values"),
         | 
| 188 | 
            -
                            )
         | 
| 189 | 
            -
                        else:
         | 
| 190 | 
            -
                            return GreedySearchDecoderOnlyOutput(
         | 
| 191 | 
            -
                                sequences=input_ids,
         | 
| 192 | 
            -
                                scores=scores,
         | 
| 193 | 
            -
                                attentions=decoder_attentions,
         | 
| 194 | 
            -
                                hidden_states=decoder_hidden_states,
         | 
| 195 | 
            -
                                past_key_values=model_kwargs.get("past_key_values"),
         | 
| 196 | 
            -
                            )
         | 
| 197 | 
            -
                    else:
         | 
| 198 | 
            -
                        return input_ids
         | 
| 199 |  | 
| 200 |  | 
| 201 | 
             
            class InternVLChatModel(PreTrainedModel):
         | 
| 202 | 
             
                config_class = InternVLChatConfig
         | 
| 203 | 
             
                main_input_name = 'pixel_values'
         | 
|  | |
| 204 | 
             
                _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer']
         | 
| 205 |  | 
| 206 | 
             
                def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
         | 
| 207 | 
             
                    super().__init__(config)
         | 
| 208 |  | 
|  | |
| 209 | 
             
                    image_size = config.force_image_size or config.vision_config.image_size
         | 
| 210 | 
             
                    patch_size = config.vision_config.patch_size
         | 
|  | |
| 211 | 
             
                    self.select_layer = config.select_layer
         | 
| 212 | 
             
                    self.template = config.template
         | 
| 213 | 
             
                    self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
         | 
| 214 | 
             
                    self.downsample_ratio = config.downsample_ratio
         | 
|  | |
|  | |
| 215 | 
             
                    logger.info(f'num_image_token: {self.num_image_token}')
         | 
|  | |
| 216 | 
             
                    if vision_model is not None:
         | 
| 217 | 
             
                        self.vision_model = vision_model
         | 
| 218 | 
             
                    else:
         | 
| @@ -220,54 +58,24 @@ class InternVLChatModel(PreTrainedModel): | |
| 220 | 
             
                    if language_model is not None:
         | 
| 221 | 
             
                        self.language_model = language_model
         | 
| 222 | 
             
                    else:
         | 
| 223 | 
            -
                         | 
| 224 | 
            -
             | 
|  | |
|  | |
|  | |
| 225 | 
             
                    vit_hidden_size = config.vision_config.hidden_size
         | 
| 226 | 
             
                    llm_hidden_size = config.llm_config.hidden_size
         | 
| 227 |  | 
| 228 | 
             
                    self.mlp1 = nn.Sequential(
         | 
| 229 | 
            -
                        nn.LayerNorm(vit_hidden_size *  | 
| 230 | 
            -
                        nn.Linear(vit_hidden_size *  | 
| 231 | 
             
                        nn.GELU(),
         | 
| 232 | 
             
                        nn.Linear(llm_hidden_size, llm_hidden_size)
         | 
| 233 | 
             
                    )
         | 
| 234 |  | 
| 235 | 
            -
                    if config.force_image_size != config.vision_config.image_size:
         | 
| 236 | 
            -
                        self.vision_model.resize_pos_embeddings(
         | 
| 237 | 
            -
                            old_size=config.vision_config.image_size,
         | 
| 238 | 
            -
                            new_size=config.force_image_size,
         | 
| 239 | 
            -
                            patch_size=config.vision_config.patch_size
         | 
| 240 | 
            -
                        )
         | 
| 241 | 
            -
             | 
| 242 | 
             
