Ogamon commited on
Commit
cb26ffe
·
verified ·
1 Parent(s): 12ec5b1

Initial commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +60 -0
  2. all_results.json +9 -0
  3. checkpoint-385/config.json +29 -0
  4. checkpoint-385/generation_config.json +10 -0
  5. checkpoint-385/global_step385/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-385/global_step385/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-385/global_step385/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-385/global_step385/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-385/global_step385/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-385/global_step385/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-385/global_step385/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-385/global_step385/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  13. checkpoint-385/global_step385/mp_rank_00_model_states.pt +3 -0
  14. checkpoint-385/latest +1 -0
  15. checkpoint-385/model-00001-of-00003.safetensors +3 -0
  16. checkpoint-385/model-00002-of-00003.safetensors +3 -0
  17. checkpoint-385/model-00003-of-00003.safetensors +3 -0
  18. checkpoint-385/model.safetensors.index.json +298 -0
  19. checkpoint-385/rng_state_0.pth +3 -0
  20. checkpoint-385/rng_state_1.pth +3 -0
  21. checkpoint-385/rng_state_2.pth +3 -0
  22. checkpoint-385/rng_state_3.pth +3 -0
  23. checkpoint-385/rng_state_4.pth +3 -0
  24. checkpoint-385/rng_state_5.pth +3 -0
  25. checkpoint-385/rng_state_6.pth +3 -0
  26. checkpoint-385/rng_state_7.pth +3 -0
  27. checkpoint-385/scheduler.pt +3 -0
  28. checkpoint-385/special_tokens_map.json +24 -0
  29. checkpoint-385/tokenizer.json +0 -0
  30. checkpoint-385/tokenizer.model +3 -0
  31. checkpoint-385/tokenizer_config.json +44 -0
  32. checkpoint-385/trainer_state.json +3113 -0
  33. checkpoint-385/training_args.bin +3 -0
  34. checkpoint-385/zero_to_fp32.py +604 -0
  35. config.json +29 -0
  36. generation_config.json +10 -0
  37. llamaboard_config.yaml +65 -0
  38. model-00001-of-00003.safetensors +3 -0
  39. model-00002-of-00003.safetensors +3 -0
  40. model-00003-of-00003.safetensors +3 -0
  41. model.safetensors.index.json +298 -0
  42. running_log.txt +1025 -0
  43. special_tokens_map.json +24 -0
  44. tokenizer.json +0 -0
  45. tokenizer.model +3 -0
  46. tokenizer_config.json +44 -0
  47. train_results.json +9 -0
  48. trainer_log.jsonl +386 -0
  49. trainer_state.json +3123 -0
  50. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: meta-llama/Llama-2-7b-chat-hf
4
+ tags:
5
+ - llama-factory
6
+ - full
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: train_2024-07-11-09-30-54_llama2_inst_truth
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # train_2024-07-11-09-30-54_llama2_inst_truth
17
+
18
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on the truth_train dataset.
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 5e-06
38
+ - train_batch_size: 4
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - distributed_type: multi-GPU
42
+ - num_devices: 8
43
+ - gradient_accumulation_steps: 8
44
+ - total_train_batch_size: 256
45
+ - total_eval_batch_size: 64
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: cosine
48
+ - lr_scheduler_warmup_steps: 600
49
+ - num_epochs: 5.0
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.42.3
58
+ - Pytorch 2.3.0a0+ebedce2
59
+ - Datasets 2.20.0
60
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 4.951768488745981,
3
+ "num_input_tokens_seen": 6318560,
4
+ "total_flos": 2.5049338265940787e+17,
5
+ "train_loss": 0.9364173337708336,
6
+ "train_runtime": 4331.1035,
7
+ "train_samples_per_second": 22.95,
8
+ "train_steps_per_second": 0.089
9
+ }
checkpoint-385/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 4096,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 32,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_scaling": null,
23
+ "rope_theta": 10000.0,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.42.3",
27
+ "use_cache": false,
28
+ "vocab_size": 32000
29
+ }
checkpoint-385/generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.42.3"
10
+ }
checkpoint-385/global_step385/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0a56a0147ee2f230de21a90617d17f29cfa3854d3ece1aa17c01452168b6ae2
3
+ size 10107631180
checkpoint-385/global_step385/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1baec97d069910f03c2cd8f7ed0e8288e2f344b877c35c2341011602deea07e
3
+ size 10107631372
checkpoint-385/global_step385/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c027bd10605572bcb762c678165b894437661a8fc1d46b9b677c8d69acbfcd75
3
+ size 10107631436
checkpoint-385/global_step385/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1922032b61c90ca8f523a14a692f29ad291a5adb367d483e2d2f0327528a6e5a
3
+ size 10107631372
checkpoint-385/global_step385/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cef6e0255720f677c3f9faacaac7222cbeefc2b370abfda81b88ed7c090d4c3
3
+ size 10107631436
checkpoint-385/global_step385/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19a03f553f83951055cfebaa5c83e0990bc0f762716598f5f1af07372ed4886b
3
+ size 10107631500
checkpoint-385/global_step385/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:169c99232f4320585a6a3059870e92f8026ea021b27ce332df2f5ac60541a5cd
3
+ size 10107631436
checkpoint-385/global_step385/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61434bbc88c1bd1091aece024937a9aa1b9d735a4fc36afc8ed86194f3902e27
3
+ size 10107630988
checkpoint-385/global_step385/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cab62a9512819347dc18403d19d8c7d2b2ffc247243a19a0877a3c067692559
3
+ size 13476919288
checkpoint-385/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step385
checkpoint-385/model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05797c94c439de88c420a567e2bde6c29dad762705ba7588731295691e8b1173
3
+ size 4938985352
checkpoint-385/model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0eb6354f514ef3bd5ba958aca5d01b62d4199cd3baf18bd14d43954c90217bd5
3
+ size 4947390880
checkpoint-385/model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b03f1693b214e4e07203a5b47bb63f40ed75486d4b48e985781c1da8733a4c39
3
+ size 3590488816
checkpoint-385/model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476831232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
checkpoint-385/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a0ef6f96a48e59aa52c4b471312c2a62378c19acc7ebbae839612b03a7d775a
3
+ size 15984
checkpoint-385/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab11d533c0fdad46ea8b8e295ba5fdb705e078eeb88cc28f37d82913508766e9
3
+ size 15984
checkpoint-385/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:615c168147e3465ce5bfab6da2ff4afc68566ce00ec0f0c6c9fc988038a58d0a
3
+ size 15984
checkpoint-385/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79f71e8f8674ecaef9f8cdcbf7ac457a8b8ff15b12694ba2a2fffcb4b43f0f08
3
+ size 15984
checkpoint-385/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88cf6d674dab5545c300a55135f08ca935730a3d35e2c419fb0b333f19482c19
3
+ size 15984
checkpoint-385/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2754f2cd8824702f027870d93748b3c0491b0ecd30f1e3d8e937116b2be6151f
3
+ size 15984
checkpoint-385/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1385124ac55604598f45ea6e2d141f29456647d3e7c10d12ca64ec93d312be8d
3
+ size 15984
checkpoint-385/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:416538efaec7391fa8fe782fb15146b83e5612d9e1961292c34c53e964806873
3
+ size 15984
checkpoint-385/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5773c00222bef1db5ca810359f2616a1fbd633a740c194d6a3070d6b031a0320
3
+ size 1064
checkpoint-385/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-385/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-385/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-385/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if loop.index0 == 0 and system_message is defined %}{% set content = '<<SYS>>\n' + system_message + '\n<</SYS>>\n\n' + message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '<s>' + '[INST] ' + content + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
checkpoint-385/trainer_state.json ADDED
@@ -0,0 +1,3113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 4.951768488745981,
5
+ "eval_steps": 500,
6
+ "global_step": 385,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.012861736334405145,
13
+ "grad_norm": 258.1509094238281,
14
+ "learning_rate": 8.333333333333335e-09,
15
+ "loss": 8.1083,
16
+ "num_input_tokens_seen": 16544,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.02572347266881029,
21
+ "grad_norm": 266.15087890625,
22
+ "learning_rate": 1.666666666666667e-08,
23
+ "loss": 8.1052,
24
+ "num_input_tokens_seen": 33248,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.03858520900321544,
29
+ "grad_norm": 276.69952392578125,
30
+ "learning_rate": 2.5000000000000002e-08,
31
+ "loss": 8.1366,
32
+ "num_input_tokens_seen": 49760,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.05144694533762058,
37
+ "grad_norm": 268.43804931640625,
38
+ "learning_rate": 3.333333333333334e-08,
39
+ "loss": 8.0413,
40
+ "num_input_tokens_seen": 65824,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.06430868167202572,
45
+ "grad_norm": 269.6364440917969,
46
+ "learning_rate": 4.166666666666667e-08,
47
+ "loss": 8.1055,
48
+ "num_input_tokens_seen": 82560,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.07717041800643087,
53
+ "grad_norm": 274.33538818359375,
54
+ "learning_rate": 5.0000000000000004e-08,
55
+ "loss": 7.9666,
56
+ "num_input_tokens_seen": 99808,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.09003215434083602,
61
+ "grad_norm": 266.3240051269531,
62
+ "learning_rate": 5.833333333333334e-08,
63
+ "loss": 8.0182,
64
+ "num_input_tokens_seen": 115808,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.10289389067524116,
69
+ "grad_norm": 274.253662109375,
70
+ "learning_rate": 6.666666666666668e-08,
71
+ "loss": 8.0363,
72
+ "num_input_tokens_seen": 131392,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.1157556270096463,
77
+ "grad_norm": 263.321533203125,
78
+ "learning_rate": 7.500000000000001e-08,
79
+ "loss": 8.0918,
80
+ "num_input_tokens_seen": 147840,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.12861736334405144,
85
+ "grad_norm": 266.48394775390625,
86
+ "learning_rate": 8.333333333333334e-08,
87
+ "loss": 8.0197,
88
+ "num_input_tokens_seen": 164064,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.1414790996784566,
93
+ "grad_norm": 258.7409362792969,
94
+ "learning_rate": 9.166666666666668e-08,
95
+ "loss": 7.9714,
96
+ "num_input_tokens_seen": 180704,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.15434083601286175,
101
+ "grad_norm": 271.2587585449219,
102
+ "learning_rate": 1.0000000000000001e-07,
103
+ "loss": 8.0131,
104
+ "num_input_tokens_seen": 196064,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.16720257234726688,
109
+ "grad_norm": 255.18431091308594,
110
+ "learning_rate": 1.0833333333333335e-07,
111
+ "loss": 7.9796,
112
+ "num_input_tokens_seen": 211424,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.18006430868167203,
117
+ "grad_norm": 269.7242736816406,
118
+ "learning_rate": 1.1666666666666668e-07,
119
+ "loss": 7.9999,
120
+ "num_input_tokens_seen": 228096,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.19292604501607716,
125
+ "grad_norm": 264.5142517089844,
126
+ "learning_rate": 1.2500000000000002e-07,
127
+ "loss": 8.0168,
128
+ "num_input_tokens_seen": 244416,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.2057877813504823,
133
+ "grad_norm": 267.4490661621094,
134
+ "learning_rate": 1.3333333333333336e-07,
135
+ "loss": 7.8423,
136
+ "num_input_tokens_seen": 261056,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.21864951768488747,
141
+ "grad_norm": 269.4408874511719,
142
+ "learning_rate": 1.4166666666666668e-07,
143
+ "loss": 7.9208,
144
+ "num_input_tokens_seen": 276992,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.2315112540192926,
149
+ "grad_norm": 256.512939453125,
150
+ "learning_rate": 1.5000000000000002e-07,
151
+ "loss": 7.6898,
152
+ "num_input_tokens_seen": 293536,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.24437299035369775,
157
+ "grad_norm": 265.34490966796875,
158
+ "learning_rate": 1.5833333333333336e-07,
159
+ "loss": 7.9285,
160
+ "num_input_tokens_seen": 309024,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.2572347266881029,
165
+ "grad_norm": 268.9532470703125,
166
+ "learning_rate": 1.6666666666666668e-07,
167
+ "loss": 7.8924,
168
+ "num_input_tokens_seen": 325024,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.27009646302250806,
173
+ "grad_norm": 268.1192321777344,
174
+ "learning_rate": 1.7500000000000002e-07,
175
+ "loss": 7.6173,
176
+ "num_input_tokens_seen": 341856,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.2829581993569132,
181
+ "grad_norm": 271.13006591796875,
182
+ "learning_rate": 1.8333333333333336e-07,
183
+ "loss": 7.7661,
184
+ "num_input_tokens_seen": 358848,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.2958199356913183,
189
+ "grad_norm": 260.5618591308594,
190
+ "learning_rate": 1.9166666666666668e-07,
191
+ "loss": 7.2936,
192
+ "num_input_tokens_seen": 375360,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.3086816720257235,
197
+ "grad_norm": 249.86729431152344,
198
+ "learning_rate": 2.0000000000000002e-07,
199
+ "loss": 7.3044,
200
+ "num_input_tokens_seen": 392608,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.3215434083601286,
205
+ "grad_norm": 257.8570861816406,
206
+ "learning_rate": 2.0833333333333333e-07,
207
+ "loss": 7.35,
208
+ "num_input_tokens_seen": 408800,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.33440514469453375,
213
+ "grad_norm": 246.40611267089844,
214
+ "learning_rate": 2.166666666666667e-07,
215
+ "loss": 7.1213,
216
+ "num_input_tokens_seen": 425632,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.34726688102893893,
221
+ "grad_norm": 252.2755889892578,
222
+ "learning_rate": 2.2500000000000002e-07,
223
+ "loss": 7.1363,
224
+ "num_input_tokens_seen": 441952,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.36012861736334406,
229
+ "grad_norm": 235.94859313964844,
230
+ "learning_rate": 2.3333333333333336e-07,
231
+ "loss": 6.9016,
232
+ "num_input_tokens_seen": 458080,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.3729903536977492,
237
+ "grad_norm": 243.25863647460938,
238
+ "learning_rate": 2.416666666666667e-07,
239
+ "loss": 6.9764,
240
+ "num_input_tokens_seen": 473824,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.3858520900321543,
245
+ "grad_norm": 250.39564514160156,
246
+ "learning_rate": 2.5000000000000004e-07,
247
+ "loss": 6.9005,
248
+ "num_input_tokens_seen": 490336,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.3987138263665595,
253
+ "grad_norm": 253.6007843017578,
254
+ "learning_rate": 2.5833333333333333e-07,
255
+ "loss": 6.9852,
256
+ "num_input_tokens_seen": 506976,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.4115755627009646,
261
+ "grad_norm": 155.81201171875,
262
+ "learning_rate": 2.666666666666667e-07,
263
+ "loss": 5.834,
264
+ "num_input_tokens_seen": 523520,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.42443729903536975,
269
+ "grad_norm": 124.55789947509766,
270
+ "learning_rate": 2.75e-07,
271
+ "loss": 5.5452,
272
+ "num_input_tokens_seen": 540672,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.43729903536977494,
277
+ "grad_norm": 130.3427276611328,
278
+ "learning_rate": 2.8333333333333336e-07,
279
+ "loss": 5.5189,
280
+ "num_input_tokens_seen": 557696,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.45016077170418006,
285
+ "grad_norm": 126.62003326416016,
286
+ "learning_rate": 2.916666666666667e-07,
287
+ "loss": 5.4654,
288
+ "num_input_tokens_seen": 574400,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.4630225080385852,
293
+ "grad_norm": 120.25413513183594,
294
+ "learning_rate": 3.0000000000000004e-07,
295
+ "loss": 5.3117,
296
+ "num_input_tokens_seen": 590112,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.4758842443729904,
301
+ "grad_norm": 123.52056884765625,
302
+ "learning_rate": 3.083333333333334e-07,
303
+ "loss": 5.2744,
304
+ "num_input_tokens_seen": 605920,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 0.4887459807073955,
309
+ "grad_norm": 124.25894927978516,
310
+ "learning_rate": 3.166666666666667e-07,
311
+ "loss": 5.2821,
312
+ "num_input_tokens_seen": 622208,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 0.5016077170418006,
317
+ "grad_norm": 111.38367462158203,
318
+ "learning_rate": 3.25e-07,
319
+ "loss": 5.0967,
320
+ "num_input_tokens_seen": 638464,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 0.5144694533762058,
325
+ "grad_norm": 119.48200225830078,
326
+ "learning_rate": 3.3333333333333335e-07,
327
+ "loss": 5.2167,
328
+ "num_input_tokens_seen": 654656,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 0.5273311897106109,
333
+ "grad_norm": 108.62528991699219,
334
+ "learning_rate": 3.416666666666667e-07,
335
+ "loss": 5.1517,
336
+ "num_input_tokens_seen": 671424,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 0.5401929260450161,
341
+ "grad_norm": 109.66475677490234,
342
+ "learning_rate": 3.5000000000000004e-07,
343
+ "loss": 4.6959,
344
+ "num_input_tokens_seen": 687968,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 0.5530546623794212,
349
+ "grad_norm": 107.45171356201172,
350
+ "learning_rate": 3.583333333333334e-07,
351
+ "loss": 4.1458,
352
+ "num_input_tokens_seen": 704224,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 0.5659163987138264,
357
+ "grad_norm": 102.30545806884766,
358
+ "learning_rate": 3.666666666666667e-07,
359
+ "loss": 3.6692,
360
+ "num_input_tokens_seen": 720704,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 0.5787781350482315,
365
+ "grad_norm": 96.8830795288086,
366
+ "learning_rate": 3.75e-07,
367
+ "loss": 3.3322,
368
+ "num_input_tokens_seen": 737408,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 0.5916398713826366,
373
+ "grad_norm": 102.91023254394531,
374
+ "learning_rate": 3.8333333333333335e-07,
375
+ "loss": 3.2857,
376
+ "num_input_tokens_seen": 753728,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 0.6045016077170418,
381
+ "grad_norm": 105.37537384033203,
382
+ "learning_rate": 3.9166666666666675e-07,
383
+ "loss": 3.0806,
384
+ "num_input_tokens_seen": 770080,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 0.617363344051447,
389
+ "grad_norm": 98.45983123779297,
390
+ "learning_rate": 4.0000000000000003e-07,
391
+ "loss": 2.8239,
392
+ "num_input_tokens_seen": 786912,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 0.6302250803858521,
397
+ "grad_norm": 108.93148040771484,
398
+ "learning_rate": 4.083333333333334e-07,
399
+ "loss": 2.8695,
400
+ "num_input_tokens_seen": 804192,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 0.6430868167202572,
405
+ "grad_norm": 100.31180572509766,
406
+ "learning_rate": 4.1666666666666667e-07,
407
+ "loss": 2.6218,
408
+ "num_input_tokens_seen": 820928,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 0.6559485530546624,
413
+ "grad_norm": 101.31784057617188,
414
+ "learning_rate": 4.2500000000000006e-07,
415
+ "loss": 2.3993,
416
+ "num_input_tokens_seen": 837152,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 0.6688102893890675,
421
+ "grad_norm": 101.09466552734375,
422
+ "learning_rate": 4.333333333333334e-07,
423
+ "loss": 2.2828,
424
+ "num_input_tokens_seen": 853568,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 0.6816720257234726,
429
+ "grad_norm": 99.55025482177734,
430
+ "learning_rate": 4.416666666666667e-07,
431
+ "loss": 2.2063,
432
+ "num_input_tokens_seen": 870592,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 0.6945337620578779,
437
+ "grad_norm": 104.6786117553711,
438
+ "learning_rate": 4.5000000000000003e-07,
439
+ "loss": 1.8878,
440
+ "num_input_tokens_seen": 886080,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 0.707395498392283,
445
+ "grad_norm": 106.05968475341797,
446
+ "learning_rate": 4.583333333333333e-07,
447
+ "loss": 1.5971,
448
+ "num_input_tokens_seen": 903296,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 0.7202572347266881,
453
+ "grad_norm": 93.43476867675781,
454
+ "learning_rate": 4.666666666666667e-07,
455
+ "loss": 0.9604,
456
+ "num_input_tokens_seen": 919296,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 0.7331189710610932,
461
+ "grad_norm": 60.13694763183594,
462
+ "learning_rate": 4.7500000000000006e-07,
463
+ "loss": 0.6287,
464
+ "num_input_tokens_seen": 936096,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 0.7459807073954984,
469
+ "grad_norm": 42.870086669921875,
470
+ "learning_rate": 4.833333333333334e-07,
471
+ "loss": 0.4844,
472
+ "num_input_tokens_seen": 953024,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 0.7588424437299035,
477
+ "grad_norm": 45.984989166259766,
478
+ "learning_rate": 4.916666666666667e-07,
479
+ "loss": 0.3891,
480
+ "num_input_tokens_seen": 969024,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 0.7717041800643086,
485
+ "grad_norm": 44.375484466552734,
486
+ "learning_rate": 5.000000000000001e-07,
487
+ "loss": 0.357,
488
+ "num_input_tokens_seen": 985600,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 0.7845659163987139,
493
+ "grad_norm": 28.2038516998291,
494
+ "learning_rate": 5.083333333333334e-07,
495
+ "loss": 0.2854,
496
+ "num_input_tokens_seen": 1002336,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 0.797427652733119,
501
+ "grad_norm": 13.842344284057617,
502
+ "learning_rate": 5.166666666666667e-07,
503
+ "loss": 0.2403,
504
+ "num_input_tokens_seen": 1018496,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 0.8102893890675241,
509
+ "grad_norm": 21.351642608642578,
510
+ "learning_rate": 5.250000000000001e-07,
511
+ "loss": 0.2522,
512
+ "num_input_tokens_seen": 1035552,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 0.8231511254019293,
517
+ "grad_norm": 21.38069725036621,
518
+ "learning_rate": 5.333333333333335e-07,
519
+ "loss": 0.2339,
520
+ "num_input_tokens_seen": 1051584,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 0.8360128617363344,
525
+ "grad_norm": 9.553906440734863,
526
+ "learning_rate": 5.416666666666667e-07,
527
+ "loss": 0.2214,
528
+ "num_input_tokens_seen": 1068640,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 0.8488745980707395,
533
+ "grad_norm": 6.100700855255127,
534
+ "learning_rate": 5.5e-07,
535
+ "loss": 0.1912,
536
+ "num_input_tokens_seen": 1085568,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 0.8617363344051447,
541
+ "grad_norm": 18.959564208984375,
542
+ "learning_rate": 5.583333333333333e-07,
543
+ "loss": 0.2157,
544
+ "num_input_tokens_seen": 1102784,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 0.8745980707395499,
549
+ "grad_norm": 16.303438186645508,
550
+ "learning_rate": 5.666666666666667e-07,
551
+ "loss": 0.2045,
552
+ "num_input_tokens_seen": 1118432,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 0.887459807073955,
557
+ "grad_norm": 12.491047859191895,
558
+ "learning_rate": 5.750000000000001e-07,
559
+ "loss": 0.1964,
560
+ "num_input_tokens_seen": 1135232,
561
+ "step": 69
562
+ },
563
+ {
564
+ "epoch": 0.9003215434083601,
565
+ "grad_norm": 16.655309677124023,
566
+ "learning_rate": 5.833333333333334e-07,
567
+ "loss": 0.1901,
568
+ "num_input_tokens_seen": 1150496,
569
+ "step": 70
570
+ },
571
+ {
572
+ "epoch": 0.9131832797427653,
573
+ "grad_norm": 12.015859603881836,
574
+ "learning_rate": 5.916666666666667e-07,
575
+ "loss": 0.1891,
576
+ "num_input_tokens_seen": 1166848,
577
+ "step": 71
578
+ },
579
+ {
580
+ "epoch": 0.9260450160771704,
581
+ "grad_norm": 12.255152702331543,
582
+ "learning_rate": 6.000000000000001e-07,
583
+ "loss": 0.1841,
584
+ "num_input_tokens_seen": 1183552,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 0.9389067524115756,
589
+ "grad_norm": 5.163099765777588,
590
+ "learning_rate": 6.083333333333334e-07,
591
+ "loss": 0.1803,
592
+ "num_input_tokens_seen": 1199968,
593
+ "step": 73
594
+ },
595
+ {
596
+ "epoch": 0.9517684887459807,
597
+ "grad_norm": 10.502095222473145,
598
+ "learning_rate": 6.166666666666668e-07,
599
+ "loss": 0.1657,
600
+ "num_input_tokens_seen": 1216256,
601
+ "step": 74
602
+ },
603
+ {
604
+ "epoch": 0.9646302250803859,
605
+ "grad_norm": 23.80043601989746,
606
+ "learning_rate": 6.25e-07,
607
+ "loss": 0.2157,
608
+ "num_input_tokens_seen": 1232736,
609
+ "step": 75
610
+ },
611
+ {
612
+ "epoch": 0.977491961414791,
613
+ "grad_norm": 19.7410831451416,
614
+ "learning_rate": 6.333333333333334e-07,
615
+ "loss": 0.2,
616
+ "num_input_tokens_seen": 1249248,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 0.9903536977491961,
621
+ "grad_norm": 4.730998516082764,
622
+ "learning_rate": 6.416666666666667e-07,
623
+ "loss": 0.1519,
624
+ "num_input_tokens_seen": 1265152,
625
+ "step": 77
626
+ },
627
+ {
628
+ "epoch": 1.0032154340836013,
629
+ "grad_norm": 14.700318336486816,
630
+ "learning_rate": 6.5e-07,
631
+ "loss": 0.1765,
632
+ "num_input_tokens_seen": 1282336,
633
+ "step": 78
634
+ },
635
+ {
636
+ "epoch": 1.0160771704180065,
637
+ "grad_norm": 18.6468448638916,
638
+ "learning_rate": 6.583333333333333e-07,
639
+ "loss": 0.1907,
640
+ "num_input_tokens_seen": 1299168,
641
+ "step": 79
642
+ },
643
+ {
644
+ "epoch": 1.0289389067524115,
645
+ "grad_norm": 11.44071102142334,
646
+ "learning_rate": 6.666666666666667e-07,
647
+ "loss": 0.1593,
648
+ "num_input_tokens_seen": 1314816,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 1.0418006430868167,
653
+ "grad_norm": 3.6438238620758057,
654
+ "learning_rate": 6.750000000000001e-07,
