Upload Bitcoin_Price_Prediction_Model_(LSTM).ipynb
Browse files
Bitcoin_Price_Prediction_Model_(LSTM).ipynb
ADDED
|
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"nbformat": 4,
|
| 3 |
+
"nbformat_minor": 0,
|
| 4 |
+
"metadata": {
|
| 5 |
+
"colab": {
|
| 6 |
+
"provenance": []
|
| 7 |
+
},
|
| 8 |
+
"kernelspec": {
|
| 9 |
+
"name": "python3",
|
| 10 |
+
"display_name": "Python 3"
|
| 11 |
+
},
|
| 12 |
+
"language_info": {
|
| 13 |
+
"name": "python"
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
"cells": [
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "code",
|
| 19 |
+
"execution_count": null,
|
| 20 |
+
"metadata": {
|
| 21 |
+
"id": "Z6OeRBuqH7cJ"
|
| 22 |
+
},
|
| 23 |
+
"outputs": [],
|
| 24 |
+
"source": [
|
| 25 |
+
"#@title Step 1: Installing and Importing Necessary Libraries\n",
|
| 26 |
+
"# We are installing the necessary libraries in the Google Colab environment.\n",
|
| 27 |
+
"# yfinance: To fetch financial data from Yahoo Finance.\n",
|
| 28 |
+
"# tensorflow: To build and train the neural network.\n",
|
| 29 |
+
"# scikit-learn: For data preprocessing (normalization).\n",
|
| 30 |
+
"!pip install yfinance tensorflow scikit-learn pandas matplotlib -q\n",
|
| 31 |
+
"\n",
|
| 32 |
+
"import numpy as np\n",
|
| 33 |
+
"import pandas as pd\n",
|
| 34 |
+
"import matplotlib.pyplot as plt\n",
|
| 35 |
+
"import yfinance as yf\n",
|
| 36 |
+
"from sklearn.preprocessing import MinMaxScaler\n",
|
| 37 |
+
"from tensorflow.keras.models import Sequential\n",
|
| 38 |
+
"from tensorflow.keras.layers import LSTM, Dense, Dropout\n",
|
| 39 |
+
"import datetime\n",
|
| 40 |
+
"\n",
|
| 41 |
+
"print(\"Libraries have been successfully installed and imported!\")\n",
|
| 42 |
+
"\n",
|
| 43 |
+
"\n",
|
| 44 |
+
"#@title Step 2: Fetching and Visualizing Bitcoin Data\n",
|
| 45 |
+
"# Let's fetch the BTC-USD (Bitcoin/US Dollar) data for the last few years.\n",
|
| 46 |
+
"start_date = '2019-01-01'\n",
|
| 47 |
+
"# We set the end date to today's date.\n",
|
| 48 |
+
"end_date = datetime.date.today().strftime(\"%Y-%m-%d\")\n",
|
| 49 |
+
"\n",
|
| 50 |
+
"try:\n",
|
| 51 |
+
" btc_data = yf.download('BTC-USD', start=start_date, end=end_date)\n",
|
| 52 |
+
" print(f\"Bitcoin data between {start_date} and {end_date} has been fetched.\")\n",
|
| 53 |
+
" print(\"First 5 rows of the dataset:\")\n",
|
| 54 |
+
" print(btc_data.head())\n",
|
| 55 |
+
"\n",
|
| 56 |
+
" # Let's plot the 'Close' prices of the dataset in a graph.\n",
|
| 57 |
+
" plt.figure(figsize=(14, 7))\n",
|
| 58 |
+
" plt.style.use('seaborn-v0_8-darkgrid')\n",
|
| 59 |
+
" plt.plot(btc_data['Close'], color='orange')\n",
|
| 60 |
+
" plt.title('Bitcoin Closing Prices (BTC-USD)', fontsize=16)\n",
|
| 61 |
+
" plt.xlabel('Date', fontsize=12)\n",
|
| 62 |
+
" plt.ylabel('Price (USD)', fontsize=12)\n",
|
| 63 |
+
" plt.legend(['Closing Price'])\n",
|
| 64 |
+
" plt.show()\n",
|
| 65 |
+
"\n",
|
| 66 |
+
"except Exception as e:\n",
|
| 67 |
+
" print(f\"An error occurred while fetching data: {e}\")\n",
|
| 68 |
+
"\n",
|
| 69 |
+
"\n",
|
| 70 |
+
"#@title Step 3: Data Preprocessing\n",
|
| 71 |
+
"# We are preparing the data to train our model.\n",
|
| 72 |
+
"\n",
|
| 73 |
+
"# We will only use the 'Close' column.\n",
|
| 74 |
+
"close_data = btc_data['Close'].values.reshape(-1, 1)\n",
|
| 75 |
+
"\n",
|
| 76 |
+
"# We are scaling the data between 0 and 1 (Normalization).\n",
|
| 77 |
+
"# Neural networks work more efficiently with data in this range.\n",
|
| 78 |
+
"scaler = MinMaxScaler(feature_range=(0, 1))\n",
|
| 79 |
+