                    self.img_context_token_id = None
         | 
| 243 | 
            -
             | 
| 244 | 
            -
                     | 
| 245 | 
            -
                        self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
         | 
| 246 | 
            -
             | 
| 247 | 
            -
                    if config.use_llm_lora:
         | 
| 248 | 
            -
                        self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
         | 
| 249 | 
            -
             | 
| 250 | 
            -
                def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
         | 
| 251 | 
            -
                    lora_config = LoraConfig(
         | 
| 252 | 
            -
                        r=r,
         | 
| 253 | 
            -
                        target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
         | 
| 254 | 
            -
                        lora_alpha=lora_alpha,
         | 
| 255 | 
            -
                        lora_dropout=lora_dropout,
         | 
| 256 | 
            -
                    )
         | 
| 257 | 
            -
                    self.vision_model = get_peft_model(self.vision_model, lora_config)
         | 
| 258 | 
            -
                    self.vision_model.print_trainable_parameters()
         | 
| 259 | 
            -
             | 
| 260 | 
            -
                def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
         | 
| 261 | 
            -
                    lora_config = LoraConfig(
         | 
| 262 | 
            -
                        r=r,
         | 
| 263 | 
            -
                        target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
         | 
| 264 | 
            -
                                        'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'],
         | 
| 265 | 
            -
                        lora_alpha=lora_alpha,
         | 
| 266 | 
            -
                        lora_dropout=lora_dropout,
         | 
| 267 | 
            -
                        task_type='CAUSAL_LM'
         | 
| 268 | 
            -
                    )
         | 
| 269 | 
            -
                    self.language_model = get_peft_model(self.language_model, lora_config)
         | 
| 270 | 
            -
                    self.language_model.print_trainable_parameters()
         | 
| 271 |  | 
| 272 | 
             
                def forward(
         | 
| 273 | 
             
                        self,
         | 
| @@ -290,20 +98,28 @@ class InternVLChatModel(PreTrainedModel): | |
| 290 |  | 
| 291 | 
             
                    vit_embeds = self.extract_feature(pixel_values)
         | 
| 292 | 
             
                    vit_embeds = vit_embeds[image_flags == 1]
         | 
|  | |
| 293 |  | 
| 294 | 
             
                    B, N, C = input_embeds.shape
         | 
| 295 | 
             
                    input_embeds = input_embeds.reshape(B * N, C)
         | 
| 296 |  | 
|  | |
|  | |
|  | |
| 297 | 
             
                    input_ids = input_ids.reshape(B * N)
         | 
| 298 | 
             
                    selected = (input_ids == self.img_context_token_id)
         | 
| 299 | 
             
                    try:
         | 
| 300 | 
             
                        input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
         | 
| 301 | 
            -
                    except:
         | 
| 302 | 
            -
                         | 
|  | |
|  | |
|  | |
|  | |
| 303 |  | 
| 304 | 
             
                    input_embeds = input_embeds.reshape(B, N, C)
         | 
| 305 |  | 
| 306 | 
            -
                    outputs = self.language_model | 
| 307 | 
             
                        inputs_embeds=input_embeds,
         | 
| 308 | 
             
                        attention_mask=attention_mask,
         | 
| 309 | 
             
                        position_ids=position_ids,
         | 
| @@ -313,8 +129,7 @@ class InternVLChatModel(PreTrainedModel): | |
| 313 | 
             
                        output_hidden_states=output_hidden_states,
         | 
| 314 | 
             
                        return_dict=return_dict,
         | 
| 315 | 
             
                    )
         | 
| 316 | 
            -
                     | 
| 317 | 
            -
                    logits = self.language_model.lm_head(hidden_states)
         | 
| 318 |  | 
| 319 | 
             
                    loss = None
         | 
| 320 | 
             
                    if labels is not None:
         | 
| @@ -350,6 +165,11 @@ class InternVLChatModel(PreTrainedModel): | |
| 350 | 
             
                    # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
         | 
| 351 | 
             
                    x = x.view(n, int(h * scale_factor), int(w * scale_factor),
         | 
| 352 | 
             
                               int(c / (scale_factor * scale_factor)))
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 353 | 
             
                    return x
         | 
| 354 |  | 
| 355 | 
             
                def extract_feature(self, pixel_values):
         | 
| @@ -364,41 +184,100 @@ class InternVLChatModel(PreTrainedModel): | |
| 364 | 
             