655
+ "loss": 0.1659,
656
+ "num_input_tokens_seen": 1331168,
657
+ "step": 81
658
+ },
659
+ {
660
+ "epoch": 1.0546623794212218,
661
+ "grad_norm": 3.6471991539001465,
662
+ "learning_rate": 6.833333333333334e-07,
663
+ "loss": 0.1619,
664
+ "num_input_tokens_seen": 1347968,
665
+ "step": 82
666
+ },
667
+ {
668
+ "epoch": 1.067524115755627,
669
+ "grad_norm": 4.136232376098633,
670
+ "learning_rate": 6.916666666666668e-07,
671
+ "loss": 0.168,
672
+ "num_input_tokens_seen": 1363872,
673
+ "step": 83
674
+ },
675
+ {
676
+ "epoch": 1.0803858520900322,
677
+ "grad_norm": 4.436996936798096,
678
+ "learning_rate": 7.000000000000001e-07,
679
+ "loss": 0.1627,
680
+ "num_input_tokens_seen": 1380896,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 1.0932475884244373,
685
+ "grad_norm": 10.516170501708984,
686
+ "learning_rate": 7.083333333333334e-07,
687
+ "loss": 0.1421,
688
+ "num_input_tokens_seen": 1397792,
689
+ "step": 85
690
+ },
691
+ {
692
+ "epoch": 1.1061093247588425,
693
+ "grad_norm": 15.584237098693848,
694
+ "learning_rate": 7.166666666666668e-07,
695
+ "loss": 0.1517,
696
+ "num_input_tokens_seen": 1414272,
697
+ "step": 86
698
+ },
699
+ {
700
+ "epoch": 1.1189710610932475,
701
+ "grad_norm": 8.475227355957031,
702
+ "learning_rate": 7.25e-07,
703
+ "loss": 0.1519,
704
+ "num_input_tokens_seen": 1429696,
705
+ "step": 87
706
+ },
707
+ {
708
+ "epoch": 1.1318327974276527,
709
+ "grad_norm": 5.768808841705322,
710
+ "learning_rate": 7.333333333333334e-07,
711
+ "loss": 0.128,
712
+ "num_input_tokens_seen": 1446720,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 1.144694533762058,
717
+ "grad_norm": 15.064901351928711,
718
+ "learning_rate": 7.416666666666668e-07,
719
+ "loss": 0.1481,
720
+ "num_input_tokens_seen": 1463008,
721
+ "step": 89
722
+ },
723
+ {
724
+ "epoch": 1.157556270096463,
725
+ "grad_norm": 17.70471954345703,
726
+ "learning_rate": 7.5e-07,
727
+ "loss": 0.1636,
728
+ "num_input_tokens_seen": 1480096,
729
+ "step": 90
730
+ },
731
+ {
732
+ "epoch": 1.1704180064308682,
733
+ "grad_norm": 5.037917613983154,
734
+ "learning_rate": 7.583333333333334e-07,
735
+ "loss": 0.1443,
736
+ "num_input_tokens_seen": 1497024,
737
+ "step": 91
738
+ },
739
+ {
740
+ "epoch": 1.1832797427652733,
741
+ "grad_norm": 17.397666931152344,
742
+ "learning_rate": 7.666666666666667e-07,
743
+ "loss": 0.1592,
744
+ "num_input_tokens_seen": 1513792,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 1.1961414790996785,
749
+ "grad_norm": 18.808683395385742,
750
+ "learning_rate": 7.750000000000001e-07,
751
+ "loss": 0.1744,
752
+ "num_input_tokens_seen": 1529696,
753
+ "step": 93
754
+ },
755
+ {
756
+ "epoch": 1.2090032154340835,
757
+ "grad_norm": 15.173974990844727,
758
+ "learning_rate": 7.833333333333335e-07,
759
+ "loss": 0.1615,
760
+ "num_input_tokens_seen": 1546400,
761
+ "step": 94
762
+ },
763
+ {
764
+ "epoch": 1.2218649517684887,
765
+ "grad_norm": 3.6459403038024902,
766
+ "learning_rate": 7.916666666666667e-07,
767
+ "loss": 0.1466,
768
+ "num_input_tokens_seen": 1564448,
769
+ "step": 95
770
+ },
771
+ {
772
+ "epoch": 1.234726688102894,
773
+ "grad_norm": 4.910373210906982,
774
+ "learning_rate": 8.000000000000001e-07,
775
+ "loss": 0.1333,
776
+ "num_input_tokens_seen": 1580736,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 1.247588424437299,
781
+ "grad_norm": 11.399758338928223,
782
+ "learning_rate": 8.083333333333334e-07,
783
+ "loss": 0.1475,
784
+ "num_input_tokens_seen": 1596928,
785
+ "step": 97
786
+ },
787
+ {
788
+ "epoch": 1.2604501607717042,
789
+ "grad_norm": 4.701439380645752,
790
+ "learning_rate": 8.166666666666668e-07,
791
+ "loss": 0.142,
792
+ "num_input_tokens_seen": 1613728,
793
+ "step": 98
794
+ },
795
+ {
796
+ "epoch": 1.2733118971061093,
797
+ "grad_norm": 7.250323295593262,
798
+ "learning_rate": 8.250000000000001e-07,
799
+ "loss": 0.148,
800
+ "num_input_tokens_seen": 1630112,
801
+ "step": 99
802
+ },
803
+ {
804
+ "epoch": 1.2861736334405145,
805
+ "grad_norm": 17.24268341064453,
806
+ "learning_rate": 8.333333333333333e-07,
807
+ "loss": 0.1539,
808
+ "num_input_tokens_seen": 1645248,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 1.2990353697749195,
813
+ "grad_norm": 4.017528057098389,
814
+ "learning_rate": 8.416666666666667e-07,
815
+ "loss": 0.1496,
816
+ "num_input_tokens_seen": 1662400,
817
+ "step": 101
818
+ },
819
+ {
820
+ "epoch": 1.3118971061093248,
821
+ "grad_norm": 10.226727485656738,
822
+ "learning_rate": 8.500000000000001e-07,
823
+ "loss": 0.1563,
824
+ "num_input_tokens_seen": 1678528,
825
+ "step": 102
826
+ },
827
+ {
828
+ "epoch": 1.32475884244373,
829
+ "grad_norm": 4.085242748260498,
830
+ "learning_rate": 8.583333333333334e-07,
831
+ "loss": 0.1295,
832
+ "num_input_tokens_seen": 1694432,
833
+ "step": 103
834
+ },
835
+ {
836
+ "epoch": 1.337620578778135,
837
+ "grad_norm": 9.983370780944824,
838
+ "learning_rate": 8.666666666666668e-07,
839
+ "loss": 0.1353,
840
+ "num_input_tokens_seen": 1710624,
841
+ "step": 104
842
+ },
843
+ {
844
+ "epoch": 1.3504823151125402,
845
+ "grad_norm": 6.53292179107666,
846
+ "learning_rate": 8.75e-07,
847
+ "loss": 0.1376,
848
+ "num_input_tokens_seen": 1726560,
849
+ "step": 105
850
+ },
851
+ {
852
+ "epoch": 1.3633440514469453,
853
+ "grad_norm": 4.412125587463379,
854
+ "learning_rate": 8.833333333333334e-07,
855
+ "loss": 0.1313,
856
+ "num_input_tokens_seen": 1742912,
857
+ "step": 106
858
+ },
859
+ {
860
+ "epoch": 1.3762057877813505,
861
+ "grad_norm": 13.620604515075684,
862
+ "learning_rate": 8.916666666666668e-07,
863
+ "loss": 0.1367,
864
+ "num_input_tokens_seen": 1758688,
865
+ "step": 107
866
+ },
867
+ {
868
+ "epoch": 1.3890675241157555,
869
+ "grad_norm": 6.362453937530518,
870
+ "learning_rate": 9.000000000000001e-07,
871
+ "loss": 0.135,
872
+ "num_input_tokens_seen": 1775264,
873
+ "step": 108
874
+ },
875
+ {
876
+ "epoch": 1.4019292604501608,
877
+ "grad_norm": 3.8915514945983887,
878
+ "learning_rate": 9.083333333333335e-07,
879
+ "loss": 0.1212,
880
+ "num_input_tokens_seen": 1791904,
881
+ "step": 109
882
+ },
883
+ {
884
+ "epoch": 1.414790996784566,
885
+ "grad_norm": 9.137332916259766,
886
+ "learning_rate": 9.166666666666666e-07,
887
+ "loss": 0.1355,
888
+ "num_input_tokens_seen": 1808736,
889
+ "step": 110
890
+ },
891
+ {
892
+ "epoch": 1.427652733118971,
893
+ "grad_norm": 4.745510578155518,
894
+ "learning_rate": 9.25e-07,
895
+ "loss": 0.1439,
896
+ "num_input_tokens_seen": 1825504,
897
+ "step": 111
898
+ },
899
+ {
900
+ "epoch": 1.4405144694533762,
901
+ "grad_norm": 10.531625747680664,
902
+ "learning_rate": 9.333333333333334e-07,
903
+ "loss": 0.1323,
904
+ "num_input_tokens_seen": 1842080,
905
+ "step": 112
906
+ },
907
+ {
908
+ "epoch": 1.4533762057877815,
909
+ "grad_norm": 11.189078330993652,
910
+ "learning_rate": 9.416666666666667e-07,
911
+ "loss": 0.1376,
912
+ "num_input_tokens_seen": 1858432,
913
+ "step": 113
914
+ },
915
+ {
916
+ "epoch": 1.4662379421221865,
917
+ "grad_norm": 5.619433879852295,
918
+ "learning_rate": 9.500000000000001e-07,
919
+ "loss": 0.1191,
920
+ "num_input_tokens_seen": 1874304,
921
+ "step": 114
922
+ },
923
+ {
924
+ "epoch": 1.4790996784565915,
925
+ "grad_norm": 4.590907096862793,
926
+ "learning_rate": 9.583333333333334e-07,
927
+ "loss": 0.1045,
928
+ "num_input_tokens_seen": 1890144,
929
+ "step": 115
930
+ },
931
+ {
932
+ "epoch": 1.4919614147909968,
933
+ "grad_norm": 4.900210380554199,
934
+ "learning_rate": 9.666666666666668e-07,
935
+ "loss": 0.1467,
936
+ "num_input_tokens_seen": 1905664,
937
+ "step": 116
938
+ },
939
+ {
940
+ "epoch": 1.504823151125402,
941
+ "grad_norm": 3.0244414806365967,
942
+ "learning_rate": 9.750000000000002e-07,
943
+ "loss": 0.1142,
944
+ "num_input_tokens_seen": 1922240,
945
+ "step": 117
946
+ },
947
+ {
948
+ "epoch": 1.517684887459807,
949
+ "grad_norm": 2.886939287185669,
950
+ "learning_rate": 9.833333333333334e-07,
951
+ "loss": 0.1107,
952
+ "num_input_tokens_seen": 1938240,
953
+ "step": 118
954
+ },
955
+ {
956
+ "epoch": 1.5305466237942122,
957
+ "grad_norm": 6.869494438171387,
958
+ "learning_rate": 9.916666666666668e-07,
959
+ "loss": 0.146,
960
+ "num_input_tokens_seen": 1955008,
961
+ "step": 119
962
+ },
963
+ {
964
+ "epoch": 1.5434083601286175,
965
+ "grad_norm": 16.34566879272461,
966
+ "learning_rate": 1.0000000000000002e-06,
967
+ "loss": 0.1533,
968
+ "num_input_tokens_seen": 1971456,
969
+ "step": 120
970
+ },
971
+ {
972
+ "epoch": 1.5562700964630225,
973
+ "grad_norm": 15.347967147827148,
974
+ "learning_rate": 1.0083333333333333e-06,
975
+ "loss": 0.1315,
976
+ "num_input_tokens_seen": 1987552,
977
+ "step": 121
978
+ },
979
+ {
980
+ "epoch": 1.5691318327974275,
981
+ "grad_norm": 4.213266372680664,
982
+ "learning_rate": 1.0166666666666667e-06,
983
+ "loss": 0.1197,
984
+ "num_input_tokens_seen": 2004192,
985
+ "step": 122
986
+ },
987
+ {
988
+ "epoch": 1.5819935691318328,
989
+ "grad_norm": 14.208905220031738,
990
+ "learning_rate": 1.025e-06,
991
+ "loss": 0.1228,
992
+ "num_input_tokens_seen": 2020832,
993
+ "step": 123
994
+ },
995
+ {
996
+ "epoch": 1.594855305466238,
997
+ "grad_norm": 17.388845443725586,
998
+ "learning_rate": 1.0333333333333333e-06,
999
+ "loss": 0.1273,
1000
+ "num_input_tokens_seen": 2037312,
1001
+ "step": 124
1002
+ },
1003
+ {
1004
+ "epoch": 1.607717041800643,
1005
+ "grad_norm": 14.383207321166992,
1006
+ "learning_rate": 1.0416666666666667e-06,
1007
+ "loss": 0.141,
1008
+ "num_input_tokens_seen": 2054304,
1009
+ "step": 125
1010
+ },
1011
+ {
1012
+ "epoch": 1.6205787781350482,
1013
+ "grad_norm": 6.2650370597839355,
1014
+ "learning_rate": 1.0500000000000001e-06,
1015
+ "loss": 0.1315,
1016
+ "num_input_tokens_seen": 2071136,
1017
+ "step": 126
1018
+ },
1019
+ {
1020
+ "epoch": 1.6334405144694535,
1021
+ "grad_norm": 8.396490097045898,
1022
+ "learning_rate": 1.0583333333333335e-06,
1023
+ "loss": 0.1136,
1024
+ "num_input_tokens_seen": 2088064,
1025
+ "step": 127
1026
+ },
1027
+ {
1028
+ "epoch": 1.6463022508038585,
1029
+ "grad_norm": 4.598783016204834,
1030
+ "learning_rate": 1.066666666666667e-06,
1031
+ "loss": 0.1013,
1032
+ "num_input_tokens_seen": 2105120,
1033
+ "step": 128
1034
+ },
1035
+ {
1036
+ "epoch": 1.6591639871382635,
1037
+ "grad_norm": 9.912994384765625,
1038
+ "learning_rate": 1.075e-06,
1039
+ "loss": 0.1056,
1040
+ "num_input_tokens_seen": 2120992,
1041
+ "step": 129
1042
+ },
1043
+ {
1044
+ "epoch": 1.6720257234726688,
1045
+ "grad_norm": 7.70595645904541,
1046
+ "learning_rate": 1.0833333333333335e-06,
1047
+ "loss": 0.1071,
1048
+ "num_input_tokens_seen": 2137984,
1049
+ "step": 130
1050
+ },
1051
+ {
1052
+ "epoch": 1.684887459807074,
1053
+ "grad_norm": 6.183793544769287,
1054
+ "learning_rate": 1.0916666666666667e-06,
1055
+ "loss": 0.1357,
1056
+ "num_input_tokens_seen": 2154240,
1057
+ "step": 131
1058
+ },
1059
+ {
1060
+ "epoch": 1.697749196141479,
1061
+ "grad_norm": 6.863802909851074,
1062
+ "learning_rate": 1.1e-06,
1063
+ "loss": 0.1181,
1064
+ "num_input_tokens_seen": 2170464,
1065
+ "step": 132
1066
+ },
1067
+ {
1068
+ "epoch": 1.7106109324758842,
1069
+ "grad_norm": 2.7540361881256104,
1070
+ "learning_rate": 1.1083333333333335e-06,
1071
+ "loss": 0.0826,
1072
+ "num_input_tokens_seen": 2187008,
1073
+ "step": 133
1074
+ },
1075
+ {
1076
+ "epoch": 1.7234726688102895,
1077
+ "grad_norm": 12.97872257232666,
1078
+ "learning_rate": 1.1166666666666666e-06,
1079
+ "loss": 0.1221,
1080
+ "num_input_tokens_seen": 2202880,
1081
+ "step": 134
1082
+ },
1083
+ {
1084
+ "epoch": 1.7363344051446945,
1085
+ "grad_norm": 4.774652004241943,
1086
+ "learning_rate": 1.125e-06,
1087
+ "loss": 0.1021,
1088
+ "num_input_tokens_seen": 2219744,
1089
+ "step": 135
1090
+ },
1091
+ {
1092
+ "epoch": 1.7491961414790995,
1093
+ "grad_norm": 3.889441967010498,
1094
+ "learning_rate": 1.1333333333333334e-06,
1095
+ "loss": 0.098,
1096
+ "num_input_tokens_seen": 2236064,
1097
+ "step": 136
1098
+ },
1099
+ {
1100
+ "epoch": 1.762057877813505,
1101
+ "grad_norm": 5.095253944396973,
1102
+ "learning_rate": 1.1416666666666668e-06,
1103
+ "loss": 0.1085,
1104
+ "num_input_tokens_seen": 2252832,
1105
+ "step": 137
1106
+ },
1107
+ {
1108
+ "epoch": 1.77491961414791,
1109
+ "grad_norm": 5.206950664520264,
1110
+ "learning_rate": 1.1500000000000002e-06,
1111
+ "loss": 0.1038,
1112
+ "num_input_tokens_seen": 2268704,
1113
+ "step": 138
1114
+ },
1115
+ {
1116
+ "epoch": 1.787781350482315,
1117
+ "grad_norm": 10.339069366455078,
1118
+ "learning_rate": 1.1583333333333334e-06,
1119
+ "loss": 0.1081,
1120
+ "num_input_tokens_seen": 2285280,
1121
+ "step": 139
1122
+ },
1123
+ {
1124
+ "epoch": 1.8006430868167203,
1125
+ "grad_norm": 8.227212905883789,
1126
+ "learning_rate": 1.1666666666666668e-06,
1127
+ "loss": 0.1287,
1128
+ "num_input_tokens_seen": 2301600,
1129
+ "step": 140
1130
+ },
1131
+ {
1132
+ "epoch": 1.8135048231511255,
1133
+ "grad_norm": 6.72472620010376,
1134
+ "learning_rate": 1.175e-06,
1135
+ "loss": 0.1068,
1136
+ "num_input_tokens_seen": 2318048,
1137
+ "step": 141
1138
+ },
1139
+ {
1140
+ "epoch": 1.8263665594855305,
1141
+ "grad_norm": 10.02261734008789,
1142
+ "learning_rate": 1.1833333333333334e-06,
1143
+ "loss": 0.1202,
1144
+ "num_input_tokens_seen": 2333728,
1145
+ "step": 142
1146
+ },
1147
+ {
1148
+ "epoch": 1.8392282958199357,
1149
+ "grad_norm": 10.770837783813477,
1150
+ "learning_rate": 1.1916666666666668e-06,
1151
+ "loss": 0.119,
1152
+ "num_input_tokens_seen": 2349760,
1153
+ "step": 143
1154
+ },
1155
+ {
1156
+ "epoch": 1.852090032154341,
1157
+ "grad_norm": 6.685535907745361,
1158
+ "learning_rate": 1.2000000000000002e-06,
1159
+ "loss": 0.1273,
1160
+ "num_input_tokens_seen": 2366336,
1161
+ "step": 144
1162
+ },
1163
+ {
1164
+ "epoch": 1.864951768488746,
1165
+ "grad_norm": 4.437434673309326,
1166
+ "learning_rate": 1.2083333333333333e-06,
1167
+ "loss": 0.1024,
1168
+ "num_input_tokens_seen": 2382016,
1169
+ "step": 145
1170
+ },
1171
+ {
1172
+ "epoch": 1.877813504823151,
1173
+ "grad_norm": 11.942359924316406,
1174
+ "learning_rate": 1.2166666666666667e-06,
1175
+ "loss": 0.1143,
1176
+ "num_input_tokens_seen": 2398176,
1177
+ "step": 146
1178
+ },
1179
+ {
1180
+ "epoch": 1.8906752411575563,
1181
+ "grad_norm": 6.428237438201904,
1182
+ "learning_rate": 1.2250000000000001e-06,
1183
+ "loss": 0.1229,
1184
+ "num_input_tokens_seen": 2414656,
1185
+ "step": 147
1186
+ },
1187
+ {
1188
+ "epoch": 1.9035369774919615,
1189
+ "grad_norm": 7.896732807159424,
1190
+ "learning_rate": 1.2333333333333335e-06,
1191
+ "loss": 0.0964,
1192
+ "num_input_tokens_seen": 2430400,
1193
+ "step": 148
1194
+ },
1195
+ {
1196
+ "epoch": 1.9163987138263665,
1197
+ "grad_norm": 12.14167594909668,
1198
+ "learning_rate": 1.2416666666666667e-06,
1199
+ "loss": 0.1132,
1200
+ "num_input_tokens_seen": 2447520,
1201
+ "step": 149
1202
+ },
1203
+ {
1204
+ "epoch": 1.9292604501607717,
1205
+ "grad_norm": 3.0627174377441406,
1206
+ "learning_rate": 1.25e-06,
1207
+ "loss": 0.0734,
1208
+ "num_input_tokens_seen": 2463872,
1209
+ "step": 150
1210
+ },
1211
+ {
1212
+ "epoch": 1.942122186495177,
1213
+ "grad_norm": 3.2333552837371826,
1214
+ "learning_rate": 1.2583333333333333e-06,
1215
+ "loss": 0.0939,
1216
+ "num_input_tokens_seen": 2481344,
1217
+ "step": 151
1218
+ },
1219
+ {
1220
+ "epoch": 1.954983922829582,
1221
+ "grad_norm": 14.160690307617188,
1222
+ "learning_rate": 1.2666666666666669e-06,
1223
+ "loss": 0.1143,
1224
+ "num_input_tokens_seen": 2497632,
1225
+ "step": 152
1226
+ },
1227
+ {
1228
+ "epoch": 1.967845659163987,
1229
+ "grad_norm": 5.38826322555542,
1230
+ "learning_rate": 1.275e-06,
1231
+ "loss": 0.1114,
1232
+ "num_input_tokens_seen": 2513024,
1233
+ "step": 153
1234
+ },
1235
+ {
1236
+ "epoch": 1.9807073954983923,
1237
+ "grad_norm": 3.4523892402648926,
1238
+ "learning_rate": 1.2833333333333335e-06,
1239
+ "loss": 0.0948,
1240
+ "num_input_tokens_seen": 2528800,
1241
+ "step": 154
1242
+ },
1243
+ {
1244
+ "epoch": 1.9935691318327975,
1245
+ "grad_norm": 6.9574127197265625,
1246
+ "learning_rate": 1.2916666666666669e-06,
1247
+ "loss": 0.0805,
1248
+ "num_input_tokens_seen": 2545696,
1249
+ "step": 155
1250
+ },
1251
+ {
1252
+ "epoch": 2.0064308681672025,
1253
+ "grad_norm": 7.220541954040527,
1254
+ "learning_rate": 1.3e-06,
1255
+ "loss": 0.1001,
1256
+ "num_input_tokens_seen": 2561728,
1257
+ "step": 156
1258
+ },
1259
+ {
1260
+ "epoch": 2.0192926045016075,
1261
+ "grad_norm": 6.95176887512207,
1262
+ "learning_rate": 1.3083333333333334e-06,
1263
+ "loss": 0.1002,
1264
+ "num_input_tokens_seen": 2577856,
1265
+ "step": 157
1266
+ },
1267
+ {
1268
+ "epoch": 2.032154340836013,
1269
+ "grad_norm": 10.752556800842285,
1270
+ "learning_rate": 1.3166666666666666e-06,
1271
+ "loss": 0.0847,
1272
+ "num_input_tokens_seen": 2593984,
1273
+ "step": 158
1274
+ },
1275
+ {
1276
+ "epoch": 2.045016077170418,
1277
+ "grad_norm": 6.510659217834473,
1278
+ "learning_rate": 1.3250000000000002e-06,
1279
+ "loss": 0.071,
1280
+ "num_input_tokens_seen": 2610720,
1281
+ "step": 159
1282
+ },
1283
+ {
1284
+ "epoch": 2.057877813504823,
1285
+ "grad_norm": 3.897312641143799,
1286
+ "learning_rate": 1.3333333333333334e-06,
1287
+ "loss": 0.0791,
1288
+ "num_input_tokens_seen": 2626400,
1289
+ "step": 160
1290
+ },
1291
+ {
1292
+ "epoch": 2.0707395498392285,
1293
+ "grad_norm": 2.8594729900360107,
1294
+ "learning_rate": 1.3416666666666666e-06,
1295
+ "loss": 0.0769,
1296
+ "num_input_tokens_seen": 2642496,
1297
+ "step": 161
1298
+ },
1299
+ {
1300
+ "epoch": 2.0836012861736335,
1301
+ "grad_norm": 8.970246315002441,
1302
+ "learning_rate": 1.3500000000000002e-06,
1303
+ "loss": 0.0916,
1304
+ "num_input_tokens_seen": 2658144,
1305
+ "step": 162
1306
+ },
1307
+ {
1308
+ "epoch": 2.0964630225080385,
1309
+ "grad_norm": 2.965878963470459,
1310
+ "learning_rate": 1.3583333333333334e-06,
1311
+ "loss": 0.0584,
1312
+ "num_input_tokens_seen": 2674560,
1313
+ "step": 163
1314
+ },
1315
+ {
1316
+ "epoch": 2.1093247588424435,
1317
+ "grad_norm": 6.79748010635376,
1318
+ "learning_rate": 1.3666666666666668e-06,
1319
+ "loss": 0.0811,
1320
+ "num_input_tokens_seen": 2690688,
1321
+ "step": 164
1322
+ },
1323
+ {
1324
+ "epoch": 2.122186495176849,
1325
+ "grad_norm": 10.366084098815918,
1326
+ "learning_rate": 1.3750000000000002e-06,
1327
+ "loss": 0.0663,
1328
+ "num_input_tokens_seen": 2706720,
1329
+ "step": 165
1330
+ },
1331
+ {
1332
+ "epoch": 2.135048231511254,
1333
+ "grad_norm": 8.038703918457031,
1334
+ "learning_rate": 1.3833333333333336e-06,
1335
+ "loss": 0.0802,
1336
+ "num_input_tokens_seen": 2723008,
1337
+ "step": 166
1338
+ },
1339
+ {
1340
+ "epoch": 2.147909967845659,
1341
+ "grad_norm": 6.01867151260376,
1342
+ "learning_rate": 1.3916666666666668e-06,
1343
+ "loss": 0.0587,
1344
+ "num_input_tokens_seen": 2738784,
1345
+ "step": 167
1346
+ },
1347
+ {
1348
+ "epoch": 2.1607717041800645,
1349
+ "grad_norm": 5.053437232971191,
1350
+ "learning_rate": 1.4000000000000001e-06,
1351
+ "loss": 0.0953,
1352
+ "num_input_tokens_seen": 2755072,
1353
+ "step": 168
1354
+ },
1355
+ {
1356
+ "epoch": 2.1736334405144695,
1357
+ "grad_norm": 7.119932174682617,
1358
+ "learning_rate": 1.4083333333333335e-06,
1359
+ "loss": 0.0795,
1360
+ "num_input_tokens_seen": 2771296,
1361
+ "step": 169
1362
+ },
1363
+ {
1364
+ "epoch": 2.1864951768488745,
1365
+ "grad_norm": 4.602327346801758,
1366
+ "learning_rate": 1.4166666666666667e-06,
1367
+ "loss": 0.1015,
1368
+ "num_input_tokens_seen": 2787712,
1369
+ "step": 170
1370
+ },
1371
+ {
1372
+ "epoch": 2.19935691318328,
1373
+ "grad_norm": 2.7282161712646484,
1374
+ "learning_rate": 1.425e-06,
1375
+ "loss": 0.0614,
1376
+ "num_input_tokens_seen": 2803552,
1377
+ "step": 171
1378
+ },
1379
+ {
1380
+ "epoch": 2.212218649517685,
1381
+ "grad_norm": 4.694391250610352,
1382
+ "learning_rate": 1.4333333333333335e-06,
1383
+ "loss": 0.0753,
1384
+ "num_input_tokens_seen": 2820352,
1385
+ "step": 172
1386
+ },
1387
+ {
1388
+ "epoch": 2.22508038585209,
1389
+ "grad_norm": 3.231022357940674,
1390
+ "learning_rate": 1.4416666666666667e-06,
1391
+ "loss": 0.08,
1392
+ "num_input_tokens_seen": 2837696,
1393
+ "step": 173
1394
+ },
1395
+ {
1396
+ "epoch": 2.237942122186495,
1397
+ "grad_norm": 4.522435188293457,
1398
+ "learning_rate": 1.45e-06,
1399
+ "loss": 0.0603,
1400
+ "num_input_tokens_seen": 2854272,
1401
+ "step": 174
1402
+ },
1403
+ {
1404
+ "epoch": 2.2508038585209005,
1405
+ "grad_norm": 8.292889595031738,
1406
+ "learning_rate": 1.4583333333333335e-06,
1407
+ "loss": 0.0874,
1408
+ "num_input_tokens_seen": 2870464,
1409
+ "step": 175
1410
+ },
1411
+ {
1412
+ "epoch": 2.2636655948553055,
1413
+ "grad_norm": 3.635068655014038,
1414
+ "learning_rate": 1.4666666666666669e-06,
1415
+ "loss": 0.0833,
1416
+ "num_input_tokens_seen": 2886880,
1417
+ "step": 176
1418
+ },
1419
+ {
1420
+ "epoch": 2.2765273311897105,
1421
+ "grad_norm": 3.8000781536102295,
1422
+ "learning_rate": 1.475e-06,
1423
+ "loss": 0.0676,
1424
+ "num_input_tokens_seen": 2902880,
1425
+ "step": 177
1426
+ },
1427
+ {
1428
+ "epoch": 2.289389067524116,
1429
+ "grad_norm": 9.920318603515625,
1430
+ "learning_rate": 1.4833333333333337e-06,
1431
+ "loss": 0.086,
1432
+ "num_input_tokens_seen": 2919584,
1433
+ "step": 178
1434
+ },
1435
+ {
1436
+ "epoch": 2.302250803858521,
1437
+ "grad_norm": 3.8999791145324707,
1438
+ "learning_rate": 1.4916666666666669e-06,
1439
+ "loss": 0.0662,
1440
+ "num_input_tokens_seen": 2935136,
1441
+ "step": 179
1442
+ },
1443
+ {
1444
+ "epoch": 2.315112540192926,
1445
+ "grad_norm": 6.011571407318115,
1446
+ "learning_rate": 1.5e-06,
1447
+ "loss": 0.1028,
1448
+ "num_input_tokens_seen": 2951680,
1449
+ "step": 180
1450
+ },
1451
+ {
1452
+ "epoch": 2.327974276527331,
1453
+ "grad_norm": 5.94368839263916,
1454
+ "learning_rate": 1.5083333333333336e-06,
1455
+ "loss": 0.0882,
1456
+ "num_input_tokens_seen": 2967712,
1457
+ "step": 181
1458
+ },
1459
+ {
1460
+ "epoch": 2.3408360128617365,
1461
+ "grad_norm": 3.9432876110076904,
1462
+ "learning_rate": 1.5166666666666668e-06,
1463
+ "loss": 0.0806,
1464
+ "num_input_tokens_seen": 2984224,
1465
+ "step": 182
1466
+ },
1467
+ {
1468
+ "epoch": 2.3536977491961415,
1469
+ "grad_norm": 18.06218147277832,
1470
+ "learning_rate": 1.525e-06,
1471
+ "loss": 0.1108,
1472
+ "num_input_tokens_seen": 2999904,
1473
+ "step": 183
1474
+ },
1475
+ {
1476
+ "epoch": 2.3665594855305465,
1477
+ "grad_norm": 5.799235820770264,
1478
+ "learning_rate": 1.5333333333333334e-06,
1479
+ "loss": 0.0687,
1480
+ "num_input_tokens_seen": 3017376,
1481
+ "step": 184
1482
+ },
1483
+ {
1484
+ "epoch": 2.379421221864952,
1485
+ "grad_norm": 4.252455711364746,
1486
+ "learning_rate": 1.5416666666666668e-06,
1487
+ "loss": 0.0736,
1488
+ "num_input_tokens_seen": 3033728,
1489
+ "step": 185
1490
+ },
1491
+ {
1492
+ "epoch": 2.392282958199357,
1493
+ "grad_norm": 6.050833702087402,
1494
+ "learning_rate": 1.5500000000000002e-06,
1495
+ "loss": 0.0779,
1496
+ "num_input_tokens_seen": 3050176,
1497
+ "step": 186
1498
+ },
1499
+ {
1500
+ "epoch": 2.405144694533762,
1501
+ "grad_norm": 8.076692581176758,
1502
+ "learning_rate": 1.5583333333333334e-06,
1503
+ "loss": 0.0709,
1504
+ "num_input_tokens_seen": 3066400,
1505
+ "step": 187
1506
+ },
1507
+ {
1508
+ "epoch": 2.418006430868167,
1509
+ "grad_norm": 7.372990608215332,
1510
+ "learning_rate": 1.566666666666667e-06,
1511
+ "loss": 0.0652,
1512
+ "num_input_tokens_seen": 3083104,
1513
+ "step": 188
1514
+ },
1515
+ {
1516
+ "epoch": 2.4308681672025725,
1517
+ "grad_norm": 14.172348022460938,
1518
+ "learning_rate": 1.5750000000000002e-06,
1519
+ "loss": 0.1095,
1520
+ "num_input_tokens_seen": 3100000,
1521
+ "step": 189
1522
+ },
1523
+ {
1524
+ "epoch": 2.4437299035369775,
1525
+ "grad_norm": 4.726587772369385,
1526
+ "learning_rate": 1.5833333333333333e-06,
1527
+ "loss": 0.0618,
1528
+ "num_input_tokens_seen": 3116800,
1529
+ "step": 190
1530
+ },
1531
+ {
1532
+ "epoch": 2.4565916398713825,
1533
+ "grad_norm": 10.408024787902832,
1534
+ "learning_rate": 1.591666666666667e-06,
1535
+ "loss": 0.0666,
1536
+ "num_input_tokens_seen": 3133568,
1537
+ "step": 191
1538
+ },
1539
+ {
1540
+ "epoch": 2.469453376205788,
1541
+ "grad_norm": 7.295907497406006,
1542
+ "learning_rate": 1.6000000000000001e-06,
1543
+ "loss": 0.0573,
1544
+ "num_input_tokens_seen": 3150048,
1545
+ "step": 192
1546
+ },
1547
+ {
1548
+ "epoch": 2.482315112540193,
1549
+ "grad_norm": 6.490230083465576,
1550
+ "learning_rate": 1.6083333333333333e-06,
1551
+ "loss": 0.0577,
1552
+ "num_input_tokens_seen": 3166688,
1553
+ "step": 193
1554
+ },
1555
+ {
1556
+ "epoch": 2.495176848874598,
1557
+ "grad_norm": 6.940796375274658,
1558
+ "learning_rate": 1.6166666666666667e-06,
1559
+ "loss": 0.0813,
1560
+ "num_input_tokens_seen": 3182752,
1561
+ "step": 194
1562
+ },
1563
+ {
1564
+ "epoch": 2.508038585209003,
1565
+ "grad_norm": 8.307454109191895,
1566
+ "learning_rate": 1.6250000000000001e-06,
1567
+ "loss": 0.066,
1568
+ "num_input_tokens_seen": 3198944,
1569
+ "step": 195
1570
+ },
1571
+ {
1572
+ "epoch": 2.5209003215434085,
1573
+ "grad_norm": 4.472862243652344,
1574
+ "learning_rate": 1.6333333333333335e-06,
1575
+ "loss": 0.0622,
1576
+ "num_input_tokens_seen": 3215552,
1577
+ "step": 196
1578
+ },
1579
+ {
1580
+ "epoch": 2.5337620578778135,
1581
+ "grad_norm": 3.5001590251922607,
1582
+ "learning_rate": 1.6416666666666667e-06,
1583
+ "loss": 0.0616,
1584
+ "num_input_tokens_seen": 3231488,
1585
+ "step": 197
1586
+ },
1587
+ {
1588
+ "epoch": 2.5466237942122185,
1589
+ "grad_norm": 13.425641059875488,
1590
+ "learning_rate": 1.6500000000000003e-06,
1591
+ "loss": 0.0993,
1592
+ "num_input_tokens_seen": 3247840,
1593
+ "step": 198
1594
+ },
1595
+ {