"scaled_data = scaler.fit_transform(close_data)\n",
|
| 80 |
+
"\n",
|
| 81 |
+
"# We are splitting the dataset: 80% for training, 20% for testing.\n",
|
| 82 |
+
"training_data_len = int(np.ceil(len(scaled_data) * 0.8))\n",
|
| 83 |
+
"\n",
|
| 84 |
+
"# Let's create the training data.\n",
|
| 85 |
+
"train_data = scaled_data[0:int(training_data_len), :]\n",
|
| 86 |
+
"\n",
|
| 87 |
+
"# Let's prepare the x_train and y_train sets for training.\n",
|
| 88 |
+
"# The model will predict the next day's price by looking at the past 60 days' prices.\n",
|
| 89 |
+
"prediction_days = 60\n",
|
| 90 |
+
"x_train = []\n",
|
| 91 |
+
"y_train = []\n",
|
| 92 |
+
"\n",
|
| 93 |
+
"for i in range(prediction_days, len(train_data)):\n",
|
| 94 |
+
" x_train.append(train_data[i-prediction_days:i, 0])\n",
|
| 95 |
+
" y_train.append(train_data[i, 0])\n",
|
| 96 |
+
"\n",
|
| 97 |
+
"# Converting the lists to numpy arrays.\n",
|
| 98 |
+
"x_train, y_train = np.array(x_train), np.array(y_train)\n",
|
| 99 |
+
"\n",
|
| 100 |
+
"# Reshaping the data into a 3D format suitable for the LSTM model: [number of samples, time steps, number of features]\n",
|
| 101 |
+
"x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))\n",
|
| 102 |
+
"print(f\"Training data prepared. x_train shape: {x_train.shape}\")\n",
|
| 103 |
+
"\n",
|
| 104 |
+
"\n",
|
| 105 |
+
"#@title Step 4: Building the LSTM Model\n",
|
| 106 |
+
"# We are designing our neural network model using Keras.\n",
|
| 107 |
+
"\n",
|
| 108 |
+
"model = Sequential()\n",
|
| 109 |
+
"\n",
|
| 110 |
+
"# Layer 1: LSTM layer with 50 neurons. `return_sequences=True` because we will send data to the next LSTM layer.\n",
|
| 111 |
+
"model.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1)))\n",
|
| 112 |
+
"model.add(Dropout(0.2)) # We are deactivating 20% of the neurons to prevent overfitting.\n",
|
| 113 |
+
"\n",
|
| 114 |
+
"# Layer 2: LSTM layer with 50 neurons.\n",
|
| 115 |
+
"model.add(LSTM(units=50, return_sequences=False))\n",
|
| 116 |
+
"model.add(Dropout(0.2))\n",
|
| 117 |
+
"\n",
|
| 118 |
+
"# Output Layer: Consists of 1 neuron as we will predict a single value (the price).\n",
|
| 119 |
+
"model.add(Dense(units=1))\n",
|
| 120 |
+
"\n",
|
| 121 |
+
"# Compiling the model. 'adam' is a popular optimizer. 'mean_squared_error' is the loss function.\n",
|
| 122 |
+
"model.compile(optimizer='adam', loss='mean_squared_error')\n",
|
| 123 |
+
"\n",
|
| 124 |
+
"# Let's see the model's architecture.\n",
|
| 125 |
+
"model.summary()\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"\n",
|
| 128 |
+
"#@title Step 5: Training the Model\n",
|
| 129 |
+
"# We are training the model with the prepared data.\n",
|
| 130 |
+
"# epochs: The number of times the model will process the entire dataset.\n",
|
| 131 |
+
"# batch_size: The number of data samples the model will see in each iteration.\n",
|
| 132 |
+
"print(\"Starting model training...\")\n",
|
| 133 |
+
"history = model.fit(x_train, y_train, batch_size=32, epochs=25)\n",
|
| 134 |
+
"print(\"Model training completed!\")\n",
|
| 135 |
+
"\n",
|
| 136 |
+
"\n",
|
| 137 |
+
"#@title Step 6: Testing the Model and Evaluating Results\n",
|
| 138 |
+
"# Let's create the test data.\n",
|
| 139 |
+
"test_data = scaled_data[training_data_len - prediction_days:, :]\n",
|
| 140 |
+
"\n",
|
| 141 |
+
"# Let's prepare the x_test and y_test sets.\n",
|
| 142 |
+
"x_test = []\n",
|
| 143 |
+
"y_test = close_data[training_data_len:, :] # y_test is the original (unscaled) data.\n",
|
| 144 |
+
"\n",
|
| 145 |
+