                            output_hidden_states=True,
         | 
| 365 | 
             
                            return_dict=True).hidden_states[self.select_layer]
         | 
| 366 | 
             
                    vit_embeds = vit_embeds[:, 1:, :]
         | 
| 367 | 
            -
             | 
| 368 | 
            -
                    #     print("before pixel shuffle:", vit_embeds.shape)
         | 
| 369 | 
             
                    h = w = int(vit_embeds.shape[1] ** 0.5)
         | 
| 370 | 
             
                    vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
         | 
| 371 | 
             
                    vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
         | 
| 372 | 
             
                    vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
         | 
| 373 | 
            -
                    # if torch.distributed.get_rank() == 0:
         | 
| 374 | 
            -
                    #     print("after pixel shuffle:", vit_embeds.shape)
         | 
| 375 | 
             
                    vit_embeds = self.mlp1(vit_embeds)
         | 
| 376 | 
             
                    return vit_embeds
         | 
| 377 |  | 
| 378 | 
            -
                def  | 
| 379 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 380 |  | 
| 381 | 
             
                    img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
         | 
| 382 | 
             
                    self.img_context_token_id = img_context_token_id
         | 
| 383 |  | 
| 384 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 385 |  | 
| 386 | 
             
                    template = get_conv_template(self.template)
         | 
| 387 | 
            -
                     | 
| 388 | 
            -
             | 
| 389 | 
            -
             | 
| 390 | 
            -
             | 
| 391 | 
            -
                     | 
| 392 | 
            -
                         | 
| 393 | 
            -
             | 
| 394 | 
            -
                            template.append_message(template.roles[1], old_answer)
         | 
| 395 | 
             
                    template.append_message(template.roles[0], question)
         | 
| 396 | 
             
                    template.append_message(template.roles[1], None)
         | 
| 397 | 
             
                    query = template.get_prompt()
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 398 | 
             
                    model_inputs = tokenizer(query, return_tensors='pt')
         | 
| 399 | 
             
                    input_ids = model_inputs['input_ids'].cuda()
         | 
| 400 | 
             
                    attention_mask = model_inputs['attention_mask'].cuda()
         | 
| 401 | 
            -
             | 
| 402 | 
             
                    generation_output = self.generate(
         | 
| 403 | 
             
                        pixel_values=pixel_values,
         | 
| 404 | 
             
                        input_ids=input_ids,
         | 
| @@ -406,10 +285,15 @@ class InternVLChatModel(PreTrainedModel): | |
| 406 | 
             
                        **generation_config
         | 
| 407 | 
             
                    )
         | 
| 408 | 
             
                    response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
         | 
|  | |
| 409 | 
             
                    history.append((question, response))
         | 
| 410 | 
             
                    if return_history:
         | 
| 411 | 
             
                        return response, history
         | 
| 412 | 
             
                    else:
         | 
|  | |
|  | |
|  | |
|  | |
| 413 | 
             
                        return response
         | 
| 414 |  | 
| 415 | 
             
                @torch.no_grad()
         | 
| @@ -431,7 +315,6 @@ class InternVLChatModel(PreTrainedModel): | |
| 431 | 
             
                            vit_embeds = visual_features
         | 
| 432 | 
             
                        else:
         | 
| 433 | 
             
                            vit_embeds = self.extract_feature(pixel_values)
         | 
| 434 | 
            -
             | 
| 435 | 
             
                        input_embeds = self.language_model.get_input_embeddings()(input_ids)
         | 
| 436 | 
             