1596
+ "epoch": 2.559485530546624,
1597
+ "grad_norm": 12.016642570495605,
1598
+ "learning_rate": 1.6583333333333335e-06,
1599
+ "loss": 0.0702,
1600
+ "num_input_tokens_seen": 3264128,
1601
+ "step": 199
1602
+ },
1603
+ {
1604
+ "epoch": 2.572347266881029,
1605
+ "grad_norm": 10.653433799743652,
1606
+ "learning_rate": 1.6666666666666667e-06,
1607
+ "loss": 0.0743,
1608
+ "num_input_tokens_seen": 3280192,
1609
+ "step": 200
1610
+ },
1611
+ {
1612
+ "epoch": 2.585209003215434,
1613
+ "grad_norm": 3.59945011138916,
1614
+ "learning_rate": 1.6750000000000003e-06,
1615
+ "loss": 0.0647,
1616
+ "num_input_tokens_seen": 3296480,
1617
+ "step": 201
1618
+ },
1619
+ {
1620
+ "epoch": 2.598070739549839,
1621
+ "grad_norm": 11.130800247192383,
1622
+ "learning_rate": 1.6833333333333335e-06,
1623
+ "loss": 0.0814,
1624
+ "num_input_tokens_seen": 3313120,
1625
+ "step": 202
1626
+ },
1627
+ {
1628
+ "epoch": 2.6109324758842445,
1629
+ "grad_norm": 11.733818054199219,
1630
+ "learning_rate": 1.6916666666666666e-06,
1631
+ "loss": 0.0861,
1632
+ "num_input_tokens_seen": 3329184,
1633
+ "step": 203
1634
+ },
1635
+ {
1636
+ "epoch": 2.6237942122186495,
1637
+ "grad_norm": 6.696333885192871,
1638
+ "learning_rate": 1.7000000000000002e-06,
1639
+ "loss": 0.0769,
1640
+ "num_input_tokens_seen": 3346208,
1641
+ "step": 204
1642
+ },
1643
+ {
1644
+ "epoch": 2.6366559485530545,
1645
+ "grad_norm": 8.523835182189941,
1646
+ "learning_rate": 1.7083333333333334e-06,
1647
+ "loss": 0.0888,
1648
+ "num_input_tokens_seen": 3363008,
1649
+ "step": 205
1650
+ },
1651
+ {
1652
+ "epoch": 2.64951768488746,
1653
+ "grad_norm": 12.503429412841797,
1654
+ "learning_rate": 1.7166666666666668e-06,
1655
+ "loss": 0.1017,
1656
+ "num_input_tokens_seen": 3379488,
1657
+ "step": 206
1658
+ },
1659
+ {
1660
+ "epoch": 2.662379421221865,
1661
+ "grad_norm": 7.644631385803223,
1662
+ "learning_rate": 1.725e-06,
1663
+ "loss": 0.0677,
1664
+ "num_input_tokens_seen": 3395648,
1665
+ "step": 207
1666
+ },
1667
+ {
1668
+ "epoch": 2.67524115755627,
1669
+ "grad_norm": 7.251969814300537,
1670
+ "learning_rate": 1.7333333333333336e-06,
1671
+ "loss": 0.0861,
1672
+ "num_input_tokens_seen": 3412736,
1673
+ "step": 208
1674
+ },
1675
+ {
1676
+ "epoch": 2.688102893890675,
1677
+ "grad_norm": 3.763118267059326,
1678
+ "learning_rate": 1.7416666666666668e-06,
1679
+ "loss": 0.0562,
1680
+ "num_input_tokens_seen": 3429472,
1681
+ "step": 209
1682
+ },
1683
+ {
1684
+ "epoch": 2.7009646302250805,
1685
+ "grad_norm": 8.583102226257324,
1686
+ "learning_rate": 1.75e-06,
1687
+ "loss": 0.0641,
1688
+ "num_input_tokens_seen": 3445632,
1689
+ "step": 210
1690
+ },
1691
+ {
1692
+ "epoch": 2.7138263665594855,
1693
+ "grad_norm": 9.621906280517578,
1694
+ "learning_rate": 1.7583333333333336e-06,
1695
+ "loss": 0.0829,
1696
+ "num_input_tokens_seen": 3462720,
1697
+ "step": 211
1698
+ },
1699
+ {
1700
+ "epoch": 2.7266881028938905,
1701
+ "grad_norm": 6.067561626434326,
1702
+ "learning_rate": 1.7666666666666668e-06,
1703
+ "loss": 0.0632,
1704
+ "num_input_tokens_seen": 3478720,
1705
+ "step": 212
1706
+ },
1707
+ {
1708
+ "epoch": 2.739549839228296,
1709
+ "grad_norm": 4.912470817565918,
1710
+ "learning_rate": 1.7750000000000002e-06,
1711
+ "loss": 0.062,
1712
+ "num_input_tokens_seen": 3494304,
1713
+ "step": 213
1714
+ },
1715
+ {
1716
+ "epoch": 2.752411575562701,
1717
+ "grad_norm": 8.044519424438477,
1718
+ "learning_rate": 1.7833333333333336e-06,
1719
+ "loss": 0.0816,
1720
+ "num_input_tokens_seen": 3510176,
1721
+ "step": 214
1722
+ },
1723
+ {
1724
+ "epoch": 2.765273311897106,
1725
+ "grad_norm": 8.589887619018555,
1726
+ "learning_rate": 1.7916666666666667e-06,
1727
+ "loss": 0.096,
1728
+ "num_input_tokens_seen": 3526848,
1729
+ "step": 215
1730
+ },
1731
+ {
1732
+ "epoch": 2.778135048231511,
1733
+ "grad_norm": 3.3357672691345215,
1734
+ "learning_rate": 1.8000000000000001e-06,
1735
+ "loss": 0.0639,
1736
+ "num_input_tokens_seen": 3543136,
1737
+ "step": 216
1738
+ },
1739
+ {
1740
+ "epoch": 2.7909967845659165,
1741
+ "grad_norm": 5.992812156677246,
1742
+ "learning_rate": 1.8083333333333335e-06,
1743
+ "loss": 0.0915,
1744
+ "num_input_tokens_seen": 3558240,
1745
+ "step": 217
1746
+ },
1747
+ {
1748
+ "epoch": 2.8038585209003215,
1749
+ "grad_norm": 4.8690924644470215,
1750
+ "learning_rate": 1.816666666666667e-06,
1751
+ "loss": 0.061,
1752
+ "num_input_tokens_seen": 3574240,
1753
+ "step": 218
1754
+ },
1755
+ {
1756
+ "epoch": 2.816720257234727,
1757
+ "grad_norm": 2.928898811340332,
1758
+ "learning_rate": 1.825e-06,
1759
+ "loss": 0.0572,
1760
+ "num_input_tokens_seen": 3590240,
1761
+ "step": 219
1762
+ },
1763
+ {
1764
+ "epoch": 2.829581993569132,
1765
+ "grad_norm": 2.8405849933624268,
1766
+ "learning_rate": 1.8333333333333333e-06,
1767
+ "loss": 0.0497,
1768
+ "num_input_tokens_seen": 3606912,
1769
+ "step": 220
1770
+ },
1771
+ {
1772
+ "epoch": 2.842443729903537,
1773
+ "grad_norm": 5.940427303314209,
1774
+ "learning_rate": 1.8416666666666669e-06,
1775
+ "loss": 0.0672,
1776
+ "num_input_tokens_seen": 3623008,
1777
+ "step": 221
1778
+ },
1779
+ {
1780
+ "epoch": 2.855305466237942,
1781
+ "grad_norm": 4.370597839355469,
1782
+ "learning_rate": 1.85e-06,
1783
+ "loss": 0.0563,
1784
+ "num_input_tokens_seen": 3639456,
1785
+ "step": 222
1786
+ },
1787
+ {
1788
+ "epoch": 2.868167202572347,
1789
+ "grad_norm": 3.9959638118743896,
1790
+ "learning_rate": 1.8583333333333335e-06,
1791
+ "loss": 0.069,
1792
+ "num_input_tokens_seen": 3656288,
1793
+ "step": 223
1794
+ },
1795
+ {
1796
+ "epoch": 2.8810289389067525,
1797
+ "grad_norm": 4.756357192993164,
1798
+ "learning_rate": 1.8666666666666669e-06,
1799
+ "loss": 0.0824,
1800
+ "num_input_tokens_seen": 3672896,
1801
+ "step": 224
1802
+ },
1803
+ {
1804
+ "epoch": 2.8938906752411575,
1805
+ "grad_norm": 3.312553644180298,
1806
+ "learning_rate": 1.8750000000000003e-06,
1807
+ "loss": 0.057,
1808
+ "num_input_tokens_seen": 3689632,
1809
+ "step": 225
1810
+ },
1811
+ {
1812
+ "epoch": 2.906752411575563,
1813
+ "grad_norm": 3.71880841255188,
1814
+ "learning_rate": 1.8833333333333334e-06,
1815
+ "loss": 0.0549,
1816
+ "num_input_tokens_seen": 3706944,
1817
+ "step": 226
1818
+ },
1819
+ {
1820
+ "epoch": 2.919614147909968,
1821
+ "grad_norm": 4.111685276031494,
1822
+ "learning_rate": 1.8916666666666668e-06,
1823
+ "loss": 0.0652,
1824
+ "num_input_tokens_seen": 3723072,
1825
+ "step": 227
1826
+ },
1827
+ {
1828
+ "epoch": 2.932475884244373,
1829
+ "grad_norm": 4.362407684326172,
1830
+ "learning_rate": 1.9000000000000002e-06,
1831
+ "loss": 0.0743,
1832
+ "num_input_tokens_seen": 3740064,
1833
+ "step": 228
1834
+ },
1835
+ {
1836
+ "epoch": 2.945337620578778,
1837
+ "grad_norm": 2.441969156265259,
1838
+ "learning_rate": 1.9083333333333334e-06,
1839
+ "loss": 0.0416,
1840
+ "num_input_tokens_seen": 3756864,
1841
+ "step": 229
1842
+ },
1843
+ {
1844
+ "epoch": 2.958199356913183,
1845
+ "grad_norm": 3.4988579750061035,
1846
+ "learning_rate": 1.916666666666667e-06,
1847
+ "loss": 0.0668,
1848
+ "num_input_tokens_seen": 3774336,
1849
+ "step": 230
1850
+ },
1851
+ {
1852
+ "epoch": 2.9710610932475885,
1853
+ "grad_norm": 3.7807693481445312,
1854
+ "learning_rate": 1.925e-06,
1855
+ "loss": 0.0603,
1856
+ "num_input_tokens_seen": 3790336,
1857
+ "step": 231
1858
+ },
1859
+ {
1860
+ "epoch": 2.9839228295819935,
1861
+ "grad_norm": 3.471942901611328,
1862
+ "learning_rate": 1.9333333333333336e-06,
1863
+ "loss": 0.066,
1864
+ "num_input_tokens_seen": 3807520,
1865
+ "step": 232
1866
+ },
1867
+ {
1868
+ "epoch": 2.996784565916399,
1869
+ "grad_norm": 3.4720284938812256,
1870
+ "learning_rate": 1.9416666666666666e-06,
1871
+ "loss": 0.0692,
1872
+ "num_input_tokens_seen": 3823872,
1873
+ "step": 233
1874
+ },
1875
+ {
1876
+ "epoch": 3.009646302250804,
1877
+ "grad_norm": 1.9317958354949951,
1878
+ "learning_rate": 1.9500000000000004e-06,
1879
+ "loss": 0.0323,
1880
+ "num_input_tokens_seen": 3840320,
1881
+ "step": 234
1882
+ },
1883
+ {
1884
+ "epoch": 3.022508038585209,
1885
+ "grad_norm": 4.849405288696289,
1886
+ "learning_rate": 1.9583333333333334e-06,
1887
+ "loss": 0.0403,
1888
+ "num_input_tokens_seen": 3856256,
1889
+ "step": 235
1890
+ },
1891
+ {
1892
+ "epoch": 3.035369774919614,
1893
+ "grad_norm": 2.371988296508789,
1894
+ "learning_rate": 1.9666666666666668e-06,
1895
+ "loss": 0.0477,
1896
+ "num_input_tokens_seen": 3872512,
1897
+ "step": 236
1898
+ },
1899
+ {
1900
+ "epoch": 3.0482315112540195,
1901
+ "grad_norm": 3.362964153289795,
1902
+ "learning_rate": 1.975e-06,
1903
+ "loss": 0.0356,
1904
+ "num_input_tokens_seen": 3888256,
1905
+ "step": 237
1906
+ },
1907
+ {
1908
+ "epoch": 3.0610932475884245,
1909
+ "grad_norm": 2.618176221847534,
1910
+ "learning_rate": 1.9833333333333335e-06,
1911
+ "loss": 0.0324,
1912
+ "num_input_tokens_seen": 3905024,
1913
+ "step": 238
1914
+ },
1915
+ {
1916
+ "epoch": 3.0739549839228295,
1917
+ "grad_norm": 2.5595703125,
1918
+ "learning_rate": 1.991666666666667e-06,
1919
+ "loss": 0.0428,
1920
+ "num_input_tokens_seen": 3922016,
1921
+ "step": 239
1922
+ },
1923
+ {
1924
+ "epoch": 3.0868167202572345,
1925
+ "grad_norm": 2.788818597793579,
1926
+ "learning_rate": 2.0000000000000003e-06,
1927
+ "loss": 0.0315,
1928
+ "num_input_tokens_seen": 3938400,
1929
+ "step": 240
1930
+ },
1931
+ {
1932
+ "epoch": 3.09967845659164,
1933
+ "grad_norm": 3.9531607627868652,
1934
+ "learning_rate": 2.0083333333333337e-06,
1935
+ "loss": 0.0366,
1936
+ "num_input_tokens_seen": 3954912,
1937
+ "step": 241
1938
+ },
1939
+ {
1940
+ "epoch": 3.112540192926045,
1941
+ "grad_norm": 3.2901012897491455,
1942
+ "learning_rate": 2.0166666666666667e-06,
1943
+ "loss": 0.0307,
1944
+ "num_input_tokens_seen": 3970400,
1945
+ "step": 242
1946
+ },
1947
+ {
1948
+ "epoch": 3.12540192926045,
1949
+ "grad_norm": 4.283529281616211,
1950
+ "learning_rate": 2.025e-06,
1951
+ "loss": 0.0338,
1952
+ "num_input_tokens_seen": 3986944,
1953
+ "step": 243
1954
+ },
1955
+ {
1956
+ "epoch": 3.1382636655948555,
1957
+ "grad_norm": 4.467242240905762,
1958
+ "learning_rate": 2.0333333333333335e-06,
1959
+ "loss": 0.0348,
1960
+ "num_input_tokens_seen": 4003648,
1961
+ "step": 244
1962
+ },
1963
+ {
1964
+ "epoch": 3.1511254019292605,
1965
+ "grad_norm": 3.3191885948181152,
1966
+ "learning_rate": 2.041666666666667e-06,
1967
+ "loss": 0.0355,
1968
+ "num_input_tokens_seen": 4020384,
1969
+ "step": 245
1970
+ },
1971
+ {
1972
+ "epoch": 3.1639871382636655,
1973
+ "grad_norm": 4.061459064483643,
1974
+ "learning_rate": 2.05e-06,
1975
+ "loss": 0.0272,
1976
+ "num_input_tokens_seen": 4037088,
1977
+ "step": 246
1978
+ },
1979
+ {
1980
+ "epoch": 3.176848874598071,
1981
+ "grad_norm": 3.0776522159576416,
1982
+ "learning_rate": 2.0583333333333337e-06,
1983
+ "loss": 0.0464,
1984
+ "num_input_tokens_seen": 4053472,
1985
+ "step": 247
1986
+ },
1987
+ {
1988
+ "epoch": 3.189710610932476,
1989
+ "grad_norm": 2.13104510307312,
1990
+ "learning_rate": 2.0666666666666666e-06,
1991
+ "loss": 0.0268,
1992
+ "num_input_tokens_seen": 4069248,
1993
+ "step": 248
1994
+ },
1995
+ {
1996
+ "epoch": 3.202572347266881,
1997
+ "grad_norm": 2.1540310382843018,
1998
+ "learning_rate": 2.075e-06,
1999
+ "loss": 0.0229,
2000
+ "num_input_tokens_seen": 4085024,
2001
+ "step": 249
2002
+ },
2003
+ {
2004
+ "epoch": 3.215434083601286,
2005
+ "grad_norm": 3.068967342376709,
2006
+ "learning_rate": 2.0833333333333334e-06,
2007
+ "loss": 0.0373,
2008
+ "num_input_tokens_seen": 4102432,
2009
+ "step": 250
2010
+ },
2011
+ {
2012
+ "epoch": 3.2282958199356915,
2013
+ "grad_norm": 2.7403666973114014,
2014
+ "learning_rate": 2.091666666666667e-06,
2015
+ "loss": 0.0361,
2016
+ "num_input_tokens_seen": 4118368,
2017
+ "step": 251
2018
+ },
2019
+ {
2020
+ "epoch": 3.2411575562700965,
2021
+ "grad_norm": 4.994419574737549,
2022
+ "learning_rate": 2.1000000000000002e-06,
2023
+ "loss": 0.0401,
2024
+ "num_input_tokens_seen": 4134784,
2025
+ "step": 252
2026
+ },
2027
+ {
2028
+ "epoch": 3.2540192926045015,
2029
+ "grad_norm": 2.287346839904785,
2030
+ "learning_rate": 2.1083333333333336e-06,
2031
+ "loss": 0.0262,
2032
+ "num_input_tokens_seen": 4150528,
2033
+ "step": 253
2034
+ },
2035
+ {
2036
+ "epoch": 3.266881028938907,
2037
+ "grad_norm": 3.649418354034424,
2038
+ "learning_rate": 2.116666666666667e-06,
2039
+ "loss": 0.0481,
2040
+ "num_input_tokens_seen": 4166816,
2041
+ "step": 254
2042
+ },
2043
+ {
2044
+ "epoch": 3.279742765273312,
2045
+ "grad_norm": 2.9041836261749268,
2046
+ "learning_rate": 2.125e-06,
2047
+ "loss": 0.0417,
2048
+ "num_input_tokens_seen": 4182880,
2049
+ "step": 255
2050
+ },
2051
+ {
2052
+ "epoch": 3.292604501607717,
2053
+ "grad_norm": 3.602240800857544,
2054
+ "learning_rate": 2.133333333333334e-06,
2055
+ "loss": 0.0457,
2056
+ "num_input_tokens_seen": 4200128,
2057
+ "step": 256
2058
+ },
2059
+ {
2060
+ "epoch": 3.305466237942122,
2061
+ "grad_norm": 1.6382755041122437,
2062
+ "learning_rate": 2.1416666666666668e-06,
2063
+ "loss": 0.0175,
2064
+ "num_input_tokens_seen": 4215680,
2065
+ "step": 257
2066
+ },
2067
+ {
2068
+ "epoch": 3.3183279742765275,
2069
+ "grad_norm": 2.4267561435699463,
2070
+ "learning_rate": 2.15e-06,
2071
+ "loss": 0.0371,
2072
+ "num_input_tokens_seen": 4232736,
2073
+ "step": 258
2074
+ },
2075
+ {
2076
+ "epoch": 3.3311897106109325,
2077
+ "grad_norm": 2.553440570831299,
2078
+ "learning_rate": 2.1583333333333336e-06,
2079
+ "loss": 0.0268,
2080
+ "num_input_tokens_seen": 4249664,
2081
+ "step": 259
2082
+ },
2083
+ {
2084
+ "epoch": 3.3440514469453375,
2085
+ "grad_norm": 2.951179027557373,
2086
+ "learning_rate": 2.166666666666667e-06,
2087
+ "loss": 0.0417,
2088
+ "num_input_tokens_seen": 4266016,
2089
+ "step": 260
2090
+ },
2091
+ {
2092
+ "epoch": 3.356913183279743,
2093
+ "grad_norm": 2.710747003555298,
2094
+ "learning_rate": 2.1750000000000004e-06,
2095
+ "loss": 0.0264,
2096
+ "num_input_tokens_seen": 4281664,
2097
+ "step": 261
2098
+ },
2099
+ {
2100
+ "epoch": 3.369774919614148,
2101
+ "grad_norm": 3.465902090072632,
2102
+ "learning_rate": 2.1833333333333333e-06,
2103
+ "loss": 0.0336,
2104
+ "num_input_tokens_seen": 4298368,
2105
+ "step": 262
2106
+ },
2107
+ {
2108
+ "epoch": 3.382636655948553,
2109
+ "grad_norm": 4.009627819061279,
2110
+ "learning_rate": 2.191666666666667e-06,
2111
+ "loss": 0.0434,
2112
+ "num_input_tokens_seen": 4314336,
2113
+ "step": 263
2114
+ },
2115
+ {
2116
+ "epoch": 3.395498392282958,
2117
+ "grad_norm": 4.071226596832275,
2118
+ "learning_rate": 2.2e-06,
2119
+ "loss": 0.0389,
2120
+ "num_input_tokens_seen": 4330144,
2121
+ "step": 264
2122
+ },
2123
+ {
2124
+ "epoch": 3.4083601286173635,
2125
+ "grad_norm": 4.341132164001465,
2126
+ "learning_rate": 2.2083333333333335e-06,
2127
+ "loss": 0.045,
2128
+ "num_input_tokens_seen": 4345856,
2129
+ "step": 265
2130
+ },
2131
+ {
2132
+ "epoch": 3.4212218649517685,
2133
+ "grad_norm": 4.663236141204834,
2134
+ "learning_rate": 2.216666666666667e-06,
2135
+ "loss": 0.0331,
2136
+ "num_input_tokens_seen": 4361696,
2137
+ "step": 266
2138
+ },
2139
+ {
2140
+ "epoch": 3.4340836012861735,
2141
+ "grad_norm": 2.17475962638855,
2142
+ "learning_rate": 2.2250000000000003e-06,
2143
+ "loss": 0.0228,
2144
+ "num_input_tokens_seen": 4378304,
2145
+ "step": 267
2146
+ },
2147
+ {
2148
+ "epoch": 3.446945337620579,
2149
+ "grad_norm": 5.099360942840576,
2150
+ "learning_rate": 2.2333333333333333e-06,
2151
+ "loss": 0.0307,
2152
+ "num_input_tokens_seen": 4395232,
2153
+ "step": 268
2154
+ },
2155
+ {
2156
+ "epoch": 3.459807073954984,
2157
+ "grad_norm": 4.4752020835876465,
2158
+ "learning_rate": 2.2416666666666667e-06,
2159
+ "loss": 0.0332,
2160
+ "num_input_tokens_seen": 4411232,
2161
+ "step": 269
2162
+ },
2163
+ {
2164
+ "epoch": 3.472668810289389,
2165
+ "grad_norm": 4.047648906707764,
2166
+ "learning_rate": 2.25e-06,
2167
+ "loss": 0.0662,
2168
+ "num_input_tokens_seen": 4427520,
2169
+ "step": 270
2170
+ },
2171
+ {
2172
+ "epoch": 3.485530546623794,
2173
+ "grad_norm": 5.564074516296387,
2174
+ "learning_rate": 2.2583333333333335e-06,
2175
+ "loss": 0.0431,
2176
+ "num_input_tokens_seen": 4443904,
2177
+ "step": 271
2178
+ },
2179
+ {
2180
+ "epoch": 3.4983922829581995,
2181
+ "grad_norm": 3.9845523834228516,
2182
+ "learning_rate": 2.266666666666667e-06,
2183
+ "loss": 0.0423,
2184
+ "num_input_tokens_seen": 4460608,
2185
+ "step": 272
2186
+ },
2187
+ {
2188
+ "epoch": 3.5112540192926045,
2189
+ "grad_norm": 3.6314871311187744,
2190
+ "learning_rate": 2.2750000000000002e-06,
2191
+ "loss": 0.0447,
2192
+ "num_input_tokens_seen": 4477120,
2193
+ "step": 273
2194
+ },
2195
+ {
2196
+ "epoch": 3.5241157556270095,
2197
+ "grad_norm": 3.1981313228607178,
2198
+ "learning_rate": 2.2833333333333336e-06,
2199
+ "loss": 0.0337,
2200
+ "num_input_tokens_seen": 4493152,
2201
+ "step": 274
2202
+ },
2203
+ {
2204
+ "epoch": 3.536977491961415,
2205
+ "grad_norm": 2.1383423805236816,
2206
+ "learning_rate": 2.2916666666666666e-06,
2207
+ "loss": 0.0319,
2208
+ "num_input_tokens_seen": 4509120,
2209
+ "step": 275
2210
+ },
2211
+ {
2212
+ "epoch": 3.54983922829582,
2213
+ "grad_norm": 2.778956890106201,
2214
+ "learning_rate": 2.3000000000000004e-06,
2215
+ "loss": 0.027,
2216
+ "num_input_tokens_seen": 4525984,
2217
+ "step": 276
2218
+ },
2219
+ {
2220
+ "epoch": 3.562700964630225,
2221
+ "grad_norm": 2.518002510070801,
2222
+ "learning_rate": 2.3083333333333334e-06,
2223
+ "loss": 0.0244,
2224
+ "num_input_tokens_seen": 4542816,
2225
+ "step": 277
2226
+ },
2227
+ {
2228
+ "epoch": 3.57556270096463,
2229
+ "grad_norm": 3.8519890308380127,
2230
+ "learning_rate": 2.316666666666667e-06,
2231
+ "loss": 0.0377,
2232
+ "num_input_tokens_seen": 4559872,
2233
+ "step": 278
2234
+ },
2235
+ {
2236
+ "epoch": 3.5884244372990355,
2237
+ "grad_norm": 5.541743278503418,
2238
+ "learning_rate": 2.325e-06,
2239
+ "loss": 0.0477,
2240
+ "num_input_tokens_seen": 4576288,
2241
+ "step": 279
2242
+ },
2243
+ {
2244
+ "epoch": 3.6012861736334405,
2245
+ "grad_norm": 4.099382400512695,
2246
+ "learning_rate": 2.3333333333333336e-06,
2247
+ "loss": 0.0332,
2248
+ "num_input_tokens_seen": 4591456,
2249
+ "step": 280
2250
+ },
2251
+ {
2252
+ "epoch": 3.6141479099678455,
2253
+ "grad_norm": 2.509037733078003,
2254
+ "learning_rate": 2.341666666666667e-06,
2255
+ "loss": 0.0285,
2256
+ "num_input_tokens_seen": 4608608,
2257
+ "step": 281
2258
+ },
2259
+ {
2260
+ "epoch": 3.627009646302251,
2261
+ "grad_norm": 6.764764308929443,
2262
+ "learning_rate": 2.35e-06,
2263
+ "loss": 0.0468,
2264
+ "num_input_tokens_seen": 4625120,
2265
+ "step": 282
2266
+ },
2267
+ {
2268
+ "epoch": 3.639871382636656,
2269
+ "grad_norm": 6.219926834106445,
2270
+ "learning_rate": 2.3583333333333338e-06,
2271
+ "loss": 0.037,
2272
+ "num_input_tokens_seen": 4641952,
2273
+ "step": 283
2274
+ },
2275
+ {
2276
+ "epoch": 3.652733118971061,
2277
+ "grad_norm": 3.869555950164795,
2278
+ "learning_rate": 2.3666666666666667e-06,
2279
+ "loss": 0.041,
2280
+ "num_input_tokens_seen": 4657920,
2281
+ "step": 284
2282
+ },
2283
+ {
2284
+ "epoch": 3.665594855305466,
2285
+ "grad_norm": 4.1329264640808105,
2286
+ "learning_rate": 2.375e-06,
2287
+ "loss": 0.0461,
2288
+ "num_input_tokens_seen": 4674688,
2289
+ "step": 285
2290
+ },
2291
+ {
2292
+ "epoch": 3.6784565916398715,
2293
+ "grad_norm": 6.7732648849487305,
2294
+ "learning_rate": 2.3833333333333335e-06,
2295
+ "loss": 0.0594,
2296
+ "num_input_tokens_seen": 4690592,
2297
+ "step": 286
2298
+ },
2299
+ {
2300
+ "epoch": 3.6913183279742765,
2301
+ "grad_norm": 8.550586700439453,
2302
+ "learning_rate": 2.391666666666667e-06,
2303
+ "loss": 0.0728,
2304
+ "num_input_tokens_seen": 4707360,
2305
+ "step": 287
2306
+ },
2307
+ {
2308
+ "epoch": 3.7041800643086815,
2309
+ "grad_norm": 4.587222099304199,
2310
+ "learning_rate": 2.4000000000000003e-06,
2311
+ "loss": 0.029,
2312
+ "num_input_tokens_seen": 4724192,
2313
+ "step": 288
2314
+ },
2315
+ {
2316
+ "epoch": 3.717041800643087,
2317
+ "grad_norm": 3.3474302291870117,
2318
+ "learning_rate": 2.4083333333333337e-06,
2319
+ "loss": 0.0412,
2320
+ "num_input_tokens_seen": 4741344,
2321
+ "step": 289
2322
+ },
2323
+ {
2324
+ "epoch": 3.729903536977492,
2325
+ "grad_norm": 4.359026908874512,
2326
+ "learning_rate": 2.4166666666666667e-06,
2327
+ "loss": 0.0262,
2328
+ "num_input_tokens_seen": 4756768,
2329
+ "step": 290
2330
+ },
2331
+ {
2332
+ "epoch": 3.742765273311897,
2333
+ "grad_norm": 8.029643058776855,
2334
+ "learning_rate": 2.425e-06,
2335
+ "loss": 0.0796,
2336
+ "num_input_tokens_seen": 4772608,
2337
+ "step": 291
2338
+ },
2339
+ {
2340
+ "epoch": 3.755627009646302,
2341
+ "grad_norm": 3.9188246726989746,
2342
+ "learning_rate": 2.4333333333333335e-06,
2343
+ "loss": 0.0447,
2344
+ "num_input_tokens_seen": 4788928,
2345
+ "step": 292
2346
+ },
2347
+ {
2348
+ "epoch": 3.7684887459807075,
2349
+ "grad_norm": 2.2623226642608643,
2350
+ "learning_rate": 2.441666666666667e-06,
2351
+ "loss": 0.0252,
2352
+ "num_input_tokens_seen": 4805408,
2353
+ "step": 293
2354
+ },
2355
+ {
2356
+ "epoch": 3.7813504823151125,
2357
+ "grad_norm": 5.41758394241333,
2358
+ "learning_rate": 2.4500000000000003e-06,
2359
+ "loss": 0.0458,
2360
+ "num_input_tokens_seen": 4821248,
2361
+ "step": 294
2362
+ },
2363
+ {
2364
+ "epoch": 3.7942122186495175,
2365
+ "grad_norm": 3.402024984359741,
2366
+ "learning_rate": 2.4583333333333332e-06,
2367
+ "loss": 0.0431,
2368
+ "num_input_tokens_seen": 4837024,
2369
+ "step": 295
2370
+ },
2371
+ {
2372
+ "epoch": 3.807073954983923,
2373
+ "grad_norm": 2.2912893295288086,
2374
+ "learning_rate": 2.466666666666667e-06,
2375
+ "loss": 0.0422,
2376
+ "num_input_tokens_seen": 4853760,
2377
+ "step": 296
2378
+ },
2379
+ {
2380
+ "epoch": 3.819935691318328,
2381
+ "grad_norm": 2.5446107387542725,
2382
+ "learning_rate": 2.475e-06,
2383
+ "loss": 0.0428,
2384
+ "num_input_tokens_seen": 4870560,
2385
+ "step": 297
2386
+ },
2387
+ {
2388
+ "epoch": 3.832797427652733,
2389
+ "grad_norm": 4.001276969909668,
2390
+ "learning_rate": 2.4833333333333334e-06,
2391
+ "loss": 0.0473,
2392
+ "num_input_tokens_seen": 4887040,
2393
+ "step": 298
2394
+ },
2395
+ {
2396
+ "epoch": 3.845659163987138,
2397
+ "grad_norm": 2.1214165687561035,
2398
+ "learning_rate": 2.491666666666667e-06,
2399
+ "loss": 0.0223,
2400
+ "num_input_tokens_seen": 4903232,
2401
+ "step": 299
2402
+ },
2403
+ {
2404
+ "epoch": 3.8585209003215435,
2405
+ "grad_norm": 2.0410876274108887,
2406
+ "learning_rate": 2.5e-06,
2407
+ "loss": 0.0274,
2408
+ "num_input_tokens_seen": 4919392,
2409
+ "step": 300
2410
+ },
2411
+ {
2412
+ "epoch": 3.8713826366559485,
2413
+ "grad_norm": 4.287325382232666,
2414
+ "learning_rate": 2.5083333333333336e-06,
2415
+ "loss": 0.0454,
2416
+ "num_input_tokens_seen": 4935648,
2417
+ "step": 301
2418
+ },
2419
+ {
2420
+ "epoch": 3.884244372990354,
2421
+ "grad_norm": 4.437230110168457,
2422
+ "learning_rate": 2.5166666666666666e-06,
2423
+ "loss": 0.022,
2424
+ "num_input_tokens_seen": 4952768,
2425
+ "step": 302
2426
+ },
2427
+ {
2428
+ "epoch": 3.897106109324759,
2429
+ "grad_norm": 3.8610730171203613,
2430
+ "learning_rate": 2.5250000000000004e-06,
2431
+ "loss": 0.0357,
2432
+ "num_input_tokens_seen": 4969408,
2433
+ "step": 303
2434
+ },
2435
+ {
2436
+ "epoch": 3.909967845659164,
2437
+ "grad_norm": 2.636066436767578,
2438
+ "learning_rate": 2.5333333333333338e-06,
2439
+ "loss": 0.0458,
2440
+ "num_input_tokens_seen": 4986592,
2441
+ "step": 304
2442
+ },
2443
+ {
2444
+ "epoch": 3.922829581993569,
2445
+ "grad_norm": 4.873857021331787,
2446
+ "learning_rate": 2.5416666666666668e-06,
2447
+ "loss": 0.0454,
2448
+ "num_input_tokens_seen": 5002720,
2449
+ "step": 305
2450
+ },
2451
+ {
2452
+ "epoch": 3.935691318327974,
2453
+ "grad_norm": 2.460498571395874,
2454
+ "learning_rate": 2.55e-06,
2455
+ "loss": 0.0262,
2456
+ "num_input_tokens_seen": 5018848,
2457
+ "step": 306
2458
+ },
2459
+ {
2460
+ "epoch": 3.9485530546623795,
2461
+ "grad_norm": 1.9787613153457642,
2462
+ "learning_rate": 2.558333333333334e-06,
2463
+ "loss": 0.0234,
2464
+ "num_input_tokens_seen": 5034528,
2465
+ "step": 307
2466
+ },
2467
+ {
2468
+ "epoch": 3.9614147909967845,
2469
+ "grad_norm": 2.9524741172790527,
2470
+ "learning_rate": 2.566666666666667e-06,
2471
+ "loss": 0.0366,
2472
+ "num_input_tokens_seen": 5051328,
2473
+ "step": 308
2474
+ },
2475
+ {
2476
+ "epoch": 3.97427652733119,
2477
+ "grad_norm": 2.858250379562378,
2478
+ "learning_rate": 2.5750000000000003e-06,
2479
+ "loss": 0.0236,
2480
+ "num_input_tokens_seen": 5067712,
2481
+ "step": 309
2482
+ },
2483
+ {
2484
+ "epoch": 3.987138263665595,
2485
+ "grad_norm": 2.985665798187256,
2486
+ "learning_rate": 2.5833333333333337e-06,
2487
+ "loss": 0.0403,
2488
+ "num_input_tokens_seen": 5085088,
2489
+ "step": 310
2490
+ },
2491
+ {
2492
+ "epoch": 4.0,
2493
+ "grad_norm": 2.72078013420105,
2494
+ "learning_rate": 2.5916666666666667e-06,
2495
+ "loss": 0.0395,
2496
+ "num_input_tokens_seen": 5101536,
2497
+ "step": 311
2498
+ },
2499
+ {
2500
+ "epoch": 4.012861736334405,
2501
+ "grad_norm": 1.2907602787017822,
2502
+ "learning_rate": 2.6e-06,
2503
+ "loss": 0.0163,
2504
+ "num_input_tokens_seen": 5117696,
2505
+ "step": 312
2506
+ },
2507
+ {
2508
+ "epoch": 4.02572347266881,
2509
+ "grad_norm": 1.910504937171936,
2510
+ "learning_rate": 2.608333333333333e-06,
2511
+ "loss": 0.0181,
2512
+ "num_input_tokens_seen": 5133408,
2513
+ "step": 313
2514
+ },
2515
+ {
2516
+ "epoch": 4.038585209003215,
2517
+ "grad_norm": 1.1473162174224854,
2518
+ "learning_rate": 2.616666666666667e-06,
2519
+ "loss": 0.013,
2520
+ "num_input_tokens_seen": 5149664,
2521
+ "step": 314
2522
+ },
2523
+ {
2524
+ "epoch": 4.051446945337621,
2525
+ "grad_norm": 2.9885878562927246,