"for i in range(prediction_days, len(test_data)):\n",
|
| 146 |
+
" x_test.append(test_data[i-prediction_days:i, 0])\n",
|
| 147 |
+
"\n",
|
| 148 |
+
"x_test = np.array(x_test)\n",
|
| 149 |
+
"x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))\n",
|
| 150 |
+
"\n",
|
| 151 |
+
"# Let's make predictions on the test data with the model.\n",
|
| 152 |
+
"predictions = model.predict(x_test)\n",
|
| 153 |
+
"\n",
|
| 154 |
+
"# Let's scale the predictions back to the original price (from 0-1 range to USD).\n",
|
| 155 |
+
"predictions = scaler.inverse_transform(predictions)\n",
|
| 156 |
+
"\n",
|
| 157 |
+
"# Let's calculate RMSE (Root Mean Squared Error) to measure the model's performance.\n",
|
| 158 |
+
"rmse = np.sqrt(np.mean(((predictions - y_test) ** 2)))\n",
|
| 159 |
+
"print(f'\\nModel Error Rate on Test Data (RMSE): {rmse:.2f} USD')\n",
|
| 160 |
+
"\n",
|
| 161 |
+
"# Let's show the actual and predicted prices on the same graph.\n",
|
| 162 |
+
"train = btc_data[:training_data_len]\n",
|
| 163 |
+
"valid = btc_data[training_data_len:].copy() # Using .copy() to avoid SettingWithCopyWarning.\n",
|
| 164 |
+
"valid.loc[:, 'Predictions'] = predictions\n",
|
| 165 |
+
"\n",
|
| 166 |
+
"plt.figure(figsize=(16, 8))\n",
|
| 167 |
+
"plt.title('Model Predictions vs Actual Prices', fontsize=16)\n",
|
| 168 |
+
"plt.xlabel('Date', fontsize=12)\n",
|
| 169 |
+
"plt.ylabel('Closing Price (USD)', fontsize=12)\n",
|
| 170 |
+
"plt.plot(train['Close'], color='blue', alpha=0.6)\n",
|
| 171 |
+
"plt.plot(valid['Close'], color='green')\n",
|
| 172 |
+
"plt.plot(valid['Predictions'], color='red', linestyle='--')\n",
|
| 173 |
+
"plt.legend(['Training Data', 'Actual Price', 'Predicted Price'], loc='upper left')\n",
|
| 174 |
+
"plt.show()\n",
|
| 175 |
+
"\n",
|
| 176 |
+
"# Let's take a closer look at the last 15 days of predictions.\n",
|
| 177 |
+
"print(\"\\nLast 15 Days of Actual and Predicted Prices:\")\n",
|
| 178 |
+
"print(valid[['Close', 'Predictions']].tail(15))\n",
|
| 179 |
+
"\n",
|
| 180 |
+
"\n",
|
| 181 |
+
"#@title Step 7: Using the Model to Predict the Future\n",
|
| 182 |
+
"\n",
|
| 183 |
+
"# Get the last 60 days of data\n",
|
| 184 |
+
"last_60_days = scaled_data[-prediction_days:]\n",
|
| 185 |
+
"X_predict = np.reshape(last_60_days, (1, prediction_days, 1))\n",
|
| 186 |
+
"\n",
|
| 187 |
+
"# Make a guess\n",
|
| 188 |
+
"predicted_price_scaled = model.predict(X_predict)\n",
|
| 189 |
+
"predicted_price = scaler.inverse_transform(predicted_price_scaled)\n",
|
| 190 |
+
"\n",
|
| 191 |
+
"# Date information\n",
|
| 192 |
+
"tomorrow = datetime.date.today() + datetime.timedelta(days=1)\n",
|
| 193 |
+
"\n",
|
| 194 |
+
"# Convert with float() to avoid errors\n",
|
| 195 |
+
"last_row = btc_data.tail(1)\n",
|
| 196 |
+
"last_index = last_row.index[0]\n",
|
| 197 |
+
"last_actual_price = float(last_row['Close'].iloc[0])\n",
|
| 198 |
+
"\n",
|
| 199 |
+
"# Print results\n",
|
| 200 |
+
"print(\"\\n\" + \"=\"*50)\n",
|
| 201 |
+
"print(\"FUTURE PREDICTION\")\n",
|
| 202 |
+
"print(\"=\"*50)\n",
|
| 203 |
+
"print(f\"Last closing price({last_index.strftime('%Y-%m-%d')}): {last_actual_price:.2f} USD\")\n",
|
| 204 |
+
"print(f\"The model {tomorrow.strftime('%Y-%m-%d')} Bitcoin price prediction for: {float(predicted_price[0][0]):.2f} USD\")\n",
|
| 205 |
+
"print(\"=\"*50)\n",
|
| 206 |
+
"print(\"\\nWARNING: This model is for educational purposes only and does not constitute financial advice.\")\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"\n"
|
| 209 |
+
]
|
| 210 |
+
}
|
| 211 |
+
]
|
| 212 |
+
}
|