                        B, N, C = input_embeds.shape
         | 
| 437 | 
             
                        input_embeds = input_embeds.reshape(B * N, C)
         | 
|  | |
| 1 | 
             
            # --------------------------------------------------------
         | 
| 2 | 
             
            # InternVL
         | 
| 3 | 
            +
            # Copyright (c) 2024 OpenGVLab
         | 
| 4 | 
             
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
             
            # --------------------------------------------------------
         | 
| 6 | 
             
            import warnings
         | 
| 7 | 
             
            from typing import Any, List, Optional, Tuple, Union
         | 
| 8 | 
            +
             | 
| 9 | 
             
            import torch.utils.checkpoint
         | 
| 10 | 
            +
            import transformers
         | 
| 11 | 
             
            from torch import nn
         | 
| 12 | 
             
            from torch.nn import CrossEntropyLoss
         | 
| 13 | 
            +
            from transformers import AutoModel, GenerationConfig, LlamaForCausalLM
         | 
|  | |
|  | |
|  | |
| 14 | 
             
            from transformers.modeling_outputs import CausalLMOutputWithPast
         | 
| 15 | 
             
            from transformers.modeling_utils import PreTrainedModel
         | 
| 16 | 
             
            from transformers.utils import ModelOutput, logging
         | 
|  | |
| 17 |  | 
| 18 | 
             
            from .configuration_internvl_chat import InternVLChatConfig
         | 
| 19 | 
            +
            from .conversation import get_conv_template
         | 
| 20 | 
             
            from .modeling_intern_vit import InternVisionModel
         | 
| 21 |  | 
| 22 | 
             
            logger = logging.get_logger(__name__)
         | 
| 23 |  | 
| 24 |  | 
| 25 | 
            +
            def version_cmp(v1, v2, op='eq'):
         | 
| 26 | 
            +
                import operator
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 27 |  | 
| 28 | 
            +
                from packaging import version
         | 
| 29 | 
            +
                op_func = getattr(operator, op)
         | 
| 30 | 
            +
                return op_func(version.parse(v1), version.parse(v2))
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 31 |  | 
| 32 |  | 
| 33 | 
             
            class InternVLChatModel(PreTrainedModel):
         | 
| 34 | 
             
                config_class = InternVLChatConfig
         | 
| 35 | 
             
                main_input_name = 'pixel_values'
         | 
| 36 | 
            +
                _supports_flash_attn_2 = True
         | 
| 37 | 
             
                _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer']
         | 
| 38 |  | 
| 39 | 
             
                def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
         | 
| 40 | 
             
                    super().__init__(config)
         | 
| 41 |  | 
| 42 | 
            +
                    assert version_cmp(transformers.__version__, '4.36.2', 'ge')
         | 
| 43 | 
             
                    image_size = config.force_image_size or config.vision_config.image_size
         | 
| 44 | 
             
                    patch_size = config.vision_config.patch_size
         | 
| 45 | 
            +
                    self.patch_size = patch_size
         | 
| 46 | 
             
                    self.select_layer = config.select_layer
         | 
| 47 | 
             
                    self.template = config.template
         | 
| 48 | 
             
                    self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
         | 
| 49 | 
             
                    self.downsample_ratio = config.downsample_ratio
         | 
| 50 | 
            +
                    self.ps_version = config.ps_version
         | 
| 51 | 
            +
             | 
| 52 | 
             
                    logger.info(f'num_image_token: {self.num_image_token}')
         | 
| 53 | 
            +
                    logger.info(f'ps_version: {self.ps_version}')
         | 
| 54 | 
             
                    if vision_model is not None:
         | 
| 55 | 
             
                        self.vision_model = vision_model
         | 
| 56 | 
             
                    else:
         | 
|  | |
| 58 | 
             
                    if language_model is not None:
         | 
| 59 | 
             
                        self.language_model = language_model
         | 
| 60 | 
             
                    else:
         | 
| 61 | 
            +
                        if config.llm_config.architectures[0] == 'LlamaForCausalLM':
         | 
| 62 | 
            +
                            self.language_model = LlamaForCausalLM(config.llm_config)
         | 
| 63 | 
            +
                        else:
         | 
| 64 | 
            +
                            raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
         | 
| 65 | 
            +
             | 
| 66 | 
             
                    vit_hidden_size = config.vision_config.hidden_size
         | 
| 67 | 
             
                    llm_hidden_size = config.llm_config.hidden_size
         | 
| 68 |  | 
| 69 | 
             
                    self.mlp1 = nn.Sequential(
         | 
| 70 | 
            +
                        nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
         | 
| 71 | 
            +
                        nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
         | 
| 72 | 
             