2526
+ "learning_rate": 2.6250000000000003e-06,
2527
+ "loss": 0.0178,
2528
+ "num_input_tokens_seen": 5165344,
2529
+ "step": 315
2530
+ },
2531
+ {
2532
+ "epoch": 4.064308681672026,
2533
+ "grad_norm": 2.308147430419922,
2534
+ "learning_rate": 2.6333333333333332e-06,
2535
+ "loss": 0.0153,
2536
+ "num_input_tokens_seen": 5183264,
2537
+ "step": 316
2538
+ },
2539
+ {
2540
+ "epoch": 4.077170418006431,
2541
+ "grad_norm": 3.1830930709838867,
2542
+ "learning_rate": 2.6416666666666666e-06,
2543
+ "loss": 0.0205,
2544
+ "num_input_tokens_seen": 5199296,
2545
+ "step": 317
2546
+ },
2547
+ {
2548
+ "epoch": 4.090032154340836,
2549
+ "grad_norm": 0.674608051776886,
2550
+ "learning_rate": 2.6500000000000005e-06,
2551
+ "loss": 0.0021,
2552
+ "num_input_tokens_seen": 5216032,
2553
+ "step": 318
2554
+ },
2555
+ {
2556
+ "epoch": 4.102893890675241,
2557
+ "grad_norm": 3.075059175491333,
2558
+ "learning_rate": 2.6583333333333334e-06,
2559
+ "loss": 0.022,
2560
+ "num_input_tokens_seen": 5232544,
2561
+ "step": 319
2562
+ },
2563
+ {
2564
+ "epoch": 4.115755627009646,
2565
+ "grad_norm": 1.1589558124542236,
2566
+ "learning_rate": 2.666666666666667e-06,
2567
+ "loss": 0.0134,
2568
+ "num_input_tokens_seen": 5248704,
2569
+ "step": 320
2570
+ },
2571
+ {
2572
+ "epoch": 4.128617363344051,
2573
+ "grad_norm": 4.190515518188477,
2574
+ "learning_rate": 2.6750000000000002e-06,
2575
+ "loss": 0.0175,
2576
+ "num_input_tokens_seen": 5264384,
2577
+ "step": 321
2578
+ },
2579
+ {
2580
+ "epoch": 4.141479099678457,
2581
+ "grad_norm": 3.435070276260376,
2582
+ "learning_rate": 2.683333333333333e-06,
2583
+ "loss": 0.023,
2584
+ "num_input_tokens_seen": 5280928,
2585
+ "step": 322
2586
+ },
2587
+ {
2588
+ "epoch": 4.154340836012862,
2589
+ "grad_norm": 3.3521199226379395,
2590
+ "learning_rate": 2.691666666666667e-06,
2591
+ "loss": 0.0303,
2592
+ "num_input_tokens_seen": 5296512,
2593
+ "step": 323
2594
+ },
2595
+ {
2596
+ "epoch": 4.167202572347267,
2597
+ "grad_norm": 2.0815391540527344,
2598
+ "learning_rate": 2.7000000000000004e-06,
2599
+ "loss": 0.0187,
2600
+ "num_input_tokens_seen": 5313440,
2601
+ "step": 324
2602
+ },
2603
+ {
2604
+ "epoch": 4.180064308681672,
2605
+ "grad_norm": 1.968308687210083,
2606
+ "learning_rate": 2.7083333333333334e-06,
2607
+ "loss": 0.0126,
2608
+ "num_input_tokens_seen": 5329088,
2609
+ "step": 325
2610
+ },
2611
+ {
2612
+ "epoch": 4.192926045016077,
2613
+ "grad_norm": 2.134216070175171,
2614
+ "learning_rate": 2.7166666666666668e-06,
2615
+ "loss": 0.0203,
2616
+ "num_input_tokens_seen": 5345376,
2617
+ "step": 326
2618
+ },
2619
+ {
2620
+ "epoch": 4.205787781350482,
2621
+ "grad_norm": 1.2245476245880127,
2622
+ "learning_rate": 2.7250000000000006e-06,
2623
+ "loss": 0.0078,
2624
+ "num_input_tokens_seen": 5361568,
2625
+ "step": 327
2626
+ },
2627
+ {
2628
+ "epoch": 4.218649517684887,
2629
+ "grad_norm": 1.908057451248169,
2630
+ "learning_rate": 2.7333333333333336e-06,
2631
+ "loss": 0.0165,
2632
+ "num_input_tokens_seen": 5377536,
2633
+ "step": 328
2634
+ },
2635
+ {
2636
+ "epoch": 4.231511254019293,
2637
+ "grad_norm": 1.6413862705230713,
2638
+ "learning_rate": 2.741666666666667e-06,
2639
+ "loss": 0.0113,
2640
+ "num_input_tokens_seen": 5395040,
2641
+ "step": 329
2642
+ },
2643
+ {
2644
+ "epoch": 4.244372990353698,
2645
+ "grad_norm": 1.442226529121399,
2646
+ "learning_rate": 2.7500000000000004e-06,
2647
+ "loss": 0.0058,
2648
+ "num_input_tokens_seen": 5411488,
2649
+ "step": 330
2650
+ },
2651
+ {
2652
+ "epoch": 4.257234726688103,
2653
+ "grad_norm": 0.9877079129219055,
2654
+ "learning_rate": 2.7583333333333333e-06,
2655
+ "loss": 0.007,
2656
+ "num_input_tokens_seen": 5427328,
2657
+ "step": 331
2658
+ },
2659
+ {
2660
+ "epoch": 4.270096463022508,
2661
+ "grad_norm": 2.9424357414245605,
2662
+ "learning_rate": 2.766666666666667e-06,
2663
+ "loss": 0.027,
2664
+ "num_input_tokens_seen": 5444352,
2665
+ "step": 332
2666
+ },
2667
+ {
2668
+ "epoch": 4.282958199356913,
2669
+ "grad_norm": 3.5407063961029053,
2670
+ "learning_rate": 2.7750000000000005e-06,
2671
+ "loss": 0.0276,
2672
+ "num_input_tokens_seen": 5459840,
2673
+ "step": 333
2674
+ },
2675
+ {
2676
+ "epoch": 4.295819935691318,
2677
+ "grad_norm": 4.147865295410156,
2678
+ "learning_rate": 2.7833333333333335e-06,
2679
+ "loss": 0.0367,
2680
+ "num_input_tokens_seen": 5476000,
2681
+ "step": 334
2682
+ },
2683
+ {
2684
+ "epoch": 4.308681672025724,
2685
+ "grad_norm": 2.4164767265319824,
2686
+ "learning_rate": 2.791666666666667e-06,
2687
+ "loss": 0.0161,
2688
+ "num_input_tokens_seen": 5491968,
2689
+ "step": 335
2690
+ },
2691
+ {
2692
+ "epoch": 4.321543408360129,
2693
+ "grad_norm": 2.553860902786255,
2694
+ "learning_rate": 2.8000000000000003e-06,
2695
+ "loss": 0.018,
2696
+ "num_input_tokens_seen": 5508864,
2697
+ "step": 336
2698
+ },
2699
+ {
2700
+ "epoch": 4.334405144694534,
2701
+ "grad_norm": 1.050309419631958,
2702
+ "learning_rate": 2.8083333333333333e-06,
2703
+ "loss": 0.0044,
2704
+ "num_input_tokens_seen": 5525536,
2705
+ "step": 337
2706
+ },
2707
+ {
2708
+ "epoch": 4.347266881028939,
2709
+ "grad_norm": 2.375540018081665,
2710
+ "learning_rate": 2.816666666666667e-06,
2711
+ "loss": 0.0109,
2712
+ "num_input_tokens_seen": 5542368,
2713
+ "step": 338
2714
+ },
2715
+ {
2716
+ "epoch": 4.360128617363344,
2717
+ "grad_norm": 3.041912794113159,
2718
+ "learning_rate": 2.825e-06,
2719
+ "loss": 0.0173,
2720
+ "num_input_tokens_seen": 5558400,
2721
+ "step": 339
2722
+ },
2723
+ {
2724
+ "epoch": 4.372990353697749,
2725
+ "grad_norm": 2.464390754699707,
2726
+ "learning_rate": 2.8333333333333335e-06,
2727
+ "loss": 0.0107,
2728
+ "num_input_tokens_seen": 5575008,
2729
+ "step": 340
2730
+ },
2731
+ {
2732
+ "epoch": 4.385852090032154,
2733
+ "grad_norm": 1.3086371421813965,
2734
+ "learning_rate": 2.841666666666667e-06,
2735
+ "loss": 0.0116,
2736
+ "num_input_tokens_seen": 5590784,
2737
+ "step": 341
2738
+ },
2739
+ {
2740
+ "epoch": 4.39871382636656,
2741
+ "grad_norm": 3.057859420776367,
2742
+ "learning_rate": 2.85e-06,
2743
+ "loss": 0.0281,
2744
+ "num_input_tokens_seen": 5608032,
2745
+ "step": 342
2746
+ },
2747
+ {
2748
+ "epoch": 4.411575562700965,
2749
+ "grad_norm": 2.7371633052825928,
2750
+ "learning_rate": 2.8583333333333336e-06,
2751
+ "loss": 0.0246,
2752
+ "num_input_tokens_seen": 5624704,
2753
+ "step": 343
2754
+ },
2755
+ {
2756
+ "epoch": 4.42443729903537,
2757
+ "grad_norm": 1.7932931184768677,
2758
+ "learning_rate": 2.866666666666667e-06,
2759
+ "loss": 0.0146,
2760
+ "num_input_tokens_seen": 5641056,
2761
+ "step": 344
2762
+ },
2763
+ {
2764
+ "epoch": 4.437299035369775,
2765
+ "grad_norm": 3.9446775913238525,
2766
+ "learning_rate": 2.875e-06,
2767
+ "loss": 0.0439,
2768
+ "num_input_tokens_seen": 5656608,
2769
+ "step": 345
2770
+ },
2771
+ {
2772
+ "epoch": 4.45016077170418,
2773
+ "grad_norm": 3.7706024646759033,
2774
+ "learning_rate": 2.8833333333333334e-06,
2775
+ "loss": 0.0279,
2776
+ "num_input_tokens_seen": 5672928,
2777
+ "step": 346
2778
+ },
2779
+ {
2780
+ "epoch": 4.463022508038585,
2781
+ "grad_norm": 2.38531756401062,
2782
+ "learning_rate": 2.8916666666666672e-06,
2783
+ "loss": 0.0276,
2784
+ "num_input_tokens_seen": 5689728,
2785
+ "step": 347
2786
+ },
2787
+ {
2788
+ "epoch": 4.47588424437299,
2789
+ "grad_norm": 2.534675121307373,
2790
+ "learning_rate": 2.9e-06,
2791
+ "loss": 0.0167,
2792
+ "num_input_tokens_seen": 5705824,
2793
+ "step": 348
2794
+ },
2795
+ {
2796
+ "epoch": 4.488745980707396,
2797
+ "grad_norm": 3.28116774559021,
2798
+ "learning_rate": 2.9083333333333336e-06,
2799
+ "loss": 0.0258,
2800
+ "num_input_tokens_seen": 5723008,
2801
+ "step": 349
2802
+ },
2803
+ {
2804
+ "epoch": 4.501607717041801,
2805
+ "grad_norm": 3.5873191356658936,
2806
+ "learning_rate": 2.916666666666667e-06,
2807
+ "loss": 0.0306,
2808
+ "num_input_tokens_seen": 5739680,
2809
+ "step": 350
2810
+ },
2811
+ {
2812
+ "epoch": 4.514469453376206,
2813
+ "grad_norm": 4.889535427093506,
2814
+ "learning_rate": 2.925e-06,
2815
+ "loss": 0.0395,
2816
+ "num_input_tokens_seen": 5756480,
2817
+ "step": 351
2818
+ },
2819
+ {
2820
+ "epoch": 4.527331189710611,
2821
+ "grad_norm": 1.8129762411117554,
2822
+ "learning_rate": 2.9333333333333338e-06,
2823
+ "loss": 0.0203,
2824
+ "num_input_tokens_seen": 5773088,
2825
+ "step": 352
2826
+ },
2827
+ {
2828
+ "epoch": 4.540192926045016,
2829
+ "grad_norm": 1.5045830011367798,
2830
+ "learning_rate": 2.941666666666667e-06,
2831
+ "loss": 0.0241,
2832
+ "num_input_tokens_seen": 5789312,
2833
+ "step": 353
2834
+ },
2835
+ {
2836
+ "epoch": 4.553054662379421,
2837
+ "grad_norm": 1.4582304954528809,
2838
+ "learning_rate": 2.95e-06,
2839
+ "loss": 0.0151,
2840
+ "num_input_tokens_seen": 5804352,
2841
+ "step": 354
2842
+ },
2843
+ {
2844
+ "epoch": 4.565916398713826,
2845
+ "grad_norm": 1.6875511407852173,
2846
+ "learning_rate": 2.9583333333333335e-06,
2847
+ "loss": 0.0355,
2848
+ "num_input_tokens_seen": 5820384,
2849
+ "step": 355
2850
+ },
2851
+ {
2852
+ "epoch": 4.578778135048232,
2853
+ "grad_norm": 1.0483993291854858,
2854
+ "learning_rate": 2.9666666666666673e-06,
2855
+ "loss": 0.0093,
2856
+ "num_input_tokens_seen": 5837280,
2857
+ "step": 356
2858
+ },
2859
+ {
2860
+ "epoch": 4.591639871382637,
2861
+ "grad_norm": 2.731086254119873,
2862
+ "learning_rate": 2.9750000000000003e-06,
2863
+ "loss": 0.0314,
2864
+ "num_input_tokens_seen": 5853760,
2865
+ "step": 357
2866
+ },
2867
+ {
2868
+ "epoch": 4.604501607717042,
2869
+ "grad_norm": 1.5985758304595947,
2870
+ "learning_rate": 2.9833333333333337e-06,
2871
+ "loss": 0.0155,
2872
+ "num_input_tokens_seen": 5870240,
2873
+ "step": 358
2874
+ },
2875
+ {
2876
+ "epoch": 4.617363344051447,
2877
+ "grad_norm": 1.3119585514068604,
2878
+ "learning_rate": 2.991666666666667e-06,
2879
+ "loss": 0.0138,
2880
+ "num_input_tokens_seen": 5887296,
2881
+ "step": 359
2882
+ },
2883
+ {
2884
+ "epoch": 4.630225080385852,
2885
+ "grad_norm": 2.3107335567474365,
2886
+ "learning_rate": 3e-06,
2887
+ "loss": 0.0212,
2888
+ "num_input_tokens_seen": 5904384,
2889
+ "step": 360
2890
+ },
2891
+ {
2892
+ "epoch": 4.643086816720257,
2893
+ "grad_norm": 1.8473104238510132,
2894
+ "learning_rate": 3.0083333333333335e-06,
2895
+ "loss": 0.0255,
2896
+ "num_input_tokens_seen": 5920832,
2897
+ "step": 361
2898
+ },
2899
+ {
2900
+ "epoch": 4.655948553054662,
2901
+ "grad_norm": 1.6255360841751099,
2902
+ "learning_rate": 3.0166666666666673e-06,
2903
+ "loss": 0.0231,
2904
+ "num_input_tokens_seen": 5936736,
2905
+ "step": 362
2906
+ },
2907
+ {
2908
+ "epoch": 4.668810289389068,
2909
+ "grad_norm": 1.843116044998169,
2910
+ "learning_rate": 3.0250000000000003e-06,
2911
+ "loss": 0.0083,
2912
+ "num_input_tokens_seen": 5953120,
2913
+ "step": 363
2914
+ },
2915
+ {
2916
+ "epoch": 4.681672025723473,
2917
+ "grad_norm": 1.7974934577941895,
2918
+ "learning_rate": 3.0333333333333337e-06,
2919
+ "loss": 0.0122,
2920
+ "num_input_tokens_seen": 5970336,
2921
+ "step": 364
2922
+ },
2923
+ {
2924
+ "epoch": 4.694533762057878,
2925
+ "grad_norm": 1.799026370048523,
2926
+ "learning_rate": 3.0416666666666666e-06,
2927
+ "loss": 0.0142,
2928
+ "num_input_tokens_seen": 5987488,
2929
+ "step": 365
2930
+ },
2931
+ {
2932
+ "epoch": 4.707395498392283,
2933
+ "grad_norm": 2.38661789894104,
2934
+ "learning_rate": 3.05e-06,
2935
+ "loss": 0.0293,
2936
+ "num_input_tokens_seen": 6003296,
2937
+ "step": 366
2938
+ },
2939
+ {
2940
+ "epoch": 4.720257234726688,
2941
+ "grad_norm": 2.2720234394073486,
2942
+ "learning_rate": 3.058333333333334e-06,
2943
+ "loss": 0.0292,
2944
+ "num_input_tokens_seen": 6020768,
2945
+ "step": 367
2946
+ },
2947
+ {
2948
+ "epoch": 4.733118971061093,
2949
+ "grad_norm": 3.6864068508148193,
2950
+ "learning_rate": 3.066666666666667e-06,
2951
+ "loss": 0.032,
2952
+ "num_input_tokens_seen": 6036992,
2953
+ "step": 368
2954
+ },
2955
+ {
2956
+ "epoch": 4.745980707395498,
2957
+ "grad_norm": 2.1829123497009277,
2958
+ "learning_rate": 3.075e-06,
2959
+ "loss": 0.0189,
2960
+ "num_input_tokens_seen": 6053568,
2961
+ "step": 369
2962
+ },
2963
+ {
2964
+ "epoch": 4.758842443729904,
2965
+ "grad_norm": 2.033625602722168,
2966
+ "learning_rate": 3.0833333333333336e-06,
2967
+ "loss": 0.022,
2968
+ "num_input_tokens_seen": 6070336,
2969
+ "step": 370
2970
+ },
2971
+ {
2972
+ "epoch": 4.771704180064309,
2973
+ "grad_norm": 2.665611982345581,
2974
+ "learning_rate": 3.0916666666666666e-06,
2975
+ "loss": 0.0242,
2976
+ "num_input_tokens_seen": 6087200,
2977
+ "step": 371
2978
+ },
2979
+ {
2980
+ "epoch": 4.784565916398714,
2981
+ "grad_norm": 1.981733798980713,
2982
+ "learning_rate": 3.1000000000000004e-06,
2983
+ "loss": 0.015,
2984
+ "num_input_tokens_seen": 6104224,
2985
+ "step": 372
2986
+ },
2987
+ {
2988
+ "epoch": 4.797427652733119,
2989
+ "grad_norm": 1.30072820186615,
2990
+ "learning_rate": 3.1083333333333338e-06,
2991
+ "loss": 0.0154,
2992
+ "num_input_tokens_seen": 6120576,
2993
+ "step": 373
2994
+ },
2995
+ {
2996
+ "epoch": 4.810289389067524,
2997
+ "grad_norm": 2.196270704269409,
2998
+ "learning_rate": 3.1166666666666668e-06,
2999
+ "loss": 0.0195,
3000
+ "num_input_tokens_seen": 6137440,
3001
+ "step": 374
3002
+ },
3003
+ {
3004
+ "epoch": 4.823151125401929,
3005
+ "grad_norm": 2.597658157348633,
3006
+ "learning_rate": 3.125e-06,
3007
+ "loss": 0.031,
3008
+ "num_input_tokens_seen": 6154976,
3009
+ "step": 375
3010
+ },
3011
+ {
3012
+ "epoch": 4.836012861736334,
3013
+ "grad_norm": 3.6647465229034424,
3014
+ "learning_rate": 3.133333333333334e-06,
3015
+ "loss": 0.0376,
3016
+ "num_input_tokens_seen": 6170912,
3017
+ "step": 376
3018
+ },
3019
+ {
3020
+ "epoch": 4.84887459807074,
3021
+ "grad_norm": 1.159162998199463,
3022
+ "learning_rate": 3.141666666666667e-06,
3023
+ "loss": 0.0093,
3024
+ "num_input_tokens_seen": 6187968,
3025
+ "step": 377
3026
+ },
3027
+ {
3028
+ "epoch": 4.861736334405145,
3029
+ "grad_norm": 1.5810602903366089,
3030
+ "learning_rate": 3.1500000000000003e-06,
3031
+ "loss": 0.027,
3032
+ "num_input_tokens_seen": 6204320,
3033
+ "step": 378
3034
+ },
3035
+ {
3036
+ "epoch": 4.87459807073955,
3037
+ "grad_norm": 2.0108237266540527,
3038
+ "learning_rate": 3.1583333333333337e-06,
3039
+ "loss": 0.0191,
3040
+ "num_input_tokens_seen": 6220512,
3041
+ "step": 379
3042
+ },
3043
+ {
3044
+ "epoch": 4.887459807073955,
3045
+ "grad_norm": 1.5167394876480103,
3046
+ "learning_rate": 3.1666666666666667e-06,
3047
+ "loss": 0.0132,
3048
+ "num_input_tokens_seen": 6236512,
3049
+ "step": 380
3050
+ },
3051
+ {
3052
+ "epoch": 4.90032154340836,
3053
+ "grad_norm": 2.1819732189178467,
3054
+ "learning_rate": 3.175e-06,
3055
+ "loss": 0.0111,
3056
+ "num_input_tokens_seen": 6252416,
3057
+ "step": 381
3058
+ },
3059
+ {
3060
+ "epoch": 4.913183279742765,
3061
+ "grad_norm": 1.414007306098938,
3062
+ "learning_rate": 3.183333333333334e-06,
3063
+ "loss": 0.0145,
3064
+ "num_input_tokens_seen": 6268992,
3065
+ "step": 382
3066
+ },
3067
+ {
3068
+ "epoch": 4.92604501607717,
3069
+ "grad_norm": 1.6091843843460083,
3070
+ "learning_rate": 3.191666666666667e-06,
3071
+ "loss": 0.0082,
3072
+ "num_input_tokens_seen": 6285312,
3073
+ "step": 383
3074
+ },
3075
+ {
3076
+ "epoch": 4.938906752411576,
3077
+ "grad_norm": 1.0037862062454224,
3078
+ "learning_rate": 3.2000000000000003e-06,
3079
+ "loss": 0.0165,
3080
+ "num_input_tokens_seen": 6300992,
3081
+ "step": 384
3082
+ },
3083
+ {
3084
+ "epoch": 4.951768488745981,
3085
+ "grad_norm": 2.4763152599334717,
3086
+ "learning_rate": 3.2083333333333337e-06,
3087
+ "loss": 0.0243,
3088
+ "num_input_tokens_seen": 6318560,
3089
+ "step": 385
3090
+ }
3091
+ ],
3092
+ "logging_steps": 1,
3093
+ "max_steps": 385,
3094
+ "num_input_tokens_seen": 6318560,
3095
+ "num_train_epochs": 5,
3096
+ "save_steps": 980,
3097
+ "stateful_callbacks": {
3098
+ "TrainerControl": {
3099
+ "args": {
3100
+ "should_epoch_stop": false,
3101
+ "should_evaluate": false,
3102
+ "should_log": false,
3103
+ "should_save": true,
3104
+ "should_training_stop": true
3105
+ },
3106
+ "attributes": {}
3107
+ }
3108
+ },
3109
+ "total_flos": 2.5049338265940787e+17,
3110
+ "train_batch_size": 4,
3111
+ "trial_name": null,
3112
+ "trial_params": null
3113
+ }
checkpoint-385/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76f84697cc5f35a19aa098445f2ef3e5650b3d161fb9f59aeb9c53bd327abfd6
3
+ size 6584
checkpoint-385/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 4096,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 32,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_scaling": null,
23
+ "rope_theta": 10000.0,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.42.3",
27
+ "use_cache": false,
28
+ "vocab_size": 32000
29
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.42.3"
10
+ }
llamaboard_config.yaml ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ top.booster: auto
2
+ top.checkpoint_path: null
3
+ top.finetuning_type: full
4
+ top.model_name: LLaMA2-7B-Chat
5
+ top.quantization_bit: none
6
+ top.quantization_method: bitsandbytes
7
+ top.rope_scaling: none
8
+ top.template: llama2
9
+ top.visual_inputs: false
10
+ train.additional_target: ''
11
+ train.badam_mode: layer
12
+ train.badam_switch_interval: 50
13
+ train.badam_switch_mode: ascending
14
+ train.badam_update_ratio: 0.05
15
+ train.batch_size: 4
16
+ train.compute_type: bf16
17
+ train.create_new_adapter: false
18
+ train.cutoff_len: 1024
19
+ train.dataset:
20
+ - truth_train
21
+ train.dataset_dir: data
22
+ train.ds_offload: false
23
+ train.ds_stage: '2'
24
+ train.freeze_extra_modules: ''
25
+ train.freeze_trainable_layers: 2
26
+ train.freeze_trainable_modules: all
27
+ train.galore_rank: 16
28
+ train.galore_scale: 0.25
29
+ train.galore_target: all
30
+ train.galore_update_interval: 200
31
+ train.gradient_accumulation_steps: 8
32
+ train.learning_rate: 5e-6
33
+ train.logging_steps: 1
34
+ train.lora_alpha: 16
35
+ train.lora_dropout: 0
36
+ train.lora_rank: 8
37
+ train.lora_target: ''
38
+ train.loraplus_lr_ratio: 0
39
+ train.lr_scheduler_type: cosine
40
+ train.max_grad_norm: '1.0'
41
+ train.max_samples: '100000'
42
+ train.neat_packing: false
43
+ train.neftune_alpha: 0
44
+ train.num_train_epochs: '5.0'
45
+ train.optim: adamw_torch
46
+ train.packing: false
47
+ train.ppo_score_norm: false
48
+ train.ppo_whiten_rewards: false
49
+ train.pref_beta: 0.1
50
+ train.pref_ftx: 0
51
+ train.pref_loss: sigmoid
52
+ train.report_to: false
53
+ train.resize_vocab: false
54
+ train.reward_model: null
55
+ train.save_steps: 980
56
+ train.shift_attn: false
57
+ train.training_stage: Supervised Fine-Tuning
58
+ train.use_badam: false
59
+ train.use_dora: false
60
+ train.use_galore: false
61
+ train.use_llama_pro: false
62
+ train.use_pissa: false
63
+ train.use_rslora: false
64
+ train.val_size: 0
65
+ train.warmup_steps: 600
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05797c94c439de88c420a567e2bde6c29dad762705ba7588731295691e8b1173
3
+ size 4938985352
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0eb6354f514ef3bd5ba958aca5d01b62d4199cd3baf18bd14d43954c90217bd5
3
+ size 4947390880
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b03f1693b214e4e07203a5b47bb63f40ed75486d4b48e985781c1da8733a4c39
3
+ size 3590488816
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476831232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
running_log.txt ADDED
@@ -0,0 +1,1025 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 07/11/2024 09:33:21 - INFO - llamafactory.hparams.parser - Process rank: 2, device: cuda:2, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
2
+
3
+ 07/11/2024 09:33:21 - INFO - llamafactory.hparams.parser - Process rank: 4, device: cuda:4, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
4
+
5
+ 07/11/2024 09:33:21 - INFO - llamafactory.hparams.parser - Process rank: 7, device: cuda:7, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
6
+
7
+ 07/11/2024 09:33:21 - INFO - llamafactory.hparams.parser - Process rank: 5, device: cuda:5, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
8
+
9
+ 07/11/2024 09:33:21 - INFO - llamafactory.hparams.parser - Process rank: 6, device: cuda:6, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
10
+
11
+ 07/11/2024 09:33:21 - INFO - llamafactory.hparams.parser - Process rank: 1, device: cuda:1, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
12
+
13
+ 07/11/2024 09:33:21 - INFO - llamafactory.hparams.parser - Process rank: 3, device: cuda:3, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
14
+
15
+ [INFO|parser.py:325] 2024-07-11 09:33:21,701 >> Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
16
+
17
+ [INFO|tokenization_utils_base.py:2161] 2024-07-11 09:33:24,201 >> loading file tokenizer.model from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/tokenizer.model
18
+
19
+ [INFO|tokenization_utils_base.py:2161] 2024-07-11 09:33:24,201 >> loading file tokenizer.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/tokenizer.json
20
+
21
+ [INFO|tokenization_utils_base.py:2161] 2024-07-11 09:33:24,201 >> loading file added_tokens.json from cache at None
22
+
23
+ [INFO|tokenization_utils_base.py:2161] 2024-07-11 09:33:24,201 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/special_tokens_map.json
24
+
25
+ [INFO|tokenization_utils_base.py:2161] 2024-07-11 09:33:24,202 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/tokenizer_config.json
26
+
27
+ 07/11/2024 09:33:24 - INFO - llamafactory.data.template - Add pad token: </s>
28
+
29
+ [INFO|template.py:372] 2024-07-11 09:33:24,309 >> Add pad token: </s>
30
+
31
+ [INFO|loader.py:50] 2024-07-11 09:33:24,310 >> Loading dataset train_output.json...
32
+
33
+ 07/11/2024 09:33:24 - INFO - llamafactory.data.template - Add pad token: </s>
34
+
35
+ 07/11/2024 09:33:24 - INFO - llamafactory.data.template - Add pad token: </s>
36
+
37
+ 07/11/2024 09:33:24 - INFO - llamafactory.data.template - Add pad token: </s>
38
+
39
+ 07/11/2024 09:33:24 - INFO - llamafactory.data.template - Add pad token: </s>
40
+
41
+ 07/11/2024 09:33:24 - INFO - llamafactory.data.template - Add pad token: </s>
42
+
43
+ 07/11/2024 09:33:24 - INFO - llamafactory.data.template - Add pad token: </s>
44
+
45
+ 07/11/2024 09:33:25 - INFO - llamafactory.data.loader - Loading dataset train_output.json...
46
+
47
+ 07/11/2024 09:33:25 - INFO - llamafactory.data.loader - Loading dataset train_output.json...
48
+
49
+ 07/11/2024 09:33:25 - INFO - llamafactory.data.loader - Loading dataset train_output.json...
50
+
51
+ 07/11/2024 09:33:25 - INFO - llamafactory.data.loader - Loading dataset train_output.json...
52
+
53
+ 07/11/2024 09:33:25 - INFO - llamafactory.data.loader - Loading dataset train_output.json...
54
+
55
+ 07/11/2024 09:33:25 - INFO - llamafactory.data.loader - Loading dataset train_output.json...
56
+
57
+ 07/11/2024 09:33:25 - INFO - llamafactory.data.loader - Loading dataset train_output.json...
58
+
59
+ [INFO|configuration_utils.py:733] 2024-07-11 09:33:27,545 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/config.json
60
+
61
+ [INFO|configuration_utils.py:800] 2024-07-11 09:33:27,546 >> Model config LlamaConfig {
62
+ "_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
63
+ "architectures": [
64
+ "LlamaForCausalLM"
65
+ ],
66
+ "attention_bias": false,
67
+ "attention_dropout": 0.0,
68
+ "bos_token_id": 1,
69
+ "eos_token_id": 2,
70
+ "hidden_act": "silu",
71
+ "hidden_size": 4096,
72
+ "initializer_range": 0.02,
73
+ "intermediate_size": 11008,
74
+ "max_position_embeddings": 4096,
75
+ "mlp_bias": false,
76
+ "model_type": "llama",
77
+ "num_attention_heads": 32,
78
+ "num_hidden_layers": 32,
79
+ "num_key_value_heads": 32,
80
+ "pretraining_tp": 1,
81
+ "rms_norm_eps": 1e-05,
82
+ "rope_scaling": null,
83
+ "rope_theta": 10000.0,
84
+ "tie_word_embeddings": false,
85
+ "torch_dtype": "float16",
86
+ "transformers_version": "4.42.3",
87
+ "use_cache": true,
88
+ "vocab_size": 32000
89
+ }
90
+
91
+
92
+ [INFO|modeling_utils.py:3556] 2024-07-11 09:33:28,355 >> loading weights file model.safetensors from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/model.safetensors.index.json
93
+
94
+ [INFO|modeling_utils.py:1531] 2024-07-11 09:35:30,794 >> Instantiating LlamaForCausalLM model under default dtype torch.bfloat16.
95
+
96
+ [INFO|configuration_utils.py:1000] 2024-07-11 09:35:30,799 >> Generate config GenerationConfig {
97
+ "bos_token_id": 1,
98
+ "eos_token_id": 2
99
+ }
100
+
101
+
102
+ [INFO|modeling_utils.py:4364] 2024-07-11 09:35:47,952 >> All model checkpoint weights were used when initializing LlamaForCausalLM.
103
+
104
+
105
+ [INFO|modeling_utils.py:4372] 2024-07-11 09:35:47,952 >> All the weights of LlamaForCausalLM were initialized from the model checkpoint at meta-llama/Llama-2-7b-chat-hf.
106
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use LlamaForCausalLM for predictions without further training.
107
+
108
+ [INFO|configuration_utils.py:955] 2024-07-11 09:35:48,301 >> loading configuration file generation_config.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/f5db02db724555f92da89c216ac04704f23d4590/generation_config.json
109
+
110
+ [INFO|configuration_utils.py:1000] 2024-07-11 09:35:48,301 >> Generate config GenerationConfig {
111
+ "bos_token_id": 1,
112
+ "do_sample": true,
113
+ "eos_token_id": 2,
114
+ "max_length": 4096,
115
+ "pad_token_id": 0,
116
+ "temperature": 0.6,
117
+ "top_p": 0.9
118
+ }
119
+
120
+
121
+ [INFO|checkpointing.py:103] 2024-07-11 09:35:48,308 >> Gradient checkpointing enabled.
122
+
123
+ [INFO|attention.py:80] 2024-07-11 09:35:48,308 >> Using torch SDPA for faster training and inference.
124
+
125
+ [INFO|adapter.py:302] 2024-07-11 09:35:48,309 >> Upcasting trainable params to float32.
126
+
127
+ [INFO|adapter.py:48] 2024-07-11 09:35:48,309 >> Fine-tuning method: Full
128
+
129
+ [INFO|loader.py:196] 2024-07-11 09:35:48,360 >> trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
130
+
131
+ [INFO|trainer.py:642] 2024-07-11 09:35:48,366 >> Using auto half precision backend
132
+
133
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
134
+
135
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
136
+
137
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
138
+
139
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
140
+
141
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
142
+
143
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
144
+
145
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
146
+
147
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
148
+
149
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
150
+
151
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
152
+
153
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
154
+
155
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
156
+
157
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
158
+
159
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
160
+
161
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
162
+
163
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
164
+
165
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
166
+
167
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
168
+
169
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
170
+
171
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
172
+
173
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
174
+
175
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
176
+
177
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
178
+
179
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
180
+
181
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
182
+
183
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
184
+
185
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
186
+
187
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
188
+
189
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
190
+
191
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
192
+
193
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
194
+
195
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
196
+
197
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
198
+
199
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
200
+
201
+ 07/11/2024 09:35:49 - INFO - llamafactory.model.loader - trainable params: 6,738,415,616 || all params: 6,738,415,616 || trainable%: 100.0000
202
+
203
+ [INFO|trainer.py:2128] 2024-07-11 09:36:08,514 >> ***** Running training *****
204
+
205
+ [INFO|trainer.py:2129] 2024-07-11 09:36:08,514 >> Num examples = 19,880
206
+
207
+ [INFO|trainer.py:2130] 2024-07-11 09:36:08,514 >> Num Epochs = 5
208
+
209
+ [INFO|trainer.py:2131] 2024-07-11 09:36:08,514 >> Instantaneous batch size per device = 4
210
+
211
+ [INFO|trainer.py:2134] 2024-07-11 09:36:08,514 >> Total train batch size (w. parallel, distributed & accumulation) = 256
212
+
213
+ [INFO|trainer.py:2135] 2024-07-11 09:36:08,514 >> Gradient Accumulation steps = 8
214
+
215
+ [INFO|trainer.py:2136] 2024-07-11 09:36:08,514 >> Total optimization steps = 385
216
+
217
+ [INFO|trainer.py:2137] 2024-07-11 09:36:08,516 >> Number of trainable parameters = 6,738,415,616
218
+
219
+ [INFO|callbacks.py:310] 2024-07-11 09:36:20,236 >> {'loss': 8.1083, 'learning_rate': 8.3333e-09, 'epoch': 0.01, 'throughput': 1411.72}
220
+
221
+ [INFO|callbacks.py:310] 2024-07-11 09:36:31,361 >> {'loss': 8.1052, 'learning_rate': 1.6667e-08, 'epoch': 0.03, 'throughput': 1455.41}
222
+
223
+ [INFO|callbacks.py:310] 2024-07-11 09:36:42,439 >> {'loss': 8.1366, 'learning_rate': 2.5000e-08, 'epoch': 0.04, 'throughput': 1466.88}
224
+
225
+ [INFO|callbacks.py:310] 2024-07-11 09:36:53,528 >> {'loss': 8.0413, 'learning_rate': 3.3333e-08, 'epoch': 0.05, 'throughput': 1462.41}
226
+
227
+ [INFO|callbacks.py:310] 2024-07-11 09:37:04,628 >> {'loss': 8.1055, 'learning_rate': 4.1667e-08, 'epoch': 0.06, 'throughput': 1471.37}
228
+
229
+ [INFO|callbacks.py:310] 2024-07-11 09:37:15,764 >> {'loss': 7.9666, 'learning_rate': 5.0000e-08, 'epoch': 0.08, 'throughput': 1484.19}
230
+
231
+ [INFO|callbacks.py:310] 2024-07-11 09:37:26,881 >> {'loss': 8.0182, 'learning_rate': 5.8333e-08, 'epoch': 0.09, 'throughput': 1477.83}
232
+
233
+ [INFO|callbacks.py:310] 2024-07-11 09:37:38,008 >> {'loss': 8.0363, 'learning_rate': 6.6667e-08, 'epoch': 0.10, 'throughput': 1468.21}
234
+
235
+ [INFO|callbacks.py:310] 2024-07-11 09:37:49,153 >> {'loss': 8.0918, 'learning_rate': 7.5000e-08, 'epoch': 0.12, 'throughput': 1469.05}
236
+
237
+ [INFO|callbacks.py:310] 2024-07-11 09:38:00,281 >> {'loss': 8.0197, 'learning_rate': 8.3333e-08, 'epoch': 0.13, 'throughput': 1467.95}
238
+
239
+ [INFO|callbacks.py:310] 2024-07-11 09:38:11,405 >> {'loss': 7.9714, 'learning_rate': 9.1667e-08, 'epoch': 0.14, 'throughput': 1470.48}
240
+
241
+ [INFO|callbacks.py:310] 2024-07-11 09:38:22,461 >> {'loss': 8.0131, 'learning_rate': 1.0000e-07, 'epoch': 0.15, 'throughput': 1463.77}
242
+
243
+ [INFO|callbacks.py:310] 2024-07-11 09:38:33,540 >> {'loss': 7.9796, 'learning_rate': 1.0833e-07, 'epoch': 0.17, 'throughput': 1457.86}
244
+
245
+ [INFO|callbacks.py:310] 2024-07-11 09:38:44,657 >> {'loss': 7.9999, 'learning_rate': 1.1667e-07, 'epoch': 0.18, 'throughput': 1460.84}
246
+
247
+ [INFO|callbacks.py:310] 2024-07-11 09:38:55,796 >> {'loss': 8.0168, 'learning_rate': 1.2500e-07, 'epoch': 0.19, 'throughput': 1461.12}
248
+
249
+ [INFO|callbacks.py:310] 2024-07-11 09:39:06,924 >> {'loss': 7.8423, 'learning_rate': 1.3333e-07, 'epoch': 0.21, 'throughput': 1463.26}
250
+
251
+ [INFO|callbacks.py:310] 2024-07-11 09:39:18,061 >> {'loss': 7.9208, 'learning_rate': 1.4167e-07, 'epoch': 0.22, 'throughput': 1461.36}
252
+
253
+ [INFO|callbacks.py:310] 2024-07-11 09:39:29,196 >> {'loss': 7.6898, 'learning_rate': 1.5000e-07, 'epoch': 0.23, 'throughput': 1462.71}
254
+
255
+ [INFO|callbacks.py:310] 2024-07-11 09:39:40,310 >> {'loss': 7.9285, 'learning_rate': 1.5833e-07, 'epoch': 0.24, 'throughput': 1459.08}
256
+
257
+ [INFO|callbacks.py:310] 2024-07-11 09:39:51,418 >> {'loss': 7.8924, 'learning_rate': 1.6667e-07, 'epoch': 0.26, 'throughput': 1458.15}
258
+
259
+ [INFO|callbacks.py:310] 2024-07-11 09:40:02,525 >> {'loss': 7.6173, 'learning_rate': 1.7500e-07, 'epoch': 0.27, 'throughput': 1460.88}
260
+
261
+ [INFO|callbacks.py:310] 2024-07-11 09:40:13,636 >> {'loss': 7.7661, 'learning_rate': 1.8333e-07, 'epoch': 0.28, 'throughput': 1463.97}
262
+
263
+ [INFO|callbacks.py:310] 2024-07-11 09:40:24,739 >> {'loss': 7.2936, 'learning_rate': 1.9167e-07, 'epoch': 0.30, 'throughput': 1464.98}
264
+
265
+ [INFO|callbacks.py:310] 2024-07-11 09:40:35,863 >> {'loss': 7.3044, 'learning_rate': 2.0000e-07, 'epoch': 0.31, 'throughput': 1468.54}
266
+
267
+ [INFO|callbacks.py:310] 2024-07-11 09:40:46,970 >> {'loss': 7.3500, 'learning_rate': 2.0833e-07, 'epoch': 0.32, 'throughput': 1468.11}
268
+
269
+ [INFO|callbacks.py:310] 2024-07-11 09:40:58,094 >> {'loss': 7.1213, 'learning_rate': 2.1667e-07, 'epoch': 0.33, 'throughput': 1469.84}
270
+
271
+ [INFO|callbacks.py:310] 2024-07-11 09:41:09,205 >> {'loss': 7.1363, 'learning_rate': 2.2500e-07, 'epoch': 0.35, 'throughput': 1469.80}
272
+
273
+ [INFO|callbacks.py:310] 2024-07-11 09:41:20,376 >> {'loss': 6.9016, 'learning_rate': 2.3333e-07, 'epoch': 0.36, 'throughput': 1468.87}
274
+
275
+ [INFO|callbacks.py:310] 2024-07-11 09:41:31,471 >> {'loss': 6.9764, 'learning_rate': 2.4167e-07, 'epoch': 0.37, 'throughput': 1467.16}
276
+
277
+ [INFO|callbacks.py:310] 2024-07-11 09:41:42,574 >> {'loss': 6.9005, 'learning_rate': 2.5000e-07, 'epoch': 0.39, 'throughput': 1467.82}
278
+
279
+ [INFO|callbacks.py:310] 2024-07-11 09:41:53,697 >> {'loss': 6.9852, 'learning_rate': 2.5833e-07, 'epoch': 0.40, 'throughput': 1468.73}
280
+
281
+ [INFO|callbacks.py:310] 2024-07-11 09:42:04,833 >> {'loss': 5.8340, 'learning_rate': 2.6667e-07, 'epoch': 0.41, 'throughput': 1469.26}
282
+
283
+ [INFO|callbacks.py:310] 2024-07-11 09:42:15,965 >> {'loss': 5.5452, 'learning_rate': 2.7500e-07, 'epoch': 0.42, 'throughput': 1471.43}
284
+
285
+ [INFO|callbacks.py:310] 2024-07-11 09:42:27,099 >> {'loss': 5.5189, 'learning_rate': 2.8333e-07, 'epoch': 0.44, 'throughput': 1473.12}
286
+
287
+ [INFO|callbacks.py:310] 2024-07-11 09:42:38,222 >> {'loss': 5.4654, 'learning_rate': 2.9167e-07, 'epoch': 0.45, 'throughput': 1473.94}
288
+
289
+ [INFO|callbacks.py:310] 2024-07-11 09:42:49,345 >> {'loss': 5.3117, 'learning_rate': 3.0000e-07, 'epoch': 0.46, 'throughput': 1472.23}
290
+
291
+ [INFO|callbacks.py:310] 2024-07-11 09:43:00,464 >> {'loss': 5.2744, 'learning_rate': 3.0833e-07, 'epoch': 0.48, 'throughput': 1470.87}
292
+
293
+ [INFO|callbacks.py:310] 2024-07-11 09:43:11,566 >> {'loss': 5.2821, 'learning_rate': 3.1667e-07, 'epoch': 0.49, 'throughput': 1470.77}
294
+
295
+ [INFO|callbacks.py:310] 2024-07-11 09:43:22,656 >> {'loss': 5.0967, 'learning_rate': 3.2500e-07, 'epoch': 0.50, 'throughput': 1470.64}
296
+
297
+ [INFO|callbacks.py:310] 2024-07-11 09:43:33,736 >> {'loss': 5.2167, 'learning_rate': 3.3333e-07, 'epoch': 0.51, 'throughput': 1470.41}
298
+
299
+ [INFO|callbacks.py:310] 2024-07-11 09:43:44,884 >> {'loss': 5.1517, 'learning_rate': 3.4167e-07, 'epoch': 0.53, 'throughput': 1471.24}
300
+
301
+ [INFO|callbacks.py:310] 2024-07-11 09:43:56,018 >> {'loss': 4.6959, 'learning_rate': 3.5000e-07, 'epoch': 0.54, 'throughput': 1471.59}
302
+
303
+ [INFO|callbacks.py:310] 2024-07-11 09:44:07,144 >> {'loss': 4.1458, 'learning_rate': 3.5833e-07, 'epoch': 0.55, 'throughput': 1471.34}
304
+
305
+ [INFO|callbacks.py:310] 2024-07-11 09:44:18,276 >> {'loss': 3.6692, 'learning_rate': 3.6667e-07, 'epoch': 0.57, 'throughput': 1471.55}
306
+
307
+ [INFO|callbacks.py:310] 2024-07-11 09:44:29,413 >> {'loss': 3.3322, 'learning_rate': 3.7500e-07, 'epoch': 0.58, 'throughput': 1472.18}
308
+
309
+ [INFO|callbacks.py:310] 2024-07-11 09:44:40,545 >> {'loss': 3.2857, 'learning_rate': 3.8333e-07, 'epoch': 0.59, 'throughput': 1472.04}
310
+
311
+ [INFO|callbacks.py:310] 2024-07-11 09:44:51,649 >> {'loss': 3.0806, 'learning_rate': 3.9167e-07, 'epoch': 0.60, 'throughput': 1472.06}
312
+
313
+ [INFO|callbacks.py:310] 2024-07-11 09:45:02,778 >> {'loss': 2.8239, 'learning_rate': 4.0000e-07, 'epoch': 0.62, 'throughput': 1472.90}
314
+
315
+ [INFO|callbacks.py:310] 2024-07-11 09:45:13,907 >> {'loss': 2.8695, 'learning_rate': 4.0833e-07, 'epoch': 0.63, 'throughput': 1474.53}
316
+
317
+ [INFO|callbacks.py:310] 2024-07-11 09:45:25,026 >> {'loss': 2.6218, 'learning_rate': 4.1667e-07, 'epoch': 0.64, 'throughput': 1475.14}
318
+
319
+ [INFO|callbacks.py:310] 2024-07-11 09:45:36,130 >> {'loss': 2.3993, 'learning_rate': 4.2500e-07, 'epoch': 0.66, 'throughput': 1474.86}
320
+
321
+ [INFO|callbacks.py:310] 2024-07-11 09:45:47,281 >> {'loss': 2.2828, 'learning_rate': 4.3333e-07, 'epoch': 0.67, 'throughput': 1474.81}
322
+
323
+ [INFO|callbacks.py:310] 2024-07-11 09:45:58,412 >> {'loss': 2.2063, 'learning_rate': 4.4167e-07, 'epoch': 0.68, 'throughput': 1475.84}
324
+
325
+ [INFO|callbacks.py:310] 2024-07-11 09:46:09,535 >> {'loss': 1.8878, 'learning_rate': 4.5000e-07, 'epoch': 0.69, 'throughput': 1474.30}
326
+
327
+ [INFO|callbacks.py:310] 2024-07-11 09:46:20,652 >> {'loss': 1.5971, 'learning_rate': 4.5833e-07, 'epoch': 0.71, 'throughput': 1475.65}
328
+
329
+ [INFO|callbacks.py:310] 2024-07-11 09:46:31,747 >> {'loss': 0.9604, 'learning_rate': 4.6667e-07, 'epoch': 0.72, 'throughput': 1475.05}
330
+
331
+ [INFO|callbacks.py:310] 2024-07-11 09:46:42,858 >> {'loss': 0.6287, 'learning_rate': 4.7500e-07, 'epoch': 0.73, 'throughput': 1475.70}
332
+
333
+ [INFO|callbacks.py:310] 2024-07-11 09:46:53,999 >> {'loss': 0.4844, 'learning_rate': 4.8333e-07, 'epoch': 0.75, 'throughput': 1476.45}
334
+
335
+ [INFO|callbacks.py:310] 2024-07-11 09:47:05,114 >> {'loss': 0.3891, 'learning_rate': 4.9167e-07, 'epoch': 0.76, 'throughput': 1475.83}
336
+
337
+ [INFO|callbacks.py:310] 2024-07-11 09:47:16,243 >> {'loss': 0.3570, 'learning_rate': 5.0000e-07, 'epoch': 0.77, 'throughput': 1476.05}
338
+
339
+ [INFO|callbacks.py:310] 2024-07-11 09:47:27,365 >> {'loss': 0.2854, 'learning_rate': 5.0833e-07, 'epoch': 0.78, 'throughput': 1476.53}
340
+
341
+ [INFO|callbacks.py:310] 2024-07-11 09:47:38,471 >> {'loss': 0.2403, 'learning_rate': 5.1667e-07, 'epoch': 0.80, 'throughput': 1476.18}
342
+
343
+ [INFO|callbacks.py:310] 2024-07-11 09:47:49,613 >> {'loss': 0.2522, 'learning_rate': 5.2500e-07, 'epoch': 0.81, 'throughput': 1477.05}
344
+
345
+ [INFO|callbacks.py:310] 2024-07-11 09:48:00,728 >> {'loss': 0.2339, 'learning_rate': 5.3333e-07, 'epoch': 0.82, 'throughput': 1476.51}
346
+
347
+ [INFO|callbacks.py:310] 2024-07-11 09:48:11,827 >> {'loss': 0.2214, 'learning_rate': 5.4167e-07, 'epoch': 0.84, 'throughput': 1477.43}
348
+
349
+ [INFO|callbacks.py:310] 2024-07-11 09:48:22,937 >> {'loss': 0.1912, 'learning_rate': 5.5000e-07, 'epoch': 0.85, 'throughput': 1478.13}
350
+
351
+ [INFO|callbacks.py:310] 2024-07-11 09:48:34,066 >> {'loss': 0.2157, 'learning_rate': 5.5833e-07, 'epoch': 0.86, 'throughput': 1479.16}
352
+
353
+ [INFO|callbacks.py:310] 2024-07-11 09:48:45,169 >> {'loss': 0.2045, 'learning_rate': 5.6667e-07, 'epoch': 0.87, 'throughput': 1478.13}
354
+
355
+ [INFO|callbacks.py:310] 2024-07-11 09:48:56,325 >> {'loss': 0.1964, 'learning_rate': 5.7500e-07, 'epoch': 0.89, 'throughput': 1478.54}
356
+
357
+ [INFO|callbacks.py:310] 2024-07-11 09:49:07,421 >> {'loss': 0.1901, 'learning_rate': 5.8333e-07, 'epoch': 0.90, 'throughput': 1477.07}
358
+
359
+ [INFO|callbacks.py:310] 2024-07-11 09:49:18,532 >> {'loss': 0.1891, 'learning_rate': 5.9167e-07, 'epoch': 0.91, 'throughput': 1477.00}
360
+
361
+ [INFO|callbacks.py:310] 2024-07-11 09:49:29,697 >> {'loss': 0.1841, 'learning_rate': 6.0000e-07, 'epoch': 0.93, 'throughput': 1477.26}
362
+
363
+ [INFO|callbacks.py:310] 2024-07-11 09:49:40,800 >> {'loss': 0.1803, 'learning_rate': 6.0833e-07, 'epoch': 0.94, 'throughput': 1477.28}
364
+
365
+ [INFO|callbacks.py:310] 2024-07-11 09:49:51,887 >> {'loss': 0.1657, 'learning_rate': 6.1667e-07, 'epoch': 0.95, 'throughput': 1477.17}
366
+
367
+ [INFO|callbacks.py:310] 2024-07-11 09:50:02,989 >> {'loss': 0.2157, 'learning_rate': 6.2500e-07, 'epoch': 0.96, 'throughput': 1477.26}
368
+
369
+ [INFO|callbacks.py:310] 2024-07-11 09:50:14,088 >> {'loss': 0.2000, 'learning_rate': 6.3333e-07, 'epoch': 0.98, 'throughput': 1477.40}
370
+
371
+ [INFO|callbacks.py:310] 2024-07-11 09:50:25,168 >> {'loss': 0.1519, 'learning_rate': 6.4167e-07, 'epoch': 0.99, 'throughput': 1476.86}
372
+
373
+ [INFO|callbacks.py:310] 2024-07-11 09:50:36,302 >> {'loss': 0.1765, 'learning_rate': 6.5000e-07, 'epoch': 1.00, 'throughput': 1477.71}
374
+
375
+ [INFO|callbacks.py:310] 2024-07-11 09:50:47,461 >> {'loss': 0.1907, 'learning_rate': 6.5833e-07, 'epoch': 1.02, 'throughput': 1478.10}
376
+
377
+ [INFO|callbacks.py:310] 2024-07-11 09:50:58,581 >> {'loss': 0.1593, 'learning_rate': 6.6667e-07, 'epoch': 1.03, 'throughput': 1477.21}
378
+
379
+ [INFO|callbacks.py:310] 2024-07-11 09:51:09,696 >> {'loss': 0.1659, 'learning_rate': 6.7500e-07, 'epoch': 1.04, 'throughput': 1477.14}
380
+
381
+ [INFO|callbacks.py:310] 2024-07-11 09:51:20,799 >> {'loss': 0.1619, 'learning_rate': 6.8333e-07, 'epoch': 1.05, 'throughput': 1477.58}
382
+
383
+ [INFO|callbacks.py:310] 2024-07-11 09:51:31,873 >> {'loss': 0.1680, 'learning_rate': 6.9167e-07, 'epoch': 1.07, 'throughput': 1477.08}
384
+
385
+ [INFO|callbacks.py:310] 2024-07-11 09:51:43,028 >> {'loss': 0.1627, 'learning_rate': 7.0000e-07, 'epoch': 1.08, 'throughput': 1477.67}
386
+
387
+ [INFO|callbacks.py:310] 2024-07-11 09:51:54,163 >> {'loss': 0.1421, 'learning_rate': 7.0833e-07, 'epoch': 1.09, 'throughput': 1478.13}
388
+
389
+ [INFO|callbacks.py:310] 2024-07-11 09:52:05,268 >> {'loss': 0.1517, 'learning_rate': 7.1667e-07, 'epoch': 1.11, 'throughput': 1478.20}
390
+
391
+ [INFO|callbacks.py:310] 2024-07-11 09:52:16,378 >> {'loss': 0.1519, 'learning_rate': 7.2500e-07, 'epoch': 1.12, 'throughput': 1477.17}
392
+
393
+ [INFO|callbacks.py:310] 2024-07-11 09:52:27,517 >> {'loss': 0.1280, 'learning_rate': 7.3333e-07, 'epoch': 1.13, 'throughput': 1477.75}
394
+
395
+ [INFO|callbacks.py:310] 2024-07-11 09:52:38,648 >> {'loss': 0.1481, 'learning_rate': 7.4167e-07, 'epoch': 1.14, 'throughput': 1477.59}
396
+
397
+ [INFO|callbacks.py:310] 2024-07-11 09:52:49,791 >> {'loss': 0.1636, 'learning_rate': 7.5000e-07, 'epoch': 1.16, 'throughput': 1478.21}
398
+
399
+ [INFO|callbacks.py:310] 2024-07-11 09:53:00,912 >> {'loss': 0.1443, 'learning_rate': 7.5833e-07, 'epoch': 1.17, 'throughput': 1478.70}
400
+
401
+ [INFO|callbacks.py:310] 2024-07-11 09:53:12,019 >> {'loss': 0.1592, 'learning_rate': 7.6667e-07, 'epoch': 1.18, 'throughput': 1479.03}
402
+
403
+ [INFO|callbacks.py:310] 2024-07-11 09:53:23,069 >> {'loss': 0.1744, 'learning_rate': 7.7500e-07, 'epoch': 1.20, 'throughput': 1478.61}
404
+
405
+ [INFO|callbacks.py:310] 2024-07-11 09:53:34,191 >> {'loss': 0.1615, 'learning_rate': 7.8333e-07, 'epoch': 1.21, 'throughput': 1478.86}
406
+
407
+ [INFO|callbacks.py:310] 2024-07-11 09:53:45,333 >> {'loss': 0.1466, 'learning_rate': 7.9167e-07, 'epoch': 1.22, 'throughput': 1480.34}
408
+
409
+ [INFO|callbacks.py:310] 2024-07-11 09:53:56,455 >> {'loss': 0.1333, 'learning_rate': 8.0000e-07, 'epoch': 1.23, 'throughput': 1480.18}
410
+
411
+ [INFO|callbacks.py:310] 2024-07-11 09:54:07,585 >> {'loss': 0.1475, 'learning_rate': 8.0833e-07, 'epoch': 1.25, 'throughput': 1479.91}
412
+
413
+ [INFO|callbacks.py:310] 2024-07-11 09:54:18,772 >> {'loss': 0.1420, 'learning_rate': 8.1667e-07, 'epoch': 1.26, 'throughput': 1480.14}
414
+
415
+ [INFO|callbacks.py:310] 2024-07-11 09:54:29,887 >> {'loss': 0.1480, 'learning_rate': 8.2500e-07, 'epoch': 1.27, 'throughput': 1480.08}
416
+
417
+ [INFO|callbacks.py:310] 2024-07-11 09:54:40,939 >> {'loss': 0.1539, 'learning_rate': 8.3333e-07, 'epoch': 1.29, 'throughput': 1478.98}
418
+
419
+ [INFO|callbacks.py:310] 2024-07-11 09:54:52,040 >> {'loss': 0.1496, 'learning_rate': 8.4167e-07, 'epoch': 1.30, 'throughput': 1479.63}
420
+
421
+ [INFO|callbacks.py:310] 2024-07-11 09:55:03,133 >> {'loss': 0.1563, 'learning_rate': 8.5000e-07, 'epoch': 1.31, 'throughput': 1479.38}
422
+
423
+ [INFO|callbacks.py:310] 2024-07-11 09:55:14,217 >> {'loss': 0.1295, 'learning_rate': 8.5833e-07, 'epoch': 1.32, 'throughput': 1478.95}
424
+
425
+ [INFO|callbacks.py:310] 2024-07-11 09:55:25,352 >> {'loss': 0.1353, 'learning_rate': 8.6667e-07, 'epoch': 1.34, 'throughput': 1478.71}
426
+
427
+ [INFO|callbacks.py:310] 2024-07-11 09:55:36,494 >> {'loss': 0.1376, 'learning_rate': 8.7500e-07, 'epoch': 1.35, 'throughput': 1478.25}
428
+
429
+ [INFO|callbacks.py:310] 2024-07-11 09:55:47,650 >> {'loss': 0.1313, 'learning_rate': 8.8333e-07, 'epoch': 1.36, 'throughput': 1478.13}
430
+
431
+ [INFO|callbacks.py:310] 2024-07-11 09:55:58,764 >> {'loss': 0.1367, 'learning_rate': 8.9167e-07, 'epoch': 1.38, 'throughput': 1477.58}
432
+
433
+ [INFO|callbacks.py:310] 2024-07-11 09:56:09,911 >> {'loss': 0.1350, 'learning_rate': 9.0000e-07, 'epoch': 1.39, 'throughput': 1477.67}
434
+
435
+ [INFO|callbacks.py:310] 2024-07-11 09:56:20,982 >> {'loss': 0.1212, 'learning_rate': 9.0833e-07, 'epoch': 1.40, 'throughput': 1477.90}
436
+
437
+ [INFO|callbacks.py:310] 2024-07-11 09:56:32,078 >> {'loss': 0.1355, 'learning_rate': 9.1667e-07, 'epoch': 1.41, 'throughput': 1478.26}
438
+
439
+ [INFO|callbacks.py:310] 2024-07-11 09:56:43,192 >> {'loss': 0.1439, 'learning_rate': 9.2500e-07, 'epoch': 1.43, 'throughput': 1478.53}
440
+
441
+ [INFO|callbacks.py:310] 2024-07-11 09:56:54,346 >> {'loss': 0.1323, 'learning_rate': 9.3333e-07, 'epoch': 1.44, 'throughput': 1478.60}
442
+
443
+ [INFO|callbacks.py:310] 2024-07-11 09:57:05,472 >> {'loss': 0.1376, 'learning_rate': 9.4167e-07, 'epoch': 1.45, 'throughput': 1478.52}
444
+
445
+ [INFO|callbacks.py:310] 2024-07-11 09:57:16,583 >> {'loss': 0.1191, 'learning_rate': 9.5000e-07, 'epoch': 1.47, 'throughput': 1478.08}
446
+
447
+ [INFO|callbacks.py:310] 2024-07-11 09:57:27,706 >> {'loss': 0.1045, 'learning_rate': 9.5833e-07, 'epoch': 1.48, 'throughput': 1477.61}
448
+
449
+ [INFO|callbacks.py:310] 2024-07-11 09:57:38,811 >> {'loss': 0.1467, 'learning_rate': 9.6667e-07, 'epoch': 1.49, 'throughput': 1476.92}
450
+
451
+ [INFO|callbacks.py:310] 2024-07-11 09:57:49,937 >> {'loss': 0.1142, 'learning_rate': 9.7500e-07, 'epoch': 1.50, 'throughput': 1477.03}
452
+
453
+ [INFO|callbacks.py:310] 2024-07-11 09:58:01,037 >> {'loss': 0.1107, 'learning_rate': 9.8333e-07, 'epoch': 1.52, 'throughput': 1476.73}
454
+
455
+ [INFO|callbacks.py:310] 2024-07-11 09:58:12,150 >> {'loss': 0.1460, 'learning_rate': 9.9167e-07, 'epoch': 1.53, 'throughput': 1477.00}
456
+
457
+ [INFO|callbacks.py:310] 2024-07-11 09:58:23,267 >> {'loss': 0.1533, 'learning_rate': 1.0000e-06, 'epoch': 1.54, 'throughput': 1477.02}
458
+
459
+ [INFO|callbacks.py:310] 2024-07-11 09:58:34,358 >> {'loss': 0.1315, 'learning_rate': 1.0083e-06, 'epoch': 1.56, 'throughput': 1476.81}
460
+
461
+ [INFO|callbacks.py:310] 2024-07-11 09:58:45,523 >> {'loss': 0.1197, 'learning_rate': 1.0167e-06, 'epoch': 1.57, 'throughput': 1476.92}
462
+
463
+ [INFO|callbacks.py:310] 2024-07-11 09:58:56,666 >> {'loss': 0.1228, 'learning_rate': 1.0250e-06, 'epoch': 1.58, 'throughput': 1477.06}
464
+
465
+ [INFO|callbacks.py:310] 2024-07-11 09:59:07,814 >> {'loss': 0.1273, 'learning_rate': 1.0333e-06, 'epoch': 1.59, 'throughput': 1477.06}
466
+
467
+ [INFO|callbacks.py:310] 2024-07-11 09:59:18,959 >> {'loss': 0.1410, 'learning_rate': 1.0417e-06, 'epoch': 1.61, 'throughput': 1477.45}
468
+
469
+ [INFO|callbacks.py:310] 2024-07-11 09:59:30,083 >> {'loss': 0.1315, 'learning_rate': 1.0500e-06, 'epoch': 1.62, 'throughput': 1477.73}
470
+
471
+ [INFO|callbacks.py:310] 2024-07-11 09:59:41,190 >> {'loss': 0.1136, 'learning_rate': 1.0583e-06, 'epoch': 1.63, 'throughput': 1478.09}
472
+
473
+ [INFO|callbacks.py:310] 2024-07-11 09:59:52,299 >> {'loss': 0.1013, 'learning_rate': 1.0667e-06, 'epoch': 1.65, 'throughput': 1478.54}
474
+
475
+ [INFO|callbacks.py:310] 2024-07-11 10:00:03,422 >> {'loss': 0.1056, 'learning_rate': 1.0750e-06, 'epoch': 1.66, 'throughput': 1478.14}
476
+
477
+ [INFO|callbacks.py:310] 2024-07-11 10:00:14,531 >> {'loss': 0.1071, 'learning_rate': 1.0833e-06, 'epoch': 1.67, 'throughput': 1478.54}
478
+
479
+ [INFO|callbacks.py:310] 2024-07-11 10:00:25,649 >> {'loss': 0.1357, 'learning_rate': 1.0917e-06, 'epoch': 1.68, 'throughput': 1478.41}
480
+
481
+ [INFO|callbacks.py:310] 2024-07-11 10:00:36,774 >> {'loss': 0.1181, 'learning_rate': 1.1000e-06, 'epoch': 1.70, 'throughput': 1478.26}
482
+
483
+ [INFO|callbacks.py:310] 2024-07-11 10:00:47,927 >> {'loss': 0.0826, 'learning_rate': 1.1083e-06, 'epoch': 1.71, 'throughput': 1478.30}
484
+
485
+ [INFO|callbacks.py:310] 2024-07-11 10:00:59,041 >> {'loss': 0.1221, 'learning_rate': 1.1167e-06, 'epoch': 1.72, 'throughput': 1477.92}
486
+
487
+ [INFO|callbacks.py:310] 2024-07-11 10:01:10,170 >> {'loss': 0.1021, 'learning_rate': 1.1250e-06, 'epoch': 1.74, 'throughput': 1478.20}
488
+
489
+ [INFO|callbacks.py:310] 2024-07-11 10:01:21,237 >> {'loss': 0.0980, 'learning_rate': 1.1333e-06, 'epoch': 1.75, 'throughput': 1478.17}
490
+
491
+ [INFO|callbacks.py:310] 2024-07-11 10:01:32,344 >> {'loss': 0.1085, 'learning_rate': 1.1417e-06, 'epoch': 1.76, 'throughput': 1478.40}
492
+
493
+ [INFO|callbacks.py:310] 2024-07-11 10:01:43,423 >> {'loss': 0.1038, 'learning_rate': 1.1500e-06, 'epoch': 1.77, 'throughput': 1478.07}
494
+
495
+ [INFO|callbacks.py:310] 2024-07-11 10:01:54,521 >> {'loss': 0.1081, 'learning_rate': 1.1583e-06, 'epoch': 1.79, 'throughput': 1478.19}
496
+
497
+ [INFO|callbacks.py:310] 2024-07-11 10:02:05,652 >> {'loss': 0.1287, 'learning_rate': 1.1667e-06, 'epoch': 1.80, 'throughput': 1478.10}
498
+
499
+ [INFO|callbacks.py:310] 2024-07-11 10:02:16,763 >> {'loss': 0.1068, 'learning_rate': 1.1750e-06, 'epoch': 1.81, 'throughput': 1478.11}
500
+
501
+ [INFO|callbacks.py:310] 2024-07-11 10:02:27,850 >> {'loss': 0.1202, 'learning_rate': 1.1833e-06, 'epoch': 1.83, 'throughput': 1477.67}
502
+
503
+ [INFO|callbacks.py:310] 2024-07-11 10:02:38,969 >> {'loss': 0.1190, 'learning_rate': 1.1917e-06, 'epoch': 1.84, 'throughput': 1477.42}
504
+
505
+ [INFO|callbacks.py:310] 2024-07-11 10:02:50,085 >> {'loss': 0.1273, 'learning_rate': 1.2000e-06, 'epoch': 1.85, 'throughput': 1477.51}
506
+
507
+ [INFO|callbacks.py:310] 2024-07-11 10:03:01,139 >> {'loss': 0.1024, 'learning_rate': 1.2083e-06, 'epoch': 1.86, 'throughput': 1477.11}
508
+
509
+ [INFO|callbacks.py:310] 2024-07-11 10:03:12,232 >> {'loss': 0.1143, 'learning_rate': 1.2167e-06, 'epoch': 1.88, 'throughput': 1476.97}
510
+
511
+ [INFO|callbacks.py:310] 2024-07-11 10:03:23,344 >> {'loss': 0.1229, 'learning_rate': 1.2250e-06, 'epoch': 1.89, 'throughput': 1477.01}
512
+
513
+ [INFO|callbacks.py:310] 2024-07-11 10:03:34,449 >> {'loss': 0.0964, 'learning_rate': 1.2333e-06, 'epoch': 1.90, 'throughput': 1476.61}
514
+
515
+ [INFO|callbacks.py:310] 2024-07-11 10:03:45,575 >> {'loss': 0.1132, 'learning_rate': 1.2417e-06, 'epoch': 1.92, 'throughput': 1477.03}
516
+
517
+ [INFO|callbacks.py:310] 2024-07-11 10:03:56,704 >> {'loss': 0.0734, 'learning_rate': 1.2500e-06, 'epoch': 1.93, 'throughput': 1476.98}
518
+
519
+ [INFO|callbacks.py:310] 2024-07-11 10:04:07,855 >> {'loss': 0.0939, 'learning_rate': 1.2583e-06, 'epoch': 1.94, 'throughput': 1477.57}
520
+
521
+ [INFO|callbacks.py:310] 2024-07-11 10:04:18,984 >> {'loss': 0.1143, 'learning_rate': 1.2667e-06, 'epoch': 1.95, 'throughput': 1477.48}
522
+
523
+ [INFO|callbacks.py:310] 2024-07-11 10:04:30,044 >> {'loss': 0.1114, 'learning_rate': 1.2750e-06, 'epoch': 1.97, 'throughput': 1476.92}
524
+
525
+ [INFO|callbacks.py:310] 2024-07-11 10:04:41,125 >> {'loss': 0.0948, 'learning_rate': 1.2833e-06, 'epoch': 1.98, 'throughput': 1476.58}
526
+
527
+ [INFO|callbacks.py:310] 2024-07-11 10:04:52,252 >> {'loss': 0.0805, 'learning_rate': 1.2917e-06, 'epoch': 1.99, 'throughput': 1476.85}
528
+
529
+ [INFO|callbacks.py:310] 2024-07-11 10:05:03,374 >> {'loss': 0.1001, 'learning_rate': 1.3000e-06, 'epoch': 2.01, 'throughput': 1476.62}
530
+
531
+ [INFO|callbacks.py:310] 2024-07-11 10:05:14,515 >> {'loss': 0.1002, 'learning_rate': 1.3083e-06, 'epoch': 2.02, 'throughput': 1476.44}