                        nn.GELU(),
         | 
| 73 | 
             
                        nn.Linear(llm_hidden_size, llm_hidden_size)
         | 
| 74 | 
             
                    )
         | 
| 75 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 76 | 
             
                    self.img_context_token_id = None
         | 
| 77 | 
            +
                    self.conv_template = get_conv_template(self.template)
         | 
| 78 | 
            +
                    self.system_message = self.conv_template.system_message
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 79 |  | 
| 80 | 
             
                def forward(
         | 
| 81 | 
             
                        self,
         | 
|  | |
| 98 |  | 
| 99 | 
             
                    vit_embeds = self.extract_feature(pixel_values)
         | 
| 100 | 
             
                    vit_embeds = vit_embeds[image_flags == 1]
         | 
| 101 | 
            +
                    vit_batch_size = pixel_values.shape[0]
         | 
| 102 |  | 
| 103 | 
             
                    B, N, C = input_embeds.shape
         | 
| 104 | 
             
                    input_embeds = input_embeds.reshape(B * N, C)
         | 
| 105 |  | 
| 106 | 
            +
                    if torch.distributed.get_rank() == 0:
         | 
| 107 | 
            +
                        print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
         | 
| 108 | 
            +
             | 
| 109 | 
             
                    input_ids = input_ids.reshape(B * N)
         | 
| 110 | 
             
                    selected = (input_ids == self.img_context_token_id)
         | 
| 111 | 
             
                    try:
         | 
| 112 | 
             
                        input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
         | 
| 113 | 
            +
                    except Exception as e:
         | 
| 114 | 
            +
                        vit_embeds = vit_embeds.reshape(-1, C)
         | 
| 115 | 
            +
                        print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
         | 
| 116 | 
            +
                              f'vit_embeds.shape={vit_embeds.shape}')
         | 
| 117 | 
            +
                        n_token = selected.sum()
         | 
| 118 | 
            +
                        input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
         | 
| 119 |  | 
| 120 | 
             
                    input_embeds = input_embeds.reshape(B, N, C)
         | 
| 121 |  | 
| 122 | 
            +
                    outputs = self.language_model(
         | 
| 123 | 
             
                        inputs_embeds=input_embeds,
         | 
| 124 | 
             
                        attention_mask=attention_mask,
         | 
| 125 | 
             
                        position_ids=position_ids,
         | 
|  | |
| 129 | 
             
                        output_hidden_states=output_hidden_states,
         | 
| 130 | 
             
                        return_dict=return_dict,
         | 
| 131 | 
             
                    )
         | 
| 132 | 
            +
                    logits = outputs.logits
         | 
|  | |
| 133 |  | 
| 134 | 
             
                    loss = None
         | 
| 135 | 
             
                    if labels is not None:
         | 
|  | |
| 165 | 
             
                    # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
         | 
| 166 | 
             
                    x = x.view(n, int(h * scale_factor), int(w * scale_factor),
         | 
| 167 | 
             
                               int(c / (scale_factor * scale_factor)))
         | 
| 168 | 
            +
                    if self.ps_version == 'v1':
         | 
| 169 | 
            +
                        warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
         | 
| 170 | 
            +
                                      'which results in a transposed image.')
         | 
| 171 | 
            +
                    else:
         | 
| 172 | 
            +
                        x = x.permute(0, 2, 1, 3).contiguous()
         | 
| 173 | 
             
                    return x
         | 
| 174 |  | 
| 175 | 
             
                def extract_feature(self, pixel_values):
         | 
|  | |
| 184 | 
             
                            output_hidden_states=True,
         | 
| 185 | 
             
                            return_dict=True).hidden_states[self.select_layer]
         | 
| 186 | 
             
                    vit_embeds = vit_embeds[:, 1:, :]
         | 
| 187 | 
            +
             | 
|  | |
| 188 | 
             