532
+
533
+ [INFO|callbacks.py:310] 2024-07-11 10:05:25,648 >> {'loss': 0.0847, 'learning_rate': 1.3167e-06, 'epoch': 2.03, 'throughput': 1476.26}
534
+
535
+ [INFO|callbacks.py:310] 2024-07-11 10:05:36,802 >> {'loss': 0.0710, 'learning_rate': 1.3250e-06, 'epoch': 2.05, 'throughput': 1476.41}
536
+
537
+ [INFO|callbacks.py:310] 2024-07-11 10:05:47,915 >> {'loss': 0.0791, 'learning_rate': 1.3333e-06, 'epoch': 2.06, 'throughput': 1476.00}
538
+
539
+ [INFO|callbacks.py:310] 2024-07-11 10:05:59,027 >> {'loss': 0.0769, 'learning_rate': 1.3417e-06, 'epoch': 2.07, 'throughput': 1475.83}
540
+
541
+ [INFO|callbacks.py:310] 2024-07-11 10:06:10,091 >> {'loss': 0.0916, 'learning_rate': 1.3500e-06, 'epoch': 2.08, 'throughput': 1475.46}
542
+
543
+ [INFO|callbacks.py:310] 2024-07-11 10:06:21,185 >> {'loss': 0.0584, 'learning_rate': 1.3583e-06, 'epoch': 2.10, 'throughput': 1475.48}
544
+
545
+ [INFO|callbacks.py:310] 2024-07-11 10:06:32,281 >> {'loss': 0.0811, 'learning_rate': 1.3667e-06, 'epoch': 2.11, 'throughput': 1475.35}
546
+
547
+ [INFO|callbacks.py:310] 2024-07-11 10:06:43,373 >> {'loss': 0.0663, 'learning_rate': 1.3750e-06, 'epoch': 2.12, 'throughput': 1475.17}
548
+
549
+ [INFO|callbacks.py:310] 2024-07-11 10:06:54,462 >> {'loss': 0.0802, 'learning_rate': 1.3833e-06, 'epoch': 2.14, 'throughput': 1475.13}
550
+
551
+ [INFO|callbacks.py:310] 2024-07-11 10:07:05,548 >> {'loss': 0.0587, 'learning_rate': 1.3917e-06, 'epoch': 2.15, 'throughput': 1474.82}
552
+
553
+ [INFO|callbacks.py:310] 2024-07-11 10:07:16,701 >> {'loss': 0.0953, 'learning_rate': 1.4000e-06, 'epoch': 2.16, 'throughput': 1474.73}
554
+
555
+ [INFO|callbacks.py:310] 2024-07-11 10:07:27,833 >> {'loss': 0.0795, 'learning_rate': 1.4083e-06, 'epoch': 2.17, 'throughput': 1474.63}
556
+
557
+ [INFO|callbacks.py:310] 2024-07-11 10:07:38,959 >> {'loss': 0.1015, 'learning_rate': 1.4167e-06, 'epoch': 2.19, 'throughput': 1474.63}
558
+
559
+ [INFO|callbacks.py:310] 2024-07-11 10:07:50,039 >> {'loss': 0.0614, 'learning_rate': 1.4250e-06, 'epoch': 2.20, 'throughput': 1474.37}
560
+
561
+ [INFO|callbacks.py:310] 2024-07-11 10:08:01,150 >> {'loss': 0.0753, 'learning_rate': 1.4333e-06, 'epoch': 2.21, 'throughput': 1474.59}
562
+
563
+ [INFO|callbacks.py:310] 2024-07-11 10:08:12,309 >> {'loss': 0.0800, 'learning_rate': 1.4417e-06, 'epoch': 2.23, 'throughput': 1475.05}
564
+
565
+ [INFO|callbacks.py:310] 2024-07-11 10:08:23,444 >> {'loss': 0.0603, 'learning_rate': 1.4500e-06, 'epoch': 2.24, 'throughput': 1475.13}
566
+
567
+ [INFO|callbacks.py:310] 2024-07-11 10:08:34,582 >> {'loss': 0.0874, 'learning_rate': 1.4583e-06, 'epoch': 2.25, 'throughput': 1475.01}
568
+
569
+ [INFO|callbacks.py:310] 2024-07-11 10:08:45,695 >> {'loss': 0.0833, 'learning_rate': 1.4667e-06, 'epoch': 2.26, 'throughput': 1475.02}
570
+
571
+ [INFO|callbacks.py:310] 2024-07-11 10:08:56,832 >> {'loss': 0.0676, 'learning_rate': 1.4750e-06, 'epoch': 2.28, 'throughput': 1474.80}
572
+
573
+ [INFO|callbacks.py:310] 2024-07-11 10:09:07,950 >> {'loss': 0.0860, 'learning_rate': 1.4833e-06, 'epoch': 2.29, 'throughput': 1474.96}
574
+
575
+ [INFO|callbacks.py:310] 2024-07-11 10:09:19,042 >> {'loss': 0.0662, 'learning_rate': 1.4917e-06, 'epoch': 2.30, 'throughput': 1474.55}
576
+
577
+ [INFO|callbacks.py:310] 2024-07-11 10:09:30,161 >> {'loss': 0.1028, 'learning_rate': 1.5000e-06, 'epoch': 2.32, 'throughput': 1474.63}
578
+
579
+ [INFO|callbacks.py:310] 2024-07-11 10:09:41,272 >> {'loss': 0.0882, 'learning_rate': 1.5083e-06, 'epoch': 2.33, 'throughput': 1474.45}
580
+
581
+ [INFO|callbacks.py:310] 2024-07-11 10:09:52,377 >> {'loss': 0.0806, 'learning_rate': 1.5167e-06, 'epoch': 2.34, 'throughput': 1474.52}
582
+
583
+ [INFO|callbacks.py:310] 2024-07-11 10:10:03,473 >> {'loss': 0.1108, 'learning_rate': 1.5250e-06, 'epoch': 2.35, 'throughput': 1474.19}
584
+
585
+ [INFO|callbacks.py:310] 2024-07-11 10:10:14,639 >> {'loss': 0.0687, 'learning_rate': 1.5333e-06, 'epoch': 2.37, 'throughput': 1474.68}
586
+
587
+ [INFO|callbacks.py:310] 2024-07-11 10:10:25,742 >> {'loss': 0.0736, 'learning_rate': 1.5417e-06, 'epoch': 2.38, 'throughput': 1474.67}
588
+
589
+ [INFO|callbacks.py:310] 2024-07-11 10:10:36,853 >> {'loss': 0.0779, 'learning_rate': 1.5500e-06, 'epoch': 2.39, 'throughput': 1474.70}
590
+
591
+ [INFO|callbacks.py:310] 2024-07-11 10:10:47,981 >> {'loss': 0.0709, 'learning_rate': 1.5583e-06, 'epoch': 2.41, 'throughput': 1474.61}
592
+
593
+ [INFO|callbacks.py:310] 2024-07-11 10:10:59,101 >> {'loss': 0.0652, 'learning_rate': 1.5667e-06, 'epoch': 2.42, 'throughput': 1474.76}
594
+
595
+ [INFO|callbacks.py:310] 2024-07-11 10:11:10,209 >> {'loss': 0.1095, 'learning_rate': 1.5750e-06, 'epoch': 2.43, 'throughput': 1475.00}
596
+
597
+ [INFO|callbacks.py:310] 2024-07-11 10:11:21,338 >> {'loss': 0.0618, 'learning_rate': 1.5833e-06, 'epoch': 2.44, 'throughput': 1475.18}
598
+
599
+ [INFO|callbacks.py:310] 2024-07-11 10:11:32,451 >> {'loss': 0.0666, 'learning_rate': 1.5917e-06, 'epoch': 2.46, 'throughput': 1475.36}
600
+
601
+ [INFO|callbacks.py:310] 2024-07-11 10:11:43,569 >> {'loss': 0.0573, 'learning_rate': 1.6000e-06, 'epoch': 2.47, 'throughput': 1475.40}
602
+
603
+ [INFO|callbacks.py:310] 2024-07-11 10:11:54,697 >> {'loss': 0.0577, 'learning_rate': 1.6083e-06, 'epoch': 2.48, 'throughput': 1475.50}
604
+
605
+ [INFO|callbacks.py:310] 2024-07-11 10:12:05,820 >> {'loss': 0.0813, 'learning_rate': 1.6167e-06, 'epoch': 2.50, 'throughput': 1475.34}
606
+
607
+ [INFO|callbacks.py:310] 2024-07-11 10:12:16,940 >> {'loss': 0.0660, 'learning_rate': 1.6250e-06, 'epoch': 2.51, 'throughput': 1475.24}
608
+
609
+ [INFO|callbacks.py:310] 2024-07-11 10:12:28,083 >> {'loss': 0.0622, 'learning_rate': 1.6333e-06, 'epoch': 2.52, 'throughput': 1475.32}
610
+
611
+ [INFO|callbacks.py:310] 2024-07-11 10:12:39,175 >> {'loss': 0.0616, 'learning_rate': 1.6417e-06, 'epoch': 2.53, 'throughput': 1475.12}
612
+
613
+ [INFO|callbacks.py:310] 2024-07-11 10:12:50,265 >> {'loss': 0.0993, 'learning_rate': 1.6500e-06, 'epoch': 2.55, 'throughput': 1475.12}
614
+
615
+ [INFO|callbacks.py:310] 2024-07-11 10:13:01,337 >> {'loss': 0.0702, 'learning_rate': 1.6583e-06, 'epoch': 2.56, 'throughput': 1475.10}
616
+
617
+ [INFO|callbacks.py:310] 2024-07-11 10:13:12,425 >> {'loss': 0.0743, 'learning_rate': 1.6667e-06, 'epoch': 2.57, 'throughput': 1474.97}
618
+
619
+ [INFO|callbacks.py:310] 2024-07-11 10:13:23,525 >> {'loss': 0.0647, 'learning_rate': 1.6750e-06, 'epoch': 2.59, 'throughput': 1474.93}
620
+
621
+ [INFO|callbacks.py:310] 2024-07-11 10:13:34,651 >> {'loss': 0.0814, 'learning_rate': 1.6833e-06, 'epoch': 2.60, 'throughput': 1475.03}
622
+
623
+ [INFO|callbacks.py:310] 2024-07-11 10:13:45,757 >> {'loss': 0.0861, 'learning_rate': 1.6917e-06, 'epoch': 2.61, 'throughput': 1474.89}
624
+
625
+ [INFO|callbacks.py:310] 2024-07-11 10:13:56,905 >> {'loss': 0.0769, 'learning_rate': 1.7000e-06, 'epoch': 2.62, 'throughput': 1475.15}
626
+
627
+ [INFO|callbacks.py:310] 2024-07-11 10:14:08,051 >> {'loss': 0.0888, 'learning_rate': 1.7083e-06, 'epoch': 2.64, 'throughput': 1475.31}
628
+
629
+ [INFO|callbacks.py:310] 2024-07-11 10:14:19,164 >> {'loss': 0.1017, 'learning_rate': 1.7167e-06, 'epoch': 2.65, 'throughput': 1475.34}
630
+
631
+ [INFO|callbacks.py:310] 2024-07-11 10:14:30,261 >> {'loss': 0.0677, 'learning_rate': 1.7250e-06, 'epoch': 2.66, 'throughput': 1475.25}
632
+
633
+ [INFO|callbacks.py:310] 2024-07-11 10:14:41,375 >> {'loss': 0.0861, 'learning_rate': 1.7333e-06, 'epoch': 2.68, 'throughput': 1475.55}
634
+
635
+ [INFO|callbacks.py:310] 2024-07-11 10:14:52,497 >> {'loss': 0.0562, 'learning_rate': 1.7417e-06, 'epoch': 2.69, 'throughput': 1475.69}
636
+
637
+ [INFO|callbacks.py:310] 2024-07-11 10:15:03,612 >> {'loss': 0.0641, 'learning_rate': 1.7500e-06, 'epoch': 2.70, 'throughput': 1475.59}
638
+
639
+ [INFO|callbacks.py:310] 2024-07-11 10:15:14,730 >> {'loss': 0.0829, 'learning_rate': 1.7583e-06, 'epoch': 2.71, 'throughput': 1475.88}
640
+
641
+ [INFO|callbacks.py:310] 2024-07-11 10:15:25,844 >> {'loss': 0.0632, 'learning_rate': 1.7667e-06, 'epoch': 2.73, 'throughput': 1475.70}
642
+
643
+ [INFO|callbacks.py:310] 2024-07-11 10:15:36,953 >> {'loss': 0.0620, 'learning_rate': 1.7750e-06, 'epoch': 2.74, 'throughput': 1475.36}
644
+
645
+ [INFO|callbacks.py:310] 2024-07-11 10:15:48,070 >> {'loss': 0.0816, 'learning_rate': 1.7833e-06, 'epoch': 2.75, 'throughput': 1475.14}
646
+
647
+ [INFO|callbacks.py:310] 2024-07-11 10:15:59,182 >> {'loss': 0.0960, 'learning_rate': 1.7917e-06, 'epoch': 2.77, 'throughput': 1475.26}
648
+
649
+ [INFO|callbacks.py:310] 2024-07-11 10:16:10,296 >> {'loss': 0.0639, 'learning_rate': 1.8000e-06, 'epoch': 2.78, 'throughput': 1475.21}
650
+
651
+ [INFO|callbacks.py:310] 2024-07-11 10:16:21,386 >> {'loss': 0.0915, 'learning_rate': 1.8083e-06, 'epoch': 2.79, 'throughput': 1474.69}
652
+
653
+ [INFO|callbacks.py:310] 2024-07-11 10:16:32,501 >> {'loss': 0.0610, 'learning_rate': 1.8167e-06, 'epoch': 2.80, 'throughput': 1474.53}
654
+
655
+ [INFO|callbacks.py:310] 2024-07-11 10:16:43,658 >> {'loss': 0.0572, 'learning_rate': 1.8250e-06, 'epoch': 2.82, 'throughput': 1474.35}
656
+
657
+ [INFO|callbacks.py:310] 2024-07-11 10:16:54,814 >> {'loss': 0.0497, 'learning_rate': 1.8333e-06, 'epoch': 2.83, 'throughput': 1474.44}
658
+
659
+ [INFO|callbacks.py:310] 2024-07-11 10:17:05,943 >> {'loss': 0.0672, 'learning_rate': 1.8417e-06, 'epoch': 2.84, 'throughput': 1474.31}
660
+
661
+ [INFO|callbacks.py:310] 2024-07-11 10:17:17,069 >> {'loss': 0.0563, 'learning_rate': 1.8500e-06, 'epoch': 2.86, 'throughput': 1474.33}
662
+
663
+ [INFO|callbacks.py:310] 2024-07-11 10:17:28,189 >> {'loss': 0.0690, 'learning_rate': 1.8583e-06, 'epoch': 2.87, 'throughput': 1474.50}
664
+
665
+ [INFO|callbacks.py:310] 2024-07-11 10:17:39,309 >> {'loss': 0.0824, 'learning_rate': 1.8667e-06, 'epoch': 2.88, 'throughput': 1474.59}
666
+
667
+ [INFO|callbacks.py:310] 2024-07-11 10:17:50,430 >> {'loss': 0.0570, 'learning_rate': 1.8750e-06, 'epoch': 2.89, 'throughput': 1474.72}
668
+
669
+ [INFO|callbacks.py:310] 2024-07-11 10:18:01,560 >> {'loss': 0.0549, 'learning_rate': 1.8833e-06, 'epoch': 2.91, 'throughput': 1475.08}
670
+
671
+ [INFO|callbacks.py:310] 2024-07-11 10:18:12,661 >> {'loss': 0.0652, 'learning_rate': 1.8917e-06, 'epoch': 2.92, 'throughput': 1474.98}
672
+
673
+ [INFO|callbacks.py:310] 2024-07-11 10:18:23,802 >> {'loss': 0.0743, 'learning_rate': 1.9000e-06, 'epoch': 2.93, 'throughput': 1475.20}
674
+
675
+ [INFO|callbacks.py:310] 2024-07-11 10:18:34,940 >> {'loss': 0.0416, 'learning_rate': 1.9083e-06, 'epoch': 2.95, 'throughput': 1475.35}
676
+
677
+ [INFO|callbacks.py:310] 2024-07-11 10:18:46,091 >> {'loss': 0.0668, 'learning_rate': 1.9167e-06, 'epoch': 2.96, 'throughput': 1475.75}
678
+
679
+ [INFO|callbacks.py:310] 2024-07-11 10:18:57,199 >> {'loss': 0.0603, 'learning_rate': 1.9250e-06, 'epoch': 2.97, 'throughput': 1475.60}
680
+
681
+ [INFO|callbacks.py:310] 2024-07-11 10:19:08,355 >> {'loss': 0.0660, 'learning_rate': 1.9333e-06, 'epoch': 2.98, 'throughput': 1475.88}
682
+
683
+ [INFO|callbacks.py:310] 2024-07-11 10:19:19,452 >> {'loss': 0.0692, 'learning_rate': 1.9417e-06, 'epoch': 3.00, 'throughput': 1475.87}
684
+
685
+ [INFO|callbacks.py:310] 2024-07-11 10:19:30,549 >> {'loss': 0.0323, 'learning_rate': 1.9500e-06, 'epoch': 3.01, 'throughput': 1475.89}
686
+
687
+ [INFO|callbacks.py:310] 2024-07-11 10:19:41,651 >> {'loss': 0.0403, 'learning_rate': 1.9583e-06, 'epoch': 3.02, 'throughput': 1475.72}
688
+
689
+ [INFO|callbacks.py:310] 2024-07-11 10:19:52,776 >> {'loss': 0.0477, 'learning_rate': 1.9667e-06, 'epoch': 3.04, 'throughput': 1475.66}
690
+
691
+ [INFO|callbacks.py:310] 2024-07-11 10:20:03,890 >> {'loss': 0.0356, 'learning_rate': 1.9750e-06, 'epoch': 3.05, 'throughput': 1475.41}
692
+
693
+ [INFO|callbacks.py:310] 2024-07-11 10:20:14,994 >> {'loss': 0.0324, 'learning_rate': 1.9833e-06, 'epoch': 3.06, 'throughput': 1475.56}
694
+
695
+ [INFO|callbacks.py:310] 2024-07-11 10:20:26,140 >> {'loss': 0.0428, 'learning_rate': 1.9917e-06, 'epoch': 3.07, 'throughput': 1475.76}
696
+
697
+ [INFO|callbacks.py:310] 2024-07-11 10:20:37,270 >> {'loss': 0.0315, 'learning_rate': 2.0000e-06, 'epoch': 3.09, 'throughput': 1475.75}
698
+
699
+ [INFO|callbacks.py:310] 2024-07-11 10:20:48,387 >> {'loss': 0.0366, 'learning_rate': 2.0083e-06, 'epoch': 3.10, 'throughput': 1475.78}
700
+
701
+ [INFO|callbacks.py:310] 2024-07-11 10:20:59,460 >> {'loss': 0.0307, 'learning_rate': 2.0167e-06, 'epoch': 3.11, 'throughput': 1475.47}
702
+
703
+ [INFO|callbacks.py:310] 2024-07-11 10:21:10,586 >> {'loss': 0.0338, 'learning_rate': 2.0250e-06, 'epoch': 3.13, 'throughput': 1475.52}
704
+
705
+ [INFO|callbacks.py:310] 2024-07-11 10:21:21,705 >> {'loss': 0.0348, 'learning_rate': 2.0333e-06, 'epoch': 3.14, 'throughput': 1475.62}
706
+
707
+ [INFO|callbacks.py:310] 2024-07-11 10:21:32,815 >> {'loss': 0.0355, 'learning_rate': 2.0417e-06, 'epoch': 3.15, 'throughput': 1475.75}
708
+
709
+ [INFO|callbacks.py:310] 2024-07-11 10:21:43,960 >> {'loss': 0.0272, 'learning_rate': 2.0500e-06, 'epoch': 3.16, 'throughput': 1475.84}
710
+
711
+ [INFO|callbacks.py:310] 2024-07-11 10:21:55,085 >> {'loss': 0.0464, 'learning_rate': 2.0583e-06, 'epoch': 3.18, 'throughput': 1475.83}
712
+
713
+ [INFO|callbacks.py:310] 2024-07-11 10:22:06,205 >> {'loss': 0.0268, 'learning_rate': 2.0667e-06, 'epoch': 3.19, 'throughput': 1475.60}
714
+
715
+ [INFO|callbacks.py:310] 2024-07-11 10:22:17,319 >> {'loss': 0.0229, 'learning_rate': 2.0750e-06, 'epoch': 3.20, 'throughput': 1475.38}
716
+
717
+ [INFO|callbacks.py:310] 2024-07-11 10:22:28,439 >> {'loss': 0.0373, 'learning_rate': 2.0833e-06, 'epoch': 3.22, 'throughput': 1475.74}
718
+
719
+ [INFO|callbacks.py:310] 2024-07-11 10:22:39,521 >> {'loss': 0.0361, 'learning_rate': 2.0917e-06, 'epoch': 3.23, 'throughput': 1475.59}
720
+
721
+ [INFO|callbacks.py:310] 2024-07-11 10:22:50,624 >> {'loss': 0.0401, 'learning_rate': 2.1000e-06, 'epoch': 3.24, 'throughput': 1475.60}
722
+
723
+ [INFO|callbacks.py:310] 2024-07-11 10:23:01,715 >> {'loss': 0.0262, 'learning_rate': 2.1083e-06, 'epoch': 3.25, 'throughput': 1475.38}
724
+
725
+ [INFO|callbacks.py:310] 2024-07-11 10:23:12,825 >> {'loss': 0.0481, 'learning_rate': 2.1167e-06, 'epoch': 3.27, 'throughput': 1475.34}
726
+
727
+ [INFO|callbacks.py:310] 2024-07-11 10:23:23,969 >> {'loss': 0.0417, 'learning_rate': 2.1250e-06, 'epoch': 3.28, 'throughput': 1475.21}
728
+
729
+ [INFO|callbacks.py:310] 2024-07-11 10:23:35,127 >> {'loss': 0.0457, 'learning_rate': 2.1333e-06, 'epoch': 3.29, 'throughput': 1475.48}
730
+
731
+ [INFO|callbacks.py:310] 2024-07-11 10:23:46,239 >> {'loss': 0.0175, 'learning_rate': 2.1417e-06, 'epoch': 3.31, 'throughput': 1475.19}
732
+
733
+ [INFO|callbacks.py:310] 2024-07-11 10:23:57,391 >> {'loss': 0.0371, 'learning_rate': 2.1500e-06, 'epoch': 3.32, 'throughput': 1475.40}
734
+
735
+ [INFO|callbacks.py:310] 2024-07-11 10:24:08,512 >> {'loss': 0.0268, 'learning_rate': 2.1583e-06, 'epoch': 3.33, 'throughput': 1475.58}
736
+
737
+ [INFO|callbacks.py:310] 2024-07-11 10:24:19,598 >> {'loss': 0.0417, 'learning_rate': 2.1667e-06, 'epoch': 3.34, 'throughput': 1475.58}
738
+
739
+ [INFO|callbacks.py:310] 2024-07-11 10:24:30,714 >> {'loss': 0.0264, 'learning_rate': 2.1750e-06, 'epoch': 3.36, 'throughput': 1475.32}
740
+
741
+ [INFO|callbacks.py:310] 2024-07-11 10:24:41,829 >> {'loss': 0.0336, 'learning_rate': 2.1833e-06, 'epoch': 3.37, 'throughput': 1475.42}
742
+
743
+ [INFO|callbacks.py:310] 2024-07-11 10:24:52,937 >> {'loss': 0.0434, 'learning_rate': 2.1917e-06, 'epoch': 3.38, 'throughput': 1475.28}
744
+
745
+ [INFO|callbacks.py:310] 2024-07-11 10:25:04,052 >> {'loss': 0.0389, 'learning_rate': 2.2000e-06, 'epoch': 3.40, 'throughput': 1475.08}
746
+
747
+ [INFO|callbacks.py:310] 2024-07-11 10:25:15,179 >> {'loss': 0.0450, 'learning_rate': 2.2083e-06, 'epoch': 3.41, 'throughput': 1474.84}
748
+
749
+ [INFO|callbacks.py:310] 2024-07-11 10:25:26,284 >> {'loss': 0.0331, 'learning_rate': 2.2167e-06, 'epoch': 3.42, 'throughput': 1474.66}
750
+
751
+ [INFO|callbacks.py:310] 2024-07-11 10:25:37,399 >> {'loss': 0.0228, 'learning_rate': 2.2250e-06, 'epoch': 3.43, 'throughput': 1474.73}
752
+
753
+ [INFO|callbacks.py:310] 2024-07-11 10:25:48,485 >> {'loss': 0.0307, 'learning_rate': 2.2333e-06, 'epoch': 3.45, 'throughput': 1474.93}
754
+
755
+ [INFO|callbacks.py:310] 2024-07-11 10:25:59,600 >> {'loss': 0.0332, 'learning_rate': 2.2417e-06, 'epoch': 3.46, 'throughput': 1474.79}
756
+
757
+ [INFO|callbacks.py:310] 2024-07-11 10:26:10,724 >> {'loss': 0.0662, 'learning_rate': 2.2500e-06, 'epoch': 3.47, 'throughput': 1474.75}
758
+
759
+ [INFO|callbacks.py:310] 2024-07-11 10:26:21,833 >> {'loss': 0.0431, 'learning_rate': 2.2583e-06, 'epoch': 3.49, 'throughput': 1474.76}
760
+
761
+ [INFO|callbacks.py:310] 2024-07-11 10:26:32,988 >> {'loss': 0.0423, 'learning_rate': 2.2667e-06, 'epoch': 3.50, 'throughput': 1474.84}
762
+
763
+ [INFO|callbacks.py:310] 2024-07-11 10:26:44,135 >> {'loss': 0.0447, 'learning_rate': 2.2750e-06, 'epoch': 3.51, 'throughput': 1474.86}
764
+
765
+ [INFO|callbacks.py:310] 2024-07-11 10:26:55,240 >> {'loss': 0.0337, 'learning_rate': 2.2833e-06, 'epoch': 3.52, 'throughput': 1474.75}
766
+
767
+ [INFO|callbacks.py:310] 2024-07-11 10:27:06,362 >> {'loss': 0.0319, 'learning_rate': 2.2917e-06, 'epoch': 3.54, 'throughput': 1474.61}
768
+
769
+ [INFO|callbacks.py:310] 2024-07-11 10:27:17,507 >> {'loss': 0.0270, 'learning_rate': 2.3000e-06, 'epoch': 3.55, 'throughput': 1474.75}
770
+
771
+ [INFO|callbacks.py:310] 2024-07-11 10:27:28,590 >> {'loss': 0.0244, 'learning_rate': 2.3083e-06, 'epoch': 3.56, 'throughput': 1474.91}
772
+
773
+ [INFO|callbacks.py:310] 2024-07-11 10:27:39,702 >> {'loss': 0.0377, 'learning_rate': 2.3167e-06, 'epoch': 3.58, 'throughput': 1475.12}
774
+
775
+ [INFO|callbacks.py:310] 2024-07-11 10:27:50,833 >> {'loss': 0.0477, 'learning_rate': 2.3250e-06, 'epoch': 3.59, 'throughput': 1475.12}
776
+
777
+ [INFO|callbacks.py:310] 2024-07-11 10:28:01,921 >> {'loss': 0.0332, 'learning_rate': 2.3333e-06, 'epoch': 3.60, 'throughput': 1474.74}
778
+
779
+ [INFO|callbacks.py:310] 2024-07-11 10:28:13,062 >> {'loss': 0.0285, 'learning_rate': 2.3417e-06, 'epoch': 3.61, 'throughput': 1474.97}
780
+
781
+ [INFO|callbacks.py:310] 2024-07-11 10:28:24,197 >> {'loss': 0.0468, 'learning_rate': 2.3500e-06, 'epoch': 3.63, 'throughput': 1475.00}
782
+
783
+ [INFO|callbacks.py:310] 2024-07-11 10:28:35,319 >> {'loss': 0.0370, 'learning_rate': 2.3583e-06, 'epoch': 3.64, 'throughput': 1475.13}
784
+
785
+ [INFO|callbacks.py:310] 2024-07-11 10:28:46,466 >> {'loss': 0.0410, 'learning_rate': 2.3667e-06, 'epoch': 3.65, 'throughput': 1474.98}
786
+
787
+ [INFO|callbacks.py:310] 2024-07-11 10:28:57,575 >> {'loss': 0.0461, 'learning_rate': 2.3750e-06, 'epoch': 3.67, 'throughput': 1475.10}
788
+
789
+ [INFO|callbacks.py:310] 2024-07-11 10:29:08,687 >> {'loss': 0.0594, 'learning_rate': 2.3833e-06, 'epoch': 3.68, 'throughput': 1474.95}
790
+
791
+ [INFO|callbacks.py:310] 2024-07-11 10:29:19,788 >> {'loss': 0.0728, 'learning_rate': 2.3917e-06, 'epoch': 3.69, 'throughput': 1475.07}
792
+
793
+ [INFO|callbacks.py:310] 2024-07-11 10:29:30,916 >> {'loss': 0.0290, 'learning_rate': 2.4000e-06, 'epoch': 3.70, 'throughput': 1475.20}
794
+
795
+ [INFO|callbacks.py:310] 2024-07-11 10:29:42,019 >> {'loss': 0.0412, 'learning_rate': 2.4083e-06, 'epoch': 3.72, 'throughput': 1475.44}
796
+
797
+ [INFO|callbacks.py:310] 2024-07-11 10:29:53,160 >> {'loss': 0.0262, 'learning_rate': 2.4167e-06, 'epoch': 3.73, 'throughput': 1475.13}
798
+
799
+ [INFO|callbacks.py:310] 2024-07-11 10:30:04,273 >> {'loss': 0.0796, 'learning_rate': 2.4250e-06, 'epoch': 3.74, 'throughput': 1474.96}
800
+
801
+ [INFO|callbacks.py:310] 2024-07-11 10:30:15,400 >> {'loss': 0.0447, 'learning_rate': 2.4333e-06, 'epoch': 3.76, 'throughput': 1474.93}
802
+
803
+ [INFO|callbacks.py:310] 2024-07-11 10:30:26,536 >> {'loss': 0.0252, 'learning_rate': 2.4417e-06, 'epoch': 3.77, 'throughput': 1474.95}
804
+
805
+ [INFO|callbacks.py:310] 2024-07-11 10:30:37,624 >> {'loss': 0.0458, 'learning_rate': 2.4500e-06, 'epoch': 3.78, 'throughput': 1474.79}
806
+
807
+ [INFO|callbacks.py:310] 2024-07-11 10:30:48,698 >> {'loss': 0.0431, 'learning_rate': 2.4583e-06, 'epoch': 3.79, 'throughput': 1474.62}
808
+
809
+ [INFO|callbacks.py:310] 2024-07-11 10:30:59,827 >> {'loss': 0.0422, 'learning_rate': 2.4667e-06, 'epoch': 3.81, 'throughput': 1474.72}
810
+
811
+ [INFO|callbacks.py:310] 2024-07-11 10:31:10,927 >> {'loss': 0.0428, 'learning_rate': 2.4750e-06, 'epoch': 3.82, 'throughput': 1474.85}
812
+
813
+ [INFO|callbacks.py:310] 2024-07-11 10:31:22,040 >> {'loss': 0.0473, 'learning_rate': 2.4833e-06, 'epoch': 3.83, 'throughput': 1474.88}
814
+
815
+ [INFO|callbacks.py:310] 2024-07-11 10:31:33,168 >> {'loss': 0.0223, 'learning_rate': 2.4917e-06, 'epoch': 3.85, 'throughput': 1474.81}
816
+
817
+ [INFO|callbacks.py:310] 2024-07-11 10:31:44,304 >> {'loss': 0.0274, 'learning_rate': 2.5000e-06, 'epoch': 3.86, 'throughput': 1474.73}
818
+
819
+ [INFO|callbacks.py:310] 2024-07-11 10:31:55,446 >> {'loss': 0.0454, 'learning_rate': 2.5083e-06, 'epoch': 3.87, 'throughput': 1474.68}
820
+
821
+ [INFO|callbacks.py:310] 2024-07-11 10:32:06,565 >> {'loss': 0.0220, 'learning_rate': 2.5167e-06, 'epoch': 3.88, 'throughput': 1474.90}
822
+
823
+ [INFO|callbacks.py:310] 2024-07-11 10:32:17,678 >> {'loss': 0.0357, 'learning_rate': 2.5250e-06, 'epoch': 3.90, 'throughput': 1474.97}
824
+
825
+ [INFO|callbacks.py:310] 2024-07-11 10:32:28,794 >> {'loss': 0.0458, 'learning_rate': 2.5333e-06, 'epoch': 3.91, 'throughput': 1475.20}
826
+
827
+ [INFO|callbacks.py:310] 2024-07-11 10:32:39,890 >> {'loss': 0.0454, 'learning_rate': 2.5417e-06, 'epoch': 3.92, 'throughput': 1475.13}
828
+
829
+ [INFO|callbacks.py:310] 2024-07-11 10:32:51,000 >> {'loss': 0.0262, 'learning_rate': 2.5500e-06, 'epoch': 3.94, 'throughput': 1475.05}
830
+
831
+ [INFO|callbacks.py:310] 2024-07-11 10:33:02,090 >> {'loss': 0.0234, 'learning_rate': 2.5583e-06, 'epoch': 3.95, 'throughput': 1474.86}
832
+
833
+ [INFO|callbacks.py:310] 2024-07-11 10:33:13,206 >> {'loss': 0.0366, 'learning_rate': 2.5667e-06, 'epoch': 3.96, 'throughput': 1474.97}
834
+
835
+ [INFO|callbacks.py:310] 2024-07-11 10:33:24,327 >> {'loss': 0.0236, 'learning_rate': 2.5750e-06, 'epoch': 3.97, 'throughput': 1474.97}
836
+
837
+ [INFO|callbacks.py:310] 2024-07-11 10:33:35,481 >> {'loss': 0.0403, 'learning_rate': 2.5833e-06, 'epoch': 3.99, 'throughput': 1475.24}
838
+
839
+ [INFO|callbacks.py:310] 2024-07-11 10:33:46,614 >> {'loss': 0.0395, 'learning_rate': 2.5917e-06, 'epoch': 4.00, 'throughput': 1475.24}
840
+
841
+ [INFO|callbacks.py:310] 2024-07-11 10:33:57,694 >> {'loss': 0.0163, 'learning_rate': 2.6000e-06, 'epoch': 4.01, 'throughput': 1475.19}
842
+
843
+ [INFO|callbacks.py:310] 2024-07-11 10:34:08,791 >> {'loss': 0.0181, 'learning_rate': 2.6083e-06, 'epoch': 4.03, 'throughput': 1475.00}
844
+
845
+ [INFO|callbacks.py:310] 2024-07-11 10:34:19,898 >> {'loss': 0.0130, 'learning_rate': 2.6167e-06, 'epoch': 4.04, 'throughput': 1474.96}
846
+
847
+ [INFO|callbacks.py:310] 2024-07-11 10:34:30,966 >> {'loss': 0.0178, 'learning_rate': 2.6250e-06, 'epoch': 4.05, 'throughput': 1474.78}
848
+
849
+ [INFO|callbacks.py:310] 2024-07-11 10:34:42,123 >> {'loss': 0.0153, 'learning_rate': 2.6333e-06, 'epoch': 4.06, 'throughput': 1475.20}
850
+
851
+ [INFO|callbacks.py:310] 2024-07-11 10:34:53,252 >> {'loss': 0.0205, 'learning_rate': 2.6417e-06, 'epoch': 4.08, 'throughput': 1475.09}
852
+
853
+ [INFO|callbacks.py:310] 2024-07-11 10:35:04,398 >> {'loss': 0.0021, 'learning_rate': 2.6500e-06, 'epoch': 4.09, 'throughput': 1475.17}
854
+
855
+ [INFO|callbacks.py:310] 2024-07-11 10:35:15,518 >> {'loss': 0.0220, 'learning_rate': 2.6583e-06, 'epoch': 4.10, 'throughput': 1475.20}
856
+
857
+ [INFO|callbacks.py:310] 2024-07-11 10:35:26,625 >> {'loss': 0.0134, 'learning_rate': 2.6667e-06, 'epoch': 4.12, 'throughput': 1475.14}
858
+
859
+ [INFO|callbacks.py:310] 2024-07-11 10:35:37,710 >> {'loss': 0.0175, 'learning_rate': 2.6750e-06, 'epoch': 4.13, 'throughput': 1474.95}
860
+
861
+ [INFO|callbacks.py:310] 2024-07-11 10:35:48,853 >> {'loss': 0.0230, 'learning_rate': 2.6833e-06, 'epoch': 4.14, 'throughput': 1474.98}
862
+
863
+ [INFO|callbacks.py:310] 2024-07-11 10:35:59,942 >> {'loss': 0.0303, 'learning_rate': 2.6917e-06, 'epoch': 4.15, 'throughput': 1474.77}
864
+
865
+ [INFO|callbacks.py:310] 2024-07-11 10:36:11,072 >> {'loss': 0.0187, 'learning_rate': 2.7000e-06, 'epoch': 4.17, 'throughput': 1474.91}
866
+
867
+ [INFO|callbacks.py:310] 2024-07-11 10:36:22,179 >> {'loss': 0.0126, 'learning_rate': 2.7083e-06, 'epoch': 4.18, 'throughput': 1474.71}
868
+
869
+ [INFO|callbacks.py:310] 2024-07-11 10:36:33,308 >> {'loss': 0.0203, 'learning_rate': 2.7167e-06, 'epoch': 4.19, 'throughput': 1474.67}
870
+
871
+ [INFO|callbacks.py:310] 2024-07-11 10:36:44,410 >> {'loss': 0.0078, 'learning_rate': 2.7250e-06, 'epoch': 4.21, 'throughput': 1474.62}
872
+
873
+ [INFO|callbacks.py:310] 2024-07-11 10:36:55,536 >> {'loss': 0.0165, 'learning_rate': 2.7333e-06, 'epoch': 4.22, 'throughput': 1474.50}
874
+
875
+ [INFO|callbacks.py:310] 2024-07-11 10:37:06,705 >> {'loss': 0.0113, 'learning_rate': 2.7417e-06, 'epoch': 4.23, 'throughput': 1474.78}
876
+
877
+ [INFO|callbacks.py:310] 2024-07-11 10:37:17,796 >> {'loss': 0.0058, 'learning_rate': 2.7500e-06, 'epoch': 4.24, 'throughput': 1474.81}
878
+
879
+ [INFO|callbacks.py:310] 2024-07-11 10:37:28,878 >> {'loss': 0.0070, 'learning_rate': 2.7583e-06, 'epoch': 4.26, 'throughput': 1474.67}
880
+
881
+ [INFO|callbacks.py:310] 2024-07-11 10:37:39,999 >> {'loss': 0.0270, 'learning_rate': 2.7667e-06, 'epoch': 4.27, 'throughput': 1474.84}
882
+
883
+ [INFO|callbacks.py:310] 2024-07-11 10:37:51,079 >> {'loss': 0.0276, 'learning_rate': 2.7750e-06, 'epoch': 4.28, 'throughput': 1474.61}
884
+
885
+ [INFO|callbacks.py:310] 2024-07-11 10:38:02,192 >> {'loss': 0.0367, 'learning_rate': 2.7833e-06, 'epoch': 4.30, 'throughput': 1474.55}
886
+
887
+ [INFO|callbacks.py:310] 2024-07-11 10:38:13,299 >> {'loss': 0.0161, 'learning_rate': 2.7917e-06, 'epoch': 4.31, 'throughput': 1474.44}
888
+
889
+ [INFO|callbacks.py:310] 2024-07-11 10:38:24,431 >> {'loss': 0.0180, 'learning_rate': 2.8000e-06, 'epoch': 4.32, 'throughput': 1474.57}
890
+
891
+ [INFO|callbacks.py:310] 2024-07-11 10:38:35,563 >> {'loss': 0.0044, 'learning_rate': 2.8083e-06, 'epoch': 4.33, 'throughput': 1474.64}