                    h = w = int(vit_embeds.shape[1] ** 0.5)
         | 
| 189 | 
             
                    vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
         | 
| 190 | 
             
                    vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
         | 
| 191 | 
             
                    vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
         | 
|  | |
|  | |
| 192 | 
             
                    vit_embeds = self.mlp1(vit_embeds)
         | 
| 193 | 
             
                    return vit_embeds
         | 
| 194 |  | 
| 195 | 
            +
                def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
         | 
| 196 | 
            +
                               history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
         | 
| 197 | 
            +
                               IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
         | 
| 198 | 
            +
                    if history is not None or return_history:
         | 
| 199 | 
            +
                        print('Now multi-turn chat is not supported in batch_chat.')
         | 
| 200 | 
            +
                        raise NotImplementedError
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                    if image_counts is not None:
         | 
| 203 | 
            +
                        num_patches_list = image_counts
         | 
| 204 | 
            +
                        print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
         | 
| 205 |  | 
| 206 | 
             
                    img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
         | 
| 207 | 
             
                    self.img_context_token_id = img_context_token_id
         | 
| 208 |  | 
| 209 | 
            +
                    if verbose and pixel_values is not None:
         | 
| 210 | 
            +
                        image_bs = pixel_values.shape[0]
         | 
| 211 | 
            +
                        print(f'dynamic ViT batch size: {image_bs}')
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                    queries = []
         | 
| 214 | 
            +
                    for idx, num_patches in enumerate(num_patches_list):
         | 
| 215 | 
            +
                        question = questions[idx]
         | 
| 216 | 
            +
                        if pixel_values is not None and '<image>' not in question:
         | 
| 217 | 
            +
                            question = '<image>\n' + question
         | 
| 218 | 
            +
                        template = get_conv_template(self.template)
         | 
| 219 | 
            +
                        template.append_message(template.roles[0], question)
         | 
| 220 | 
            +
                        template.append_message(template.roles[1], None)
         | 
| 221 | 
            +
                        query = template.get_prompt()
         | 
| 222 | 
            +
             | 
| 223 | 
            +
                        image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
         | 
| 224 | 
            +
                        query = query.replace('<image>', image_tokens, 1)
         | 
| 225 | 
            +
                        queries.append(query)
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                    tokenizer.padding_side = 'left'
         | 
| 228 | 
            +
                    model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
         | 
| 229 | 
            +
                    input_ids = model_inputs['input_ids'].cuda()
         | 
| 230 | 
            +
                    attention_mask = model_inputs['attention_mask'].cuda()
         | 
| 231 | 
            +
                    eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
         | 
| 232 | 
            +
                    generation_config['eos_token_id'] = eos_token_id
         | 
| 233 | 
            +
                    generation_output = self.generate(
         | 
| 234 | 
            +
                        pixel_values=pixel_values,
         | 
| 235 | 
            +
                        input_ids=input_ids,
         | 
| 236 | 
            +
                        attention_mask=attention_mask,
         | 
| 237 | 
            +
                        **generation_config
         | 
| 238 | 
            +
                    )
         | 
| 239 | 
            +
                    responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
         | 
| 240 | 
            +
                    responses = [response.split(template.sep)[0].strip() for response in responses]
         | 
| 241 | 
            +
                    return responses
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
         | 
| 244 | 
            +
                         num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
         | 
| 245 | 
            +
                         verbose=False):
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                    if history is None and pixel_values is not None and '<image>' not in question:
         | 
| 248 | 
            +
                        question = '<image>\n' + question
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                    if num_patches_list is None:
         | 
| 251 | 
            +
                        num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
         | 
| 252 | 
            +
                    assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                    img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
         | 
| 255 | 
            +
                    self.img_context_token_id = img_context_token_id
         | 
| 256 |  | 
| 257 | 
             