892
+
893
+ [INFO|callbacks.py:310] 2024-07-11 10:38:46,691 >> {'loss': 0.0109, 'learning_rate': 2.8167e-06, 'epoch': 4.35, 'throughput': 1474.75}
894
+
895
+ [INFO|callbacks.py:310] 2024-07-11 10:38:57,770 >> {'loss': 0.0173, 'learning_rate': 2.8250e-06, 'epoch': 4.36, 'throughput': 1474.67}
896
+
897
+ [INFO|callbacks.py:310] 2024-07-11 10:39:08,939 >> {'loss': 0.0107, 'learning_rate': 2.8333e-06, 'epoch': 4.37, 'throughput': 1474.70}
898
+
899
+ [INFO|callbacks.py:310] 2024-07-11 10:39:20,028 >> {'loss': 0.0116, 'learning_rate': 2.8417e-06, 'epoch': 4.39, 'throughput': 1474.55}
900
+
901
+ [INFO|callbacks.py:310] 2024-07-11 10:39:31,145 >> {'loss': 0.0281, 'learning_rate': 2.8500e-06, 'epoch': 4.40, 'throughput': 1474.78}
902
+
903
+ [INFO|callbacks.py:310] 2024-07-11 10:39:42,249 >> {'loss': 0.0246, 'learning_rate': 2.8583e-06, 'epoch': 4.41, 'throughput': 1474.86}
904
+
905
+ [INFO|callbacks.py:310] 2024-07-11 10:39:53,373 >> {'loss': 0.0146, 'learning_rate': 2.8667e-06, 'epoch': 4.42, 'throughput': 1474.84}
906
+
907
+ [INFO|callbacks.py:310] 2024-07-11 10:40:04,489 >> {'loss': 0.0439, 'learning_rate': 2.8750e-06, 'epoch': 4.44, 'throughput': 1474.62}
908
+
909
+ [INFO|callbacks.py:310] 2024-07-11 10:40:15,615 >> {'loss': 0.0279, 'learning_rate': 2.8833e-06, 'epoch': 4.45, 'throughput': 1474.60}
910
+
911
+ [INFO|callbacks.py:310] 2024-07-11 10:40:26,740 >> {'loss': 0.0276, 'learning_rate': 2.8917e-06, 'epoch': 4.46, 'throughput': 1474.70}
912
+
913
+ [INFO|callbacks.py:310] 2024-07-11 10:40:37,836 >> {'loss': 0.0167, 'learning_rate': 2.9000e-06, 'epoch': 4.48, 'throughput': 1474.63}
914
+
915
+ [INFO|callbacks.py:310] 2024-07-11 10:40:48,963 >> {'loss': 0.0258, 'learning_rate': 2.9083e-06, 'epoch': 4.49, 'throughput': 1474.83}
916
+
917
+ [INFO|callbacks.py:310] 2024-07-11 10:41:00,055 >> {'loss': 0.0306, 'learning_rate': 2.9167e-06, 'epoch': 4.50, 'throughput': 1474.91}
918
+
919
+ [INFO|callbacks.py:310] 2024-07-11 10:41:11,182 >> {'loss': 0.0395, 'learning_rate': 2.9250e-06, 'epoch': 4.51, 'throughput': 1475.01}
920
+
921
+ [INFO|callbacks.py:310] 2024-07-11 10:41:22,328 >> {'loss': 0.0203, 'learning_rate': 2.9333e-06, 'epoch': 4.53, 'throughput': 1475.06}
922
+
923
+ [INFO|callbacks.py:310] 2024-07-11 10:41:33,436 >> {'loss': 0.0241, 'learning_rate': 2.9417e-06, 'epoch': 4.54, 'throughput': 1475.01}
924
+
925
+ [INFO|callbacks.py:310] 2024-07-11 10:41:44,523 >> {'loss': 0.0151, 'learning_rate': 2.9500e-06, 'epoch': 4.55, 'throughput': 1474.68}
926
+
927
+ [INFO|callbacks.py:310] 2024-07-11 10:41:55,641 >> {'loss': 0.0355, 'learning_rate': 2.9583e-06, 'epoch': 4.57, 'throughput': 1474.59}
928
+
929
+ [INFO|callbacks.py:310] 2024-07-11 10:42:06,750 >> {'loss': 0.0093, 'learning_rate': 2.9667e-06, 'epoch': 4.58, 'throughput': 1474.72}
930
+
931
+ [INFO|callbacks.py:310] 2024-07-11 10:42:17,848 >> {'loss': 0.0314, 'learning_rate': 2.9750e-06, 'epoch': 4.59, 'throughput': 1474.75}
932
+
933
+ [INFO|callbacks.py:310] 2024-07-11 10:42:28,952 >> {'loss': 0.0155, 'learning_rate': 2.9833e-06, 'epoch': 4.60, 'throughput': 1474.77}
934
+
935
+ [INFO|callbacks.py:310] 2024-07-11 10:42:40,070 >> {'loss': 0.0138, 'learning_rate': 2.9917e-06, 'epoch': 4.62, 'throughput': 1474.94}
936
+
937
+ [INFO|callbacks.py:310] 2024-07-11 10:42:51,212 >> {'loss': 0.0212, 'learning_rate': 3.0000e-06, 'epoch': 4.63, 'throughput': 1475.10}
938
+
939
+ [INFO|callbacks.py:310] 2024-07-11 10:43:02,328 >> {'loss': 0.0255, 'learning_rate': 3.0083e-06, 'epoch': 4.64, 'throughput': 1475.11}
940
+
941
+ [INFO|callbacks.py:310] 2024-07-11 10:43:13,439 >> {'loss': 0.0231, 'learning_rate': 3.0167e-06, 'epoch': 4.66, 'throughput': 1474.99}
942
+
943
+ [INFO|callbacks.py:310] 2024-07-11 10:43:24,561 >> {'loss': 0.0083, 'learning_rate': 3.0250e-06, 'epoch': 4.67, 'throughput': 1474.99}
944
+
945
+ [INFO|callbacks.py:310] 2024-07-11 10:43:35,710 >> {'loss': 0.0122, 'learning_rate': 3.0333e-06, 'epoch': 4.68, 'throughput': 1475.18}
946
+
947
+ [INFO|callbacks.py:310] 2024-07-11 10:43:46,811 >> {'loss': 0.0142, 'learning_rate': 3.0417e-06, 'epoch': 4.69, 'throughput': 1475.37}
948
+
949
+ [INFO|callbacks.py:310] 2024-07-11 10:43:57,895 >> {'loss': 0.0293, 'learning_rate': 3.0500e-06, 'epoch': 4.71, 'throughput': 1475.24}
950
+
951
+ [INFO|callbacks.py:310] 2024-07-11 10:44:09,006 >> {'loss': 0.0292, 'learning_rate': 3.0583e-06, 'epoch': 4.72, 'throughput': 1475.50}
952
+
953
+ [INFO|callbacks.py:310] 2024-07-11 10:44:20,120 >> {'loss': 0.0320, 'learning_rate': 3.0667e-06, 'epoch': 4.73, 'throughput': 1475.46}
954
+
955
+ [INFO|callbacks.py:310] 2024-07-11 10:44:31,238 >> {'loss': 0.0189, 'learning_rate': 3.0750e-06, 'epoch': 4.75, 'throughput': 1475.50}
956
+
957
+ [INFO|callbacks.py:310] 2024-07-11 10:44:42,405 >> {'loss': 0.0220, 'learning_rate': 3.0833e-06, 'epoch': 4.76, 'throughput': 1475.57}
958
+
959
+ [INFO|callbacks.py:310] 2024-07-11 10:44:53,524 >> {'loss': 0.0242, 'learning_rate': 3.0917e-06, 'epoch': 4.77, 'throughput': 1475.68}
960
+
961
+ [INFO|callbacks.py:310] 2024-07-11 10:45:04,670 >> {'loss': 0.0150, 'learning_rate': 3.1000e-06, 'epoch': 4.78, 'throughput': 1475.82}
962
+
963
+ [INFO|callbacks.py:310] 2024-07-11 10:45:15,790 >> {'loss': 0.0154, 'learning_rate': 3.1083e-06, 'epoch': 4.80, 'throughput': 1475.81}
964
+
965
+ [INFO|callbacks.py:310] 2024-07-11 10:45:26,907 >> {'loss': 0.0195, 'learning_rate': 3.1167e-06, 'epoch': 4.81, 'throughput': 1475.92}
966
+
967
+ [INFO|callbacks.py:310] 2024-07-11 10:45:38,027 >> {'loss': 0.0310, 'learning_rate': 3.1250e-06, 'epoch': 4.82, 'throughput': 1476.19}
968
+
969
+ [INFO|callbacks.py:310] 2024-07-11 10:45:49,107 >> {'loss': 0.0376, 'learning_rate': 3.1333e-06, 'epoch': 4.84, 'throughput': 1476.09}
970
+
971
+ [INFO|callbacks.py:310] 2024-07-11 10:46:00,236 >> {'loss': 0.0093, 'learning_rate': 3.1417e-06, 'epoch': 4.85, 'throughput': 1476.24}
972
+
973
+ [INFO|callbacks.py:310] 2024-07-11 10:46:11,360 >> {'loss': 0.0270, 'learning_rate': 3.1500e-06, 'epoch': 4.86, 'throughput': 1476.22}
974
+
975
+ [INFO|callbacks.py:310] 2024-07-11 10:46:22,487 >> {'loss': 0.0191, 'learning_rate': 3.1583e-06, 'epoch': 4.87, 'throughput': 1476.16}
976
+
977
+ [INFO|callbacks.py:310] 2024-07-11 10:46:33,618 >> {'loss': 0.0132, 'learning_rate': 3.1667e-06, 'epoch': 4.89, 'throughput': 1476.06}
978
+
979
+ [INFO|callbacks.py:310] 2024-07-11 10:46:44,735 >> {'loss': 0.0111, 'learning_rate': 3.1750e-06, 'epoch': 4.90, 'throughput': 1475.94}
980
+
981
+ [INFO|callbacks.py:310] 2024-07-11 10:46:55,863 >> {'loss': 0.0145, 'learning_rate': 3.1833e-06, 'epoch': 4.91, 'throughput': 1475.98}
982
+
983
+ [INFO|callbacks.py:310] 2024-07-11 10:47:06,943 >> {'loss': 0.0082, 'learning_rate': 3.1917e-06, 'epoch': 4.93, 'throughput': 1475.97}
984
+
985
+ [INFO|callbacks.py:310] 2024-07-11 10:47:18,028 >> {'loss': 0.0165, 'learning_rate': 3.2000e-06, 'epoch': 4.94, 'throughput': 1475.81}
986
+
987
+ [INFO|callbacks.py:310] 2024-07-11 10:47:29,154 >> {'loss': 0.0243, 'learning_rate': 3.2083e-06, 'epoch': 4.95, 'throughput': 1476.08}
988
+
989
+ [INFO|trainer.py:3478] 2024-07-11 10:47:35,554 >> Saving model checkpoint to saves/LLaMA2-7B-Chat/full/train_2024-07-11-09-30-54_llama2_inst_truth/checkpoint-385
990
+
991
+ [INFO|configuration_utils.py:472] 2024-07-11 10:47:35,557 >> Configuration saved in saves/LLaMA2-7B-Chat/full/train_2024-07-11-09-30-54_llama2_inst_truth/checkpoint-385/config.json
992
+
993
+ [INFO|configuration_utils.py:769] 2024-07-11 10:47:35,558 >> Configuration saved in saves/LLaMA2-7B-Chat/full/train_2024-07-11-09-30-54_llama2_inst_truth/checkpoint-385/generation_config.json
994
+
995
+ [INFO|modeling_utils.py:2698] 2024-07-11 10:47:49,264 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 3 checkpoint shards. You can find where each parameters has been saved in the index located at saves/LLaMA2-7B-Chat/full/train_2024-07-11-09-30-54_llama2_inst_truth/checkpoint-385/model.safetensors.index.json.
996
+
997
+ [INFO|tokenization_utils_base.py:2574] 2024-07-11 10:47:49,265 >> tokenizer config file saved in saves/LLaMA2-7B-Chat/full/train_2024-07-11-09-30-54_llama2_inst_truth/checkpoint-385/tokenizer_config.json
998
+
999
+ [INFO|tokenization_utils_base.py:2583] 2024-07-11 10:47:49,265 >> Special tokens file saved in saves/LLaMA2-7B-Chat/full/train_2024-07-11-09-30-54_llama2_inst_truth/checkpoint-385/special_tokens_map.json
1000
+
1001
+ [INFO|trainer.py:2383] 2024-07-11 10:48:19,619 >>
1002
+
1003
+ Training completed. Do not forget to share your model on huggingface.co/models =)
1004
+
1005
+
1006
+
1007
+ [INFO|trainer.py:3478] 2024-07-11 10:48:26,073 >> Saving model checkpoint to saves/LLaMA2-7B-Chat/full/train_2024-07-11-09-30-54_llama2_inst_truth
1008
+
1009
+ [INFO|configuration_utils.py:472] 2024-07-11 10:48:26,076 >> Configuration saved in saves/LLaMA2-7B-Chat/full/train_2024-07-11-09-30-54_llama2_inst_truth/config.json
1010
+
1011
+ [INFO|configuration_utils.py:769] 2024-07-11 10:48:26,076 >> Configuration saved in saves/LLaMA2-7B-Chat/full/train_2024-07-11-09-30-54_llama2_inst_truth/generation_config.json
1012
+
1013
+ [INFO|modeling_utils.py:2698] 2024-07-11 10:48:39,859 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 3 checkpoint shards. You can find where each parameters has been saved in the index located at saves/LLaMA2-7B-Chat/full/train_2024-07-11-09-30-54_llama2_inst_truth/model.safetensors.index.json.
1014
+
1015
+ [INFO|tokenization_utils_base.py:2574] 2024-07-11 10:48:39,860 >> tokenizer config file saved in saves/LLaMA2-7B-Chat/full/train_2024-07-11-09-30-54_llama2_inst_truth/tokenizer_config.json
1016
+
1017
+ [INFO|tokenization_utils_base.py:2583] 2024-07-11 10:48:39,860 >> Special tokens file saved in saves/LLaMA2-7B-Chat/full/train_2024-07-11-09-30-54_llama2_inst_truth/special_tokens_map.json
1018
+
1019
+ [WARNING|ploting.py:89] 2024-07-11 10:48:40,948 >> No metric eval_loss to plot.
1020
+
1021
+ [WARNING|ploting.py:89] 2024-07-11 10:48:40,949 >> No metric eval_accuracy to plot.
1022
+
1023
+ [INFO|modelcard.py:449] 2024-07-11 10:48:40,950 >> Dropping the following result as it does not have all the necessary fields:
1024
+ {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
1025
+
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if loop.index0 == 0 and system_message is defined %}{% set content = '<<SYS>>\n' + system_message + '\n<</SYS>>\n\n' + message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '<s>' + '[INST] ' + content + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 4.951768488745981,
3
+ "num_input_tokens_seen": 6318560,
4
+ "total_flos": 2.5049338265940787e+17,
5
+ "train_loss": 0.9364173337708336,
6
+ "train_runtime": 4331.1035,
7
+ "train_samples_per_second": 22.95,
8
+ "train_steps_per_second": 0.089
9
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,386 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 385, "loss": 8.1083, "learning_rate": 8.333333333333335e-09, "epoch": 0.012861736334405145, "percentage": 0.26, "elapsed_time": "0:00:11", "remaining_time": "1:15:00", "throughput": "1411.72", "total_tokens": 16544}
2
+ {"current_steps": 2, "total_steps": 385, "loss": 8.1052, "learning_rate": 1.666666666666667e-08, "epoch": 0.02572347266881029, "percentage": 0.52, "elapsed_time": "0:00:22", "remaining_time": "1:12:54", "throughput": "1455.41", "total_tokens": 33248}
3
+ {"current_steps": 3, "total_steps": 385, "loss": 8.1366, "learning_rate": 2.5000000000000002e-08, "epoch": 0.03858520900321544, "percentage": 0.78, "elapsed_time": "0:00:33", "remaining_time": "1:11:59", "throughput": "1466.88", "total_tokens": 49760}
4
+ {"current_steps": 4, "total_steps": 385, "loss": 8.0413, "learning_rate": 3.333333333333334e-08, "epoch": 0.05144694533762058, "percentage": 1.04, "elapsed_time": "0:00:45", "remaining_time": "1:11:27", "throughput": "1462.41", "total_tokens": 65824}
5
+ {"current_steps": 5, "total_steps": 385, "loss": 8.1055, "learning_rate": 4.166666666666667e-08, "epoch": 0.06430868167202572, "percentage": 1.3, "elapsed_time": "0:00:56", "remaining_time": "1:11:04", "throughput": "1471.37", "total_tokens": 82560}
6
+ {"current_steps": 6, "total_steps": 385, "loss": 7.9666, "learning_rate": 5.0000000000000004e-08, "epoch": 0.07717041800643087, "percentage": 1.56, "elapsed_time": "0:01:07", "remaining_time": "1:10:47", "throughput": "1484.19", "total_tokens": 99808}
7
+ {"current_steps": 7, "total_steps": 385, "loss": 8.0182, "learning_rate": 5.833333333333334e-08, "epoch": 0.09003215434083602, "percentage": 1.82, "elapsed_time": "0:01:18", "remaining_time": "1:10:31", "throughput": "1477.83", "total_tokens": 115808}
8
+ {"current_steps": 8, "total_steps": 385, "loss": 8.0363, "learning_rate": 6.666666666666668e-08, "epoch": 0.10289389067524116, "percentage": 2.08, "elapsed_time": "0:01:29", "remaining_time": "1:10:17", "throughput": "1468.21", "total_tokens": 131392}
9
+ {"current_steps": 9, "total_steps": 385, "loss": 8.0918, "learning_rate": 7.500000000000001e-08, "epoch": 0.1157556270096463, "percentage": 2.34, "elapsed_time": "0:01:40", "remaining_time": "1:10:04", "throughput": "1469.05", "total_tokens": 147840}
10
+ {"current_steps": 10, "total_steps": 385, "loss": 8.0197, "learning_rate": 8.333333333333334e-08, "epoch": 0.12861736334405144, "percentage": 2.6, "elapsed_time": "0:01:51", "remaining_time": "1:09:51", "throughput": "1467.95", "total_tokens": 164064}
11
+ {"current_steps": 11, "total_steps": 385, "loss": 7.9714, "learning_rate": 9.166666666666668e-08, "epoch": 0.1414790996784566, "percentage": 2.86, "elapsed_time": "0:02:02", "remaining_time": "1:09:38", "throughput": "1470.48", "total_tokens": 180704}
12
+ {"current_steps": 12, "total_steps": 385, "loss": 8.0131, "learning_rate": 1.0000000000000001e-07, "epoch": 0.15434083601286175, "percentage": 3.12, "elapsed_time": "0:02:13", "remaining_time": "1:09:23", "throughput": "1463.77", "total_tokens": 196064}
13
+ {"current_steps": 13, "total_steps": 385, "loss": 7.9796, "learning_rate": 1.0833333333333335e-07, "epoch": 0.16720257234726688, "percentage": 3.38, "elapsed_time": "0:02:25", "remaining_time": "1:09:09", "throughput": "1457.86", "total_tokens": 211424}
14
+ {"current_steps": 14, "total_steps": 385, "loss": 7.9999, "learning_rate": 1.1666666666666668e-07, "epoch": 0.18006430868167203, "percentage": 3.64, "elapsed_time": "0:02:36", "remaining_time": "1:08:57", "throughput": "1460.84", "total_tokens": 228096}
15
+ {"current_steps": 15, "total_steps": 385, "loss": 8.0168, "learning_rate": 1.2500000000000002e-07, "epoch": 0.19292604501607716, "percentage": 3.9, "elapsed_time": "0:02:47", "remaining_time": "1:08:46", "throughput": "1461.12", "total_tokens": 244416}
16
+ {"current_steps": 16, "total_steps": 385, "loss": 7.8423, "learning_rate": 1.3333333333333336e-07, "epoch": 0.2057877813504823, "percentage": 4.16, "elapsed_time": "0:02:58", "remaining_time": "1:08:34", "throughput": "1463.26", "total_tokens": 261056}
17
+ {"current_steps": 17, "total_steps": 385, "loss": 7.9208, "learning_rate": 1.4166666666666668e-07, "epoch": 0.21864951768488747, "percentage": 4.42, "elapsed_time": "0:03:09", "remaining_time": "1:08:23", "throughput": "1461.36", "total_tokens": 276992}
18
+ {"current_steps": 18, "total_steps": 385, "loss": 7.6898, "learning_rate": 1.5000000000000002e-07, "epoch": 0.2315112540192926, "percentage": 4.68, "elapsed_time": "0:03:20", "remaining_time": "1:08:11", "throughput": "1462.71", "total_tokens": 293536}
19
+ {"current_steps": 19, "total_steps": 385, "loss": 7.9285, "learning_rate": 1.5833333333333336e-07, "epoch": 0.24437299035369775, "percentage": 4.94, "elapsed_time": "0:03:31", "remaining_time": "1:07:59", "throughput": "1459.08", "total_tokens": 309024}
20
+ {"current_steps": 20, "total_steps": 385, "loss": 7.8924, "learning_rate": 1.6666666666666668e-07, "epoch": 0.2572347266881029, "percentage": 5.19, "elapsed_time": "0:03:42", "remaining_time": "1:07:47", "throughput": "1458.15", "total_tokens": 325024}
21
+ {"current_steps": 21, "total_steps": 385, "loss": 7.6173, "learning_rate": 1.7500000000000002e-07, "epoch": 0.27009646302250806, "percentage": 5.45, "elapsed_time": "0:03:54", "remaining_time": "1:07:36", "throughput": "1460.88", "total_tokens": 341856}
22
+ {"current_steps": 22, "total_steps": 385, "loss": 7.7661, "learning_rate": 1.8333333333333336e-07, "epoch": 0.2829581993569132, "percentage": 5.71, "elapsed_time": "0:04:05", "remaining_time": "1:07:24", "throughput": "1463.97", "total_tokens": 358848}
23
+ {"current_steps": 23, "total_steps": 385, "loss": 7.2936, "learning_rate": 1.9166666666666668e-07, "epoch": 0.2958199356913183, "percentage": 5.97, "elapsed_time": "0:04:16", "remaining_time": "1:07:12", "throughput": "1464.98", "total_tokens": 375360}
24
+ {"current_steps": 24, "total_steps": 385, "loss": 7.3044, "learning_rate": 2.0000000000000002e-07, "epoch": 0.3086816720257235, "percentage": 6.23, "elapsed_time": "0:04:27", "remaining_time": "1:07:01", "throughput": "1468.54", "total_tokens": 392608}
25
+ {"current_steps": 25, "total_steps": 385, "loss": 7.35, "learning_rate": 2.0833333333333333e-07, "epoch": 0.3215434083601286, "percentage": 6.49, "elapsed_time": "0:04:38", "remaining_time": "1:06:49", "throughput": "1468.11", "total_tokens": 408800}
26
+ {"current_steps": 26, "total_steps": 385, "loss": 7.1213, "learning_rate": 2.166666666666667e-07, "epoch": 0.33440514469453375, "percentage": 6.75, "elapsed_time": "0:04:49", "remaining_time": "1:06:38", "throughput": "1469.84", "total_tokens": 425632}
27
+ {"current_steps": 27, "total_steps": 385, "loss": 7.1363, "learning_rate": 2.2500000000000002e-07, "epoch": 0.34726688102893893, "percentage": 7.01, "elapsed_time": "0:05:00", "remaining_time": "1:06:26", "throughput": "1469.80", "total_tokens": 441952}
28
+ {"current_steps": 28, "total_steps": 385, "loss": 6.9016, "learning_rate": 2.3333333333333336e-07, "epoch": 0.36012861736334406, "percentage": 7.27, "elapsed_time": "0:05:11", "remaining_time": "1:06:16", "throughput": "1468.87", "total_tokens": 458080}
29
+ {"current_steps": 29, "total_steps": 385, "loss": 6.9764, "learning_rate": 2.416666666666667e-07, "epoch": 0.3729903536977492, "percentage": 7.53, "elapsed_time": "0:05:22", "remaining_time": "1:06:04", "throughput": "1467.16", "total_tokens": 473824}
30
+ {"current_steps": 30, "total_steps": 385, "loss": 6.9005, "learning_rate": 2.5000000000000004e-07, "epoch": 0.3858520900321543, "percentage": 7.79, "elapsed_time": "0:05:34", "remaining_time": "1:05:53", "throughput": "1467.82", "total_tokens": 490336}
31
+ {"current_steps": 31, "total_steps": 385, "loss": 6.9852, "learning_rate": 2.5833333333333333e-07, "epoch": 0.3987138263665595, "percentage": 8.05, "elapsed_time": "0:05:45", "remaining_time": "1:05:41", "throughput": "1468.73", "total_tokens": 506976}
32
+ {"current_steps": 32, "total_steps": 385, "loss": 5.834, "learning_rate": 2.666666666666667e-07, "epoch": 0.4115755627009646, "percentage": 8.31, "elapsed_time": "0:05:56", "remaining_time": "1:05:30", "throughput": "1469.26", "total_tokens": 523520}
33
+ {"current_steps": 33, "total_steps": 385, "loss": 5.5452, "learning_rate": 2.75e-07, "epoch": 0.42443729903536975, "percentage": 8.57, "elapsed_time": "0:06:07", "remaining_time": "1:05:19", "throughput": "1471.43", "total_tokens": 540672}
34
+ {"current_steps": 34, "total_steps": 385, "loss": 5.5189, "learning_rate": 2.8333333333333336e-07, "epoch": 0.43729903536977494, "percentage": 8.83, "elapsed_time": "0:06:18", "remaining_time": "1:05:08", "throughput": "1473.12", "total_tokens": 557696}
35
+ {"current_steps": 35, "total_steps": 385, "loss": 5.4654, "learning_rate": 2.916666666666667e-07, "epoch": 0.45016077170418006, "percentage": 9.09, "elapsed_time": "0:06:29", "remaining_time": "1:04:57", "throughput": "1473.94", "total_tokens": 574400}
36
+ {"current_steps": 36, "total_steps": 385, "loss": 5.3117, "learning_rate": 3.0000000000000004e-07, "epoch": 0.4630225080385852, "percentage": 9.35, "elapsed_time": "0:06:40", "remaining_time": "1:04:45", "throughput": "1472.23", "total_tokens": 590112}
37
+ {"current_steps": 37, "total_steps": 385, "loss": 5.2744, "learning_rate": 3.083333333333334e-07, "epoch": 0.4758842443729904, "percentage": 9.61, "elapsed_time": "0:06:51", "remaining_time": "1:04:34", "throughput": "1470.87", "total_tokens": 605920}
38
+ {"current_steps": 38, "total_steps": 385, "loss": 5.2821, "learning_rate": 3.166666666666667e-07, "epoch": 0.4887459807073955, "percentage": 9.87, "elapsed_time": "0:07:03", "remaining_time": "1:04:23", "throughput": "1470.77", "total_tokens": 622208}
39
+ {"current_steps": 39, "total_steps": 385, "loss": 5.0967, "learning_rate": 3.25e-07, "epoch": 0.5016077170418006, "percentage": 10.13, "elapsed_time": "0:07:14", "remaining_time": "1:04:11", "throughput": "1470.64", "total_tokens": 638464}
40
+ {"current_steps": 40, "total_steps": 385, "loss": 5.2167, "learning_rate": 3.3333333333333335e-07, "epoch": 0.5144694533762058, "percentage": 10.39, "elapsed_time": "0:07:25", "remaining_time": "1:04:00", "throughput": "1470.41", "total_tokens": 654656}
41
+ {"current_steps": 41, "total_steps": 385, "loss": 5.1517, "learning_rate": 3.416666666666667e-07, "epoch": 0.5273311897106109, "percentage": 10.65, "elapsed_time": "0:07:36", "remaining_time": "1:03:49", "throughput": "1471.24", "total_tokens": 671424}
42
+ {"current_steps": 42, "total_steps": 385, "loss": 4.6959, "learning_rate": 3.5000000000000004e-07, "epoch": 0.5401929260450161, "percentage": 10.91, "elapsed_time": "0:07:47", "remaining_time": "1:03:37", "throughput": "1471.59", "total_tokens": 687968}
43
+ {"current_steps": 43, "total_steps": 385, "loss": 4.1458, "learning_rate": 3.583333333333334e-07, "epoch": 0.5530546623794212, "percentage": 11.17, "elapsed_time": "0:07:58", "remaining_time": "1:03:26", "throughput": "1471.34", "total_tokens": 704224}
44
+ {"current_steps": 44, "total_steps": 385, "loss": 3.6692, "learning_rate": 3.666666666666667e-07, "epoch": 0.5659163987138264, "percentage": 11.43, "elapsed_time": "0:08:09", "remaining_time": "1:03:15", "throughput": "1471.55", "total_tokens": 720704}
45
+ {"current_steps": 45, "total_steps": 385, "loss": 3.3322, "learning_rate": 3.75e-07, "epoch": 0.5787781350482315, "percentage": 11.69, "elapsed_time": "0:08:20", "remaining_time": "1:03:04", "throughput": "1472.18", "total_tokens": 737408}
46
+ {"current_steps": 46, "total_steps": 385, "loss": 3.2857, "learning_rate": 3.8333333333333335e-07, "epoch": 0.5916398713826366, "percentage": 11.95, "elapsed_time": "0:08:32", "remaining_time": "1:02:53", "throughput": "1472.04", "total_tokens": 753728}
47
+ {"current_steps": 47, "total_steps": 385, "loss": 3.0806, "learning_rate": 3.9166666666666675e-07, "epoch": 0.6045016077170418, "percentage": 12.21, "elapsed_time": "0:08:43", "remaining_time": "1:02:42", "throughput": "1472.06", "total_tokens": 770080}
48
+ {"current_steps": 48, "total_steps": 385, "loss": 2.8239, "learning_rate": 4.0000000000000003e-07, "epoch": 0.617363344051447, "percentage": 12.47, "elapsed_time": "0:08:54", "remaining_time": "1:02:30", "throughput": "1472.90", "total_tokens": 786912}
49
+ {"current_steps": 49, "total_steps": 385, "loss": 2.8695, "learning_rate": 4.083333333333334e-07, "epoch": 0.6302250803858521, "percentage": 12.73, "elapsed_time": "0:09:05", "remaining_time": "1:02:19", "throughput": "1474.53", "total_tokens": 804192}
50
+ {"current_steps": 50, "total_steps": 385, "loss": 2.6218, "learning_rate": 4.1666666666666667e-07, "epoch": 0.6430868167202572, "percentage": 12.99, "elapsed_time": "0:09:16", "remaining_time": "1:02:08", "throughput": "1475.14", "total_tokens": 820928}
51
+ {"current_steps": 51, "total_steps": 385, "loss": 2.3993, "learning_rate": 4.2500000000000006e-07, "epoch": 0.6559485530546624, "percentage": 13.25, "elapsed_time": "0:09:27", "remaining_time": "1:01:57", "throughput": "1474.86", "total_tokens": 837152}
52
+ {"current_steps": 52, "total_steps": 385, "loss": 2.2828, "learning_rate": 4.333333333333334e-07, "epoch": 0.6688102893890675, "percentage": 13.51, "elapsed_time": "0:09:38", "remaining_time": "1:01:46", "throughput": "1474.81", "total_tokens": 853568}
53
+ {"current_steps": 53, "total_steps": 385, "loss": 2.2063, "learning_rate": 4.416666666666667e-07, "epoch": 0.6816720257234726, "percentage": 13.77, "elapsed_time": "0:09:49", "remaining_time": "1:01:35", "throughput": "1475.84", "total_tokens": 870592}
54
+ {"current_steps": 54, "total_steps": 385, "loss": 1.8878, "learning_rate": 4.5000000000000003e-07, "epoch": 0.6945337620578779, "percentage": 14.03, "elapsed_time": "0:10:01", "remaining_time": "1:01:24", "throughput": "1474.30", "total_tokens": 886080}
55
+ {"current_steps": 55, "total_steps": 385, "loss": 1.5971, "learning_rate": 4.583333333333333e-07, "epoch": 0.707395498392283, "percentage": 14.29, "elapsed_time": "0:10:12", "remaining_time": "1:01:12", "throughput": "1475.65", "total_tokens": 903296}
56
+ {"current_steps": 56, "total_steps": 385, "loss": 0.9604, "learning_rate": 4.666666666666667e-07, "epoch": 0.7202572347266881, "percentage": 14.55, "elapsed_time": "0:10:23", "remaining_time": "1:01:01", "throughput": "1475.05", "total_tokens": 919296}
57
+ {"current_steps": 57, "total_steps": 385, "loss": 0.6287, "learning_rate": 4.7500000000000006e-07, "epoch": 0.7331189710610932, "percentage": 14.81, "elapsed_time": "0:10:34", "remaining_time": "1:00:50", "throughput": "1475.70", "total_tokens": 936096}
58
+ {"current_steps": 58, "total_steps": 385, "loss": 0.4844, "learning_rate": 4.833333333333334e-07, "epoch": 0.7459807073954984, "percentage": 15.06, "elapsed_time": "0:10:45", "remaining_time": "1:00:39", "throughput": "1476.45", "total_tokens": 953024}
59
+ {"current_steps": 59, "total_steps": 385, "loss": 0.3891, "learning_rate": 4.916666666666667e-07, "epoch": 0.7588424437299035, "percentage": 15.32, "elapsed_time": "0:10:56", "remaining_time": "1:00:27", "throughput": "1475.83", "total_tokens": 969024}
60
+ {"current_steps": 60, "total_steps": 385, "loss": 0.357, "learning_rate": 5.000000000000001e-07, "epoch": 0.7717041800643086, "percentage": 15.58, "elapsed_time": "0:11:07", "remaining_time": "1:00:16", "throughput": "1476.05", "total_tokens": 985600}
61
+ {"current_steps": 61, "total_steps": 385, "loss": 0.2854, "learning_rate": 5.083333333333334e-07, "epoch": 0.7845659163987139, "percentage": 15.84, "elapsed_time": "0:11:18", "remaining_time": "1:00:05", "throughput": "1476.53", "total_tokens": 1002336}