                    template = get_conv_template(self.template)
         | 
| 258 | 
            +
                    template.system_message = self.system_message
         | 
| 259 | 
            +
                    eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                    history = [] if history is None else history
         | 
| 262 | 
            +
                    for (old_question, old_answer) in history:
         | 
| 263 | 
            +
                        template.append_message(template.roles[0], old_question)
         | 
| 264 | 
            +
                        template.append_message(template.roles[1], old_answer)
         | 
|  | |
| 265 | 
             
                    template.append_message(template.roles[0], question)
         | 
| 266 | 
             
                    template.append_message(template.roles[1], None)
         | 
| 267 | 
             
                    query = template.get_prompt()
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                    if verbose and pixel_values is not None:
         | 
| 270 | 
            +
                        image_bs = pixel_values.shape[0]
         | 
| 271 | 
            +
                        print(f'dynamic ViT batch size: {image_bs}')
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                    for num_patches in num_patches_list:
         | 
| 274 | 
            +
                        image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
         | 
| 275 | 
            +
                        query = query.replace('<image>', image_tokens, 1)
         | 
| 276 | 
            +
             | 
| 277 | 
             
                    model_inputs = tokenizer(query, return_tensors='pt')
         | 
| 278 | 
             
                    input_ids = model_inputs['input_ids'].cuda()
         | 
| 279 | 
             
                    attention_mask = model_inputs['attention_mask'].cuda()
         | 
| 280 | 
            +
                    generation_config['eos_token_id'] = eos_token_id
         | 
| 281 | 
             
                    generation_output = self.generate(
         | 
| 282 | 
             
                        pixel_values=pixel_values,
         | 
| 283 | 
             
                        input_ids=input_ids,
         | 
|  | |
| 285 | 
             
                        **generation_config
         | 
| 286 | 
             
                    )
         | 
| 287 | 
             
                    response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
         | 
| 288 | 
            +
                    response = response.split(template.sep)[0].strip()
         | 
| 289 | 
             
                    history.append((question, response))
         | 
| 290 | 
             
                    if return_history:
         | 
| 291 | 
             
                        return response, history
         | 
| 292 | 
             
                    else:
         | 
| 293 | 
            +
                        query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
         | 
| 294 | 
            +
                        query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
         | 
| 295 | 
            +
                        if verbose:
         | 
| 296 | 
            +
                            print(query_to_print, response)
         | 
| 297 | 
             
                        return response
         | 
| 298 |  | 
| 299 | 
             
                @torch.no_grad()
         | 
|  | |
| 315 | 
             
                            vit_embeds = visual_features
         | 
| 316 | 
             
                        else:
         | 
| 317 | 
             
                            vit_embeds = self.extract_feature(pixel_values)
         | 
|  | |
| 318 | 
             
                        input_embeds = self.language_model.get_input_embeddings()(input_ids)
         | 
| 319 | 
             
                        B, N, C = input_embeds.shape
         | 
| 320 | 
             
                        input_embeds = input_embeds.reshape(B * N, C)
         | 
    	
        tokenizer_config.json
    CHANGED
    
    | @@ -150,7 +150,7 @@ | |
| 150 | 
             
              "clean_up_tokenization_spaces": false,
         | 
| 151 | 
             
              "eos_token": "</s>",
         | 
| 152 | 
             
              "legacy": true,
         | 
| 153 | 
            -
              "model_max_length":  | 
| 154 | 
             
              "pad_token": "<unk>",
         | 
| 155 | 
             
              "padding_side": "right",
         | 
| 156 | 
             
              "sp_model_kwargs": {},
         | 
|  | |
| 150 | 
             
              "clean_up_tokenization_spaces": false,
         | 
| 151 | 
             
              "eos_token": "</s>",
         | 
| 152 | 
             
              "legacy": true,
         | 
| 153 | 
            +
              "model_max_length": 8192,
         | 
| 154 | 
             
              "pad_token": "<unk>",
         | 
| 155 | 
             
              "padding_side": "right",
         | 
| 156 | 
             
              "sp_model_kwargs": {},
         | 