62
+ {"current_steps": 62, "total_steps": 385, "loss": 0.2403, "learning_rate": 5.166666666666667e-07, "epoch": 0.797427652733119, "percentage": 16.1, "elapsed_time": "0:11:29", "remaining_time": "0:59:54", "throughput": "1476.18", "total_tokens": 1018496}
63
+ {"current_steps": 63, "total_steps": 385, "loss": 0.2522, "learning_rate": 5.250000000000001e-07, "epoch": 0.8102893890675241, "percentage": 16.36, "elapsed_time": "0:11:41", "remaining_time": "0:59:43", "throughput": "1477.05", "total_tokens": 1035552}
64
+ {"current_steps": 64, "total_steps": 385, "loss": 0.2339, "learning_rate": 5.333333333333335e-07, "epoch": 0.8231511254019293, "percentage": 16.62, "elapsed_time": "0:11:52", "remaining_time": "0:59:32", "throughput": "1476.51", "total_tokens": 1051584}
65
+ {"current_steps": 65, "total_steps": 385, "loss": 0.2214, "learning_rate": 5.416666666666667e-07, "epoch": 0.8360128617363344, "percentage": 16.88, "elapsed_time": "0:12:03", "remaining_time": "0:59:20", "throughput": "1477.43", "total_tokens": 1068640}
66
+ {"current_steps": 66, "total_steps": 385, "loss": 0.1912, "learning_rate": 5.5e-07, "epoch": 0.8488745980707395, "percentage": 17.14, "elapsed_time": "0:12:14", "remaining_time": "0:59:09", "throughput": "1478.13", "total_tokens": 1085568}
67
+ {"current_steps": 67, "total_steps": 385, "loss": 0.2157, "learning_rate": 5.583333333333333e-07, "epoch": 0.8617363344051447, "percentage": 17.4, "elapsed_time": "0:12:25", "remaining_time": "0:58:58", "throughput": "1479.16", "total_tokens": 1102784}
68
+ {"current_steps": 68, "total_steps": 385, "loss": 0.2045, "learning_rate": 5.666666666666667e-07, "epoch": 0.8745980707395499, "percentage": 17.66, "elapsed_time": "0:12:36", "remaining_time": "0:58:47", "throughput": "1478.13", "total_tokens": 1118432}
69
+ {"current_steps": 69, "total_steps": 385, "loss": 0.1964, "learning_rate": 5.750000000000001e-07, "epoch": 0.887459807073955, "percentage": 17.92, "elapsed_time": "0:12:47", "remaining_time": "0:58:36", "throughput": "1478.54", "total_tokens": 1135232}
70
+ {"current_steps": 70, "total_steps": 385, "loss": 0.1901, "learning_rate": 5.833333333333334e-07, "epoch": 0.9003215434083601, "percentage": 18.18, "elapsed_time": "0:12:58", "remaining_time": "0:58:25", "throughput": "1477.07", "total_tokens": 1150496}
71
+ {"current_steps": 71, "total_steps": 385, "loss": 0.1891, "learning_rate": 5.916666666666667e-07, "epoch": 0.9131832797427653, "percentage": 18.44, "elapsed_time": "0:13:10", "remaining_time": "0:58:13", "throughput": "1477.00", "total_tokens": 1166848}
72
+ {"current_steps": 72, "total_steps": 385, "loss": 0.1841, "learning_rate": 6.000000000000001e-07, "epoch": 0.9260450160771704, "percentage": 18.7, "elapsed_time": "0:13:21", "remaining_time": "0:58:02", "throughput": "1477.26", "total_tokens": 1183552}
73
+ {"current_steps": 73, "total_steps": 385, "loss": 0.1803, "learning_rate": 6.083333333333334e-07, "epoch": 0.9389067524115756, "percentage": 18.96, "elapsed_time": "0:13:32", "remaining_time": "0:57:51", "throughput": "1477.28", "total_tokens": 1199968}
74
+ {"current_steps": 74, "total_steps": 385, "loss": 0.1657, "learning_rate": 6.166666666666668e-07, "epoch": 0.9517684887459807, "percentage": 19.22, "elapsed_time": "0:13:43", "remaining_time": "0:57:40", "throughput": "1477.17", "total_tokens": 1216256}
75
+ {"current_steps": 75, "total_steps": 385, "loss": 0.2157, "learning_rate": 6.25e-07, "epoch": 0.9646302250803859, "percentage": 19.48, "elapsed_time": "0:13:54", "remaining_time": "0:57:29", "throughput": "1477.26", "total_tokens": 1232736}
76
+ {"current_steps": 76, "total_steps": 385, "loss": 0.2, "learning_rate": 6.333333333333334e-07, "epoch": 0.977491961414791, "percentage": 19.74, "elapsed_time": "0:14:05", "remaining_time": "0:57:17", "throughput": "1477.40", "total_tokens": 1249248}
77
+ {"current_steps": 77, "total_steps": 385, "loss": 0.1519, "learning_rate": 6.416666666666667e-07, "epoch": 0.9903536977491961, "percentage": 20.0, "elapsed_time": "0:14:16", "remaining_time": "0:57:06", "throughput": "1476.86", "total_tokens": 1265152}
78
+ {"current_steps": 78, "total_steps": 385, "loss": 0.1765, "learning_rate": 6.5e-07, "epoch": 1.0032154340836013, "percentage": 20.26, "elapsed_time": "0:14:27", "remaining_time": "0:56:55", "throughput": "1477.71", "total_tokens": 1282336}
79
+ {"current_steps": 79, "total_steps": 385, "loss": 0.1907, "learning_rate": 6.583333333333333e-07, "epoch": 1.0160771704180065, "percentage": 20.52, "elapsed_time": "0:14:38", "remaining_time": "0:56:44", "throughput": "1478.10", "total_tokens": 1299168}
80
+ {"current_steps": 80, "total_steps": 385, "loss": 0.1593, "learning_rate": 6.666666666666667e-07, "epoch": 1.0289389067524115, "percentage": 20.78, "elapsed_time": "0:14:50", "remaining_time": "0:56:33", "throughput": "1477.21", "total_tokens": 1314816}
81
+ {"current_steps": 81, "total_steps": 385, "loss": 0.1659, "learning_rate": 6.750000000000001e-07, "epoch": 1.0418006430868167, "percentage": 21.04, "elapsed_time": "0:15:01", "remaining_time": "0:56:22", "throughput": "1477.14", "total_tokens": 1331168}
82
+ {"current_steps": 82, "total_steps": 385, "loss": 0.1619, "learning_rate": 6.833333333333334e-07, "epoch": 1.0546623794212218, "percentage": 21.3, "elapsed_time": "0:15:12", "remaining_time": "0:56:10", "throughput": "1477.58", "total_tokens": 1347968}
83
+ {"current_steps": 83, "total_steps": 385, "loss": 0.168, "learning_rate": 6.916666666666668e-07, "epoch": 1.067524115755627, "percentage": 21.56, "elapsed_time": "0:15:23", "remaining_time": "0:55:59", "throughput": "1477.08", "total_tokens": 1363872}
84
+ {"current_steps": 84, "total_steps": 385, "loss": 0.1627, "learning_rate": 7.000000000000001e-07, "epoch": 1.0803858520900322, "percentage": 21.82, "elapsed_time": "0:15:34", "remaining_time": "0:55:48", "throughput": "1477.67", "total_tokens": 1380896}
85
+ {"current_steps": 85, "total_steps": 385, "loss": 0.1421, "learning_rate": 7.083333333333334e-07, "epoch": 1.0932475884244373, "percentage": 22.08, "elapsed_time": "0:15:45", "remaining_time": "0:55:37", "throughput": "1478.13", "total_tokens": 1397792}
86
+ {"current_steps": 86, "total_steps": 385, "loss": 0.1517, "learning_rate": 7.166666666666668e-07, "epoch": 1.1061093247588425, "percentage": 22.34, "elapsed_time": "0:15:56", "remaining_time": "0:55:26", "throughput": "1478.20", "total_tokens": 1414272}
87
+ {"current_steps": 87, "total_steps": 385, "loss": 0.1519, "learning_rate": 7.25e-07, "epoch": 1.1189710610932475, "percentage": 22.6, "elapsed_time": "0:16:07", "remaining_time": "0:55:15", "throughput": "1477.17", "total_tokens": 1429696}
88
+ {"current_steps": 88, "total_steps": 385, "loss": 0.128, "learning_rate": 7.333333333333334e-07, "epoch": 1.1318327974276527, "percentage": 22.86, "elapsed_time": "0:16:19", "remaining_time": "0:55:04", "throughput": "1477.75", "total_tokens": 1446720}
89
+ {"current_steps": 89, "total_steps": 385, "loss": 0.1481, "learning_rate": 7.416666666666668e-07, "epoch": 1.144694533762058, "percentage": 23.12, "elapsed_time": "0:16:30", "remaining_time": "0:54:53", "throughput": "1477.59", "total_tokens": 1463008}
90
+ {"current_steps": 90, "total_steps": 385, "loss": 0.1636, "learning_rate": 7.5e-07, "epoch": 1.157556270096463, "percentage": 23.38, "elapsed_time": "0:16:41", "remaining_time": "0:54:41", "throughput": "1478.21", "total_tokens": 1480096}
91
+ {"current_steps": 91, "total_steps": 385, "loss": 0.1443, "learning_rate": 7.583333333333334e-07, "epoch": 1.1704180064308682, "percentage": 23.64, "elapsed_time": "0:16:52", "remaining_time": "0:54:30", "throughput": "1478.70", "total_tokens": 1497024}
92
+ {"current_steps": 92, "total_steps": 385, "loss": 0.1592, "learning_rate": 7.666666666666667e-07, "epoch": 1.1832797427652733, "percentage": 23.9, "elapsed_time": "0:17:03", "remaining_time": "0:54:19", "throughput": "1479.03", "total_tokens": 1513792}
93
+ {"current_steps": 93, "total_steps": 385, "loss": 0.1744, "learning_rate": 7.750000000000001e-07, "epoch": 1.1961414790996785, "percentage": 24.16, "elapsed_time": "0:17:14", "remaining_time": "0:54:08", "throughput": "1478.61", "total_tokens": 1529696}
94
+ {"current_steps": 94, "total_steps": 385, "loss": 0.1615, "learning_rate": 7.833333333333335e-07, "epoch": 1.2090032154340835, "percentage": 24.42, "elapsed_time": "0:17:25", "remaining_time": "0:53:57", "throughput": "1478.86", "total_tokens": 1546400}
95
+ {"current_steps": 95, "total_steps": 385, "loss": 0.1466, "learning_rate": 7.916666666666667e-07, "epoch": 1.2218649517684887, "percentage": 24.68, "elapsed_time": "0:17:36", "remaining_time": "0:53:46", "throughput": "1480.34", "total_tokens": 1564448}
96
+ {"current_steps": 96, "total_steps": 385, "loss": 0.1333, "learning_rate": 8.000000000000001e-07, "epoch": 1.234726688102894, "percentage": 24.94, "elapsed_time": "0:17:47", "remaining_time": "0:53:34", "throughput": "1480.18", "total_tokens": 1580736}
97
+ {"current_steps": 97, "total_steps": 385, "loss": 0.1475, "learning_rate": 8.083333333333334e-07, "epoch": 1.247588424437299, "percentage": 25.19, "elapsed_time": "0:17:59", "remaining_time": "0:53:23", "throughput": "1479.91", "total_tokens": 1596928}
98
+ {"current_steps": 98, "total_steps": 385, "loss": 0.142, "learning_rate": 8.166666666666668e-07, "epoch": 1.2604501607717042, "percentage": 25.45, "elapsed_time": "0:18:10", "remaining_time": "0:53:12", "throughput": "1480.14", "total_tokens": 1613728}
99
+ {"current_steps": 99, "total_steps": 385, "loss": 0.148, "learning_rate": 8.250000000000001e-07, "epoch": 1.2733118971061093, "percentage": 25.71, "elapsed_time": "0:18:21", "remaining_time": "0:53:01", "throughput": "1480.08", "total_tokens": 1630112}
100
+ {"current_steps": 100, "total_steps": 385, "loss": 0.1539, "learning_rate": 8.333333333333333e-07, "epoch": 1.2861736334405145, "percentage": 25.97, "elapsed_time": "0:18:32", "remaining_time": "0:52:50", "throughput": "1478.98", "total_tokens": 1645248}
101
+ {"current_steps": 101, "total_steps": 385, "loss": 0.1496, "learning_rate": 8.416666666666667e-07, "epoch": 1.2990353697749195, "percentage": 26.23, "elapsed_time": "0:18:43", "remaining_time": "0:52:39", "throughput": "1479.63", "total_tokens": 1662400}
102
+ {"current_steps": 102, "total_steps": 385, "loss": 0.1563, "learning_rate": 8.500000000000001e-07, "epoch": 1.3118971061093248, "percentage": 26.49, "elapsed_time": "0:18:54", "remaining_time": "0:52:28", "throughput": "1479.38", "total_tokens": 1678528}
103
+ {"current_steps": 103, "total_steps": 385, "loss": 0.1295, "learning_rate": 8.583333333333334e-07, "epoch": 1.32475884244373, "percentage": 26.75, "elapsed_time": "0:19:05", "remaining_time": "0:52:16", "throughput": "1478.95", "total_tokens": 1694432}
104
+ {"current_steps": 104, "total_steps": 385, "loss": 0.1353, "learning_rate": 8.666666666666668e-07, "epoch": 1.337620578778135, "percentage": 27.01, "elapsed_time": "0:19:16", "remaining_time": "0:52:05", "throughput": "1478.71", "total_tokens": 1710624}
105
+ {"current_steps": 105, "total_steps": 385, "loss": 0.1376, "learning_rate": 8.75e-07, "epoch": 1.3504823151125402, "percentage": 27.27, "elapsed_time": "0:19:27", "remaining_time": "0:51:54", "throughput": "1478.25", "total_tokens": 1726560}
106
+ {"current_steps": 106, "total_steps": 385, "loss": 0.1313, "learning_rate": 8.833333333333334e-07, "epoch": 1.3633440514469453, "percentage": 27.53, "elapsed_time": "0:19:39", "remaining_time": "0:51:43", "throughput": "1478.13", "total_tokens": 1742912}
107
+ {"current_steps": 107, "total_steps": 385, "loss": 0.1367, "learning_rate": 8.916666666666668e-07, "epoch": 1.3762057877813505, "percentage": 27.79, "elapsed_time": "0:19:50", "remaining_time": "0:51:32", "throughput": "1477.58", "total_tokens": 1758688}
108
+ {"current_steps": 108, "total_steps": 385, "loss": 0.135, "learning_rate": 9.000000000000001e-07, "epoch": 1.3890675241157555, "percentage": 28.05, "elapsed_time": "0:20:01", "remaining_time": "0:51:21", "throughput": "1477.67", "total_tokens": 1775264}
109
+ {"current_steps": 109, "total_steps": 385, "loss": 0.1212, "learning_rate": 9.083333333333335e-07, "epoch": 1.4019292604501608, "percentage": 28.31, "elapsed_time": "0:20:12", "remaining_time": "0:51:10", "throughput": "1477.90", "total_tokens": 1791904}
110
+ {"current_steps": 110, "total_steps": 385, "loss": 0.1355, "learning_rate": 9.166666666666666e-07, "epoch": 1.414790996784566, "percentage": 28.57, "elapsed_time": "0:20:23", "remaining_time": "0:50:58", "throughput": "1478.26", "total_tokens": 1808736}
111
+ {"current_steps": 111, "total_steps": 385, "loss": 0.1439, "learning_rate": 9.25e-07, "epoch": 1.427652733118971, "percentage": 28.83, "elapsed_time": "0:20:34", "remaining_time": "0:50:47", "throughput": "1478.53", "total_tokens": 1825504}
112
+ {"current_steps": 112, "total_steps": 385, "loss": 0.1323, "learning_rate": 9.333333333333334e-07, "epoch": 1.4405144694533762, "percentage": 29.09, "elapsed_time": "0:20:45", "remaining_time": "0:50:36", "throughput": "1478.60", "total_tokens": 1842080}
113
+ {"current_steps": 113, "total_steps": 385, "loss": 0.1376, "learning_rate": 9.416666666666667e-07, "epoch": 1.4533762057877815, "percentage": 29.35, "elapsed_time": "0:20:56", "remaining_time": "0:50:25", "throughput": "1478.52", "total_tokens": 1858432}
114
+ {"current_steps": 114, "total_steps": 385, "loss": 0.1191, "learning_rate": 9.500000000000001e-07, "epoch": 1.4662379421221865, "percentage": 29.61, "elapsed_time": "0:21:08", "remaining_time": "0:50:14", "throughput": "1478.08", "total_tokens": 1874304}
115
+ {"current_steps": 115, "total_steps": 385, "loss": 0.1045, "learning_rate": 9.583333333333334e-07, "epoch": 1.4790996784565915, "percentage": 29.87, "elapsed_time": "0:21:19", "remaining_time": "0:50:03", "throughput": "1477.61", "total_tokens": 1890144}
116
+ {"current_steps": 116, "total_steps": 385, "loss": 0.1467, "learning_rate": 9.666666666666668e-07, "epoch": 1.4919614147909968, "percentage": 30.13, "elapsed_time": "0:21:30", "remaining_time": "0:49:52", "throughput": "1476.92", "total_tokens": 1905664}
117
+ {"current_steps": 117, "total_steps": 385, "loss": 0.1142, "learning_rate": 9.750000000000002e-07, "epoch": 1.504823151125402, "percentage": 30.39, "elapsed_time": "0:21:41", "remaining_time": "0:49:41", "throughput": "1477.03", "total_tokens": 1922240}
118
+ {"current_steps": 118, "total_steps": 385, "loss": 0.1107, "learning_rate": 9.833333333333334e-07, "epoch": 1.517684887459807, "percentage": 30.65, "elapsed_time": "0:21:52", "remaining_time": "0:49:29", "throughput": "1476.73", "total_tokens": 1938240}
119
+ {"current_steps": 119, "total_steps": 385, "loss": 0.146, "learning_rate": 9.916666666666668e-07, "epoch": 1.5305466237942122, "percentage": 30.91, "elapsed_time": "0:22:03", "remaining_time": "0:49:18", "throughput": "1477.00", "total_tokens": 1955008}
120
+ {"current_steps": 120, "total_steps": 385, "loss": 0.1533, "learning_rate": 1.0000000000000002e-06, "epoch": 1.5434083601286175, "percentage": 31.17, "elapsed_time": "0:22:14", "remaining_time": "0:49:07", "throughput": "1477.02", "total_tokens": 1971456}
121
+ {"current_steps": 121, "total_steps": 385, "loss": 0.1315, "learning_rate": 1.0083333333333333e-06, "epoch": 1.5562700964630225, "percentage": 31.43, "elapsed_time": "0:22:25", "remaining_time": "0:48:56", "throughput": "1476.81", "total_tokens": 1987552}
122
+ {"current_steps": 122, "total_steps": 385, "loss": 0.1197, "learning_rate": 1.0166666666666667e-06, "epoch": 1.5691318327974275, "percentage": 31.69, "elapsed_time": "0:22:37", "remaining_time": "0:48:45", "throughput": "1476.92", "total_tokens": 2004192}
123
+ {"current_steps": 123, "total_steps": 385, "loss": 0.1228, "learning_rate": 1.025e-06, "epoch": 1.5819935691318328, "percentage": 31.95, "elapsed_time": "0:22:48", "remaining_time": "0:48:34", "throughput": "1477.06", "total_tokens": 2020832}
124
+ {"current_steps": 124, "total_steps": 385, "loss": 0.1273, "learning_rate": 1.0333333333333333e-06, "epoch": 1.594855305466238, "percentage": 32.21, "elapsed_time": "0:22:59", "remaining_time": "0:48:23", "throughput": "1477.06", "total_tokens": 2037312}
125
+ {"current_steps": 125, "total_steps": 385, "loss": 0.141, "learning_rate": 1.0416666666666667e-06, "epoch": 1.607717041800643, "percentage": 32.47, "elapsed_time": "0:23:10", "remaining_time": "0:48:12", "throughput": "1477.45", "total_tokens": 2054304}
126
+ {"current_steps": 126, "total_steps": 385, "loss": 0.1315, "learning_rate": 1.0500000000000001e-06, "epoch": 1.6205787781350482, "percentage": 32.73, "elapsed_time": "0:23:21", "remaining_time": "0:48:00", "throughput": "1477.73", "total_tokens": 2071136}
127
+ {"current_steps": 127, "total_steps": 385, "loss": 0.1136, "learning_rate": 1.0583333333333335e-06, "epoch": 1.6334405144694535, "percentage": 32.99, "elapsed_time": "0:23:32", "remaining_time": "0:47:49", "throughput": "1478.09", "total_tokens": 2088064}
128
+ {"current_steps": 128, "total_steps": 385, "loss": 0.1013, "learning_rate": 1.066666666666667e-06, "epoch": 1.6463022508038585, "percentage": 33.25, "elapsed_time": "0:23:43", "remaining_time": "0:47:38", "throughput": "1478.54", "total_tokens": 2105120}
129
+ {"current_steps": 129, "total_steps": 385, "loss": 0.1056, "learning_rate": 1.075e-06, "epoch": 1.6591639871382635, "percentage": 33.51, "elapsed_time": "0:23:54", "remaining_time": "0:47:27", "throughput": "1478.14", "total_tokens": 2120992}
130
+ {"current_steps": 130, "total_steps": 385, "loss": 0.1071, "learning_rate": 1.0833333333333335e-06, "epoch": 1.6720257234726688, "percentage": 33.77, "elapsed_time": "0:24:06", "remaining_time": "0:47:16", "throughput": "1478.54", "total_tokens": 2137984}
131
+ {"current_steps": 131, "total_steps": 385, "loss": 0.1357, "learning_rate": 1.0916666666666667e-06, "epoch": 1.684887459807074, "percentage": 34.03, "elapsed_time": "0:24:17", "remaining_time": "0:47:05", "throughput": "1478.41", "total_tokens": 2154240}
132
+ {"current_steps": 132, "total_steps": 385, "loss": 0.1181, "learning_rate": 1.1e-06, "epoch": 1.697749196141479, "percentage": 34.29, "elapsed_time": "0:24:28", "remaining_time": "0:46:54", "throughput": "1478.26", "total_tokens": 2170464}
133
+ {"current_steps": 133, "total_steps": 385, "loss": 0.0826, "learning_rate": 1.1083333333333335e-06, "epoch": 1.7106109324758842, "percentage": 34.55, "elapsed_time": "0:24:39", "remaining_time": "0:46:43", "throughput": "1478.30", "total_tokens": 2187008}
134
+ {"current_steps": 134, "total_steps": 385, "loss": 0.1221, "learning_rate": 1.1166666666666666e-06, "epoch": 1.7234726688102895, "percentage": 34.81, "elapsed_time": "0:24:50", "remaining_time": "0:46:31", "throughput": "1477.92", "total_tokens": 2202880}
135
+ {"current_steps": 135, "total_steps": 385, "loss": 0.1021, "learning_rate": 1.125e-06, "epoch": 1.7363344051446945, "percentage": 35.06, "elapsed_time": "0:25:01", "remaining_time": "0:46:20", "throughput": "1478.20", "total_tokens": 2219744}
136
+ {"current_steps": 136, "total_steps": 385, "loss": 0.098, "learning_rate": 1.1333333333333334e-06, "epoch": 1.7491961414790995, "percentage": 35.32, "elapsed_time": "0:25:12", "remaining_time": "0:46:09", "throughput": "1478.17", "total_tokens": 2236064}
137
+ {"current_steps": 137, "total_steps": 385, "loss": 0.1085, "learning_rate": 1.1416666666666668e-06, "epoch": 1.762057877813505, "percentage": 35.58, "elapsed_time": "0:25:23", "remaining_time": "0:45:58", "throughput": "1478.40", "total_tokens": 2252832}
138
+ {"current_steps": 138, "total_steps": 385, "loss": 0.1038, "learning_rate": 1.1500000000000002e-06, "epoch": 1.77491961414791, "percentage": 35.84, "elapsed_time": "0:25:34", "remaining_time": "0:45:47", "throughput": "1478.07", "total_tokens": 2268704}
139
+ {"current_steps": 139, "total_steps": 385, "loss": 0.1081, "learning_rate": 1.1583333333333334e-06, "epoch": 1.787781350482315, "percentage": 36.1, "elapsed_time": "0:25:46", "remaining_time": "0:45:36", "throughput": "1478.19", "total_tokens": 2285280}
140
+ {"current_steps": 140, "total_steps": 385, "loss": 0.1287, "learning_rate": 1.1666666666666668e-06, "epoch": 1.8006430868167203, "percentage": 36.36, "elapsed_time": "0:25:57", "remaining_time": "0:45:24", "throughput": "1478.10", "total_tokens": 2301600}
141
+ {"current_steps": 141, "total_steps": 385, "loss": 0.1068, "learning_rate": 1.175e-06, "epoch": 1.8135048231511255, "percentage": 36.62, "elapsed_time": "0:26:08", "remaining_time": "0:45:13", "throughput": "1478.11", "total_tokens": 2318048}
142
+ {"current_steps": 142, "total_steps": 385, "loss": 0.1202, "learning_rate": 1.1833333333333334e-06, "epoch": 1.8263665594855305, "percentage": 36.88, "elapsed_time": "0:26:19", "remaining_time": "0:45:02", "throughput": "1477.67", "total_tokens": 2333728}
143
+ {"current_steps": 143, "total_steps": 385, "loss": 0.119, "learning_rate": 1.1916666666666668e-06, "epoch": 1.8392282958199357, "percentage": 37.14, "elapsed_time": "0:26:30", "remaining_time": "0:44:51", "throughput": "1477.42", "total_tokens": 2349760}
144
+ {"current_steps": 144, "total_steps": 385, "loss": 0.1273, "learning_rate": 1.2000000000000002e-06, "epoch": 1.852090032154341, "percentage": 37.4, "elapsed_time": "0:26:41", "remaining_time": "0:44:40", "throughput": "1477.51", "total_tokens": 2366336}
145
+ {"current_steps": 145, "total_steps": 385, "loss": 0.1024, "learning_rate": 1.2083333333333333e-06, "epoch": 1.864951768488746, "percentage": 37.66, "elapsed_time": "0:26:52", "remaining_time": "0:44:29", "throughput": "1477.11", "total_tokens": 2382016}
146
+ {"current_steps": 146, "total_steps": 385, "loss": 0.1143, "learning_rate": 1.2166666666666667e-06, "epoch": 1.877813504823151, "percentage": 37.92, "elapsed_time": "0:27:03", "remaining_time": "0:44:17", "throughput": "1476.97", "total_tokens": 2398176}
147
+ {"current_steps": 147, "total_steps": 385, "loss": 0.1229, "learning_rate": 1.2250000000000001e-06, "epoch": 1.8906752411575563, "percentage": 38.18, "elapsed_time": "0:27:14", "remaining_time": "0:44:06", "throughput": "1477.01", "total_tokens": 2414656}
148
+ {"current_steps": 148, "total_steps": 385, "loss": 0.0964, "learning_rate": 1.2333333333333335e-06, "epoch": 1.9035369774919615, "percentage": 38.44, "elapsed_time": "0:27:25", "remaining_time": "0:43:55", "throughput": "1476.61", "total_tokens": 2430400}
149
+ {"current_steps": 149, "total_steps": 385, "loss": 0.1132, "learning_rate": 1.2416666666666667e-06, "epoch": 1.9163987138263665, "percentage": 38.7, "elapsed_time": "0:27:37", "remaining_time": "0:43:44", "throughput": "1477.03", "total_tokens": 2447520}
150
+ {"current_steps": 150, "total_steps": 385, "loss": 0.0734, "learning_rate": 1.25e-06, "epoch": 1.9292604501607717, "percentage": 38.96, "elapsed_time": "0:27:48", "remaining_time": "0:43:33", "throughput": "1476.98", "total_tokens": 2463872}
151
+ {"current_steps": 151, "total_steps": 385, "loss": 0.0939, "learning_rate": 1.2583333333333333e-06, "epoch": 1.942122186495177, "percentage": 39.22, "elapsed_time": "0:27:59", "remaining_time": "0:43:22", "throughput": "1477.57", "total_tokens": 2481344}
152
+ {"current_steps": 152, "total_steps": 385, "loss": 0.1143, "learning_rate": 1.2666666666666669e-06, "epoch": 1.954983922829582, "percentage": 39.48, "elapsed_time": "0:28:10", "remaining_time": "0:43:11", "throughput": "1477.48", "total_tokens": 2497632}
153
+ {"current_steps": 153, "total_steps": 385, "loss": 0.1114, "learning_rate": 1.275e-06, "epoch": 1.967845659163987, "percentage": 39.74, "elapsed_time": "0:28:21", "remaining_time": "0:43:00", "throughput": "1476.92", "total_tokens": 2513024}
154
+ {"current_steps": 154, "total_steps": 385, "loss": 0.0948, "learning_rate": 1.2833333333333335e-06, "epoch": 1.9807073954983923, "percentage": 40.0, "elapsed_time": "0:28:32", "remaining_time": "0:42:48", "throughput": "1476.58", "total_tokens": 2528800}
155
+ {"current_steps": 155, "total_steps": 385, "loss": 0.0805, "learning_rate": 1.2916666666666669e-06, "epoch": 1.9935691318327975, "percentage": 40.26, "elapsed_time": "0:28:43", "remaining_time": "0:42:37", "throughput": "1476.85", "total_tokens": 2545696}
156
+ {"current_steps": 156, "total_steps": 385, "loss": 0.1001, "learning_rate": 1.3e-06, "epoch": 2.0064308681672025, "percentage": 40.52, "elapsed_time": "0:28:54", "remaining_time": "0:42:26", "throughput": "1476.62", "total_tokens": 2561728}
157
+ {"current_steps": 157, "total_steps": 385, "loss": 0.1002, "learning_rate": 1.3083333333333334e-06, "epoch": 2.0192926045016075, "percentage": 40.78, "elapsed_time": "0:29:05", "remaining_time": "0:42:15", "throughput": "1476.44", "total_tokens": 2577856}
158
+ {"current_steps": 158, "total_steps": 385, "loss": 0.0847, "learning_rate": 1.3166666666666666e-06, "epoch": 2.032154340836013, "percentage": 41.04, "elapsed_time": "0:29:17", "remaining_time": "0:42:04", "throughput": "1476.26", "total_tokens": 2593984}
159
+ {"current_steps": 159, "total_steps": 385, "loss": 0.071, "learning_rate": 1.3250000000000002e-06, "epoch": 2.045016077170418, "percentage": 41.3, "elapsed_time": "0:29:28", "remaining_time": "0:41:53", "throughput": "1476.41", "total_tokens": 2610720}
160
+ {"current_steps": 160, "total_steps": 385, "loss": 0.0791, "learning_rate": 1.3333333333333334e-06, "epoch": 2.057877813504823, "percentage": 41.56, "elapsed_time": "0:29:39", "remaining_time": "0:41:42", "throughput": "1476.00", "total_tokens": 2626400}
161
+ {"current_steps": 161, "total_steps": 385, "loss": 0.0769, "learning_rate": 1.3416666666666666e-06, "epoch": 2.0707395498392285, "percentage": 41.82, "elapsed_time": "0:29:50", "remaining_time": "0:41:31", "throughput": "1475.83", "total_tokens": 2642496}
162
+ {"current_steps": 162, "total_steps": 385, "loss": 0.0916, "learning_rate": 1.3500000000000002e-06, "epoch": 2.0836012861736335, "percentage": 42.08, "elapsed_time": "0:30:01", "remaining_time": "0:41:19", "throughput": "1475.46", "total_tokens": 2658144}
163
+ {"current_steps": 163, "total_steps": 385, "loss": 0.0584, "learning_rate": 1.3583333333333334e-06, "epoch": 2.0964630225080385, "percentage": 42.34, "elapsed_time": "0:30:12", "remaining_time": "0:41:08", "throughput": "1475.48", "total_tokens": 2674560}
164
+ {"current_steps": 164, "total_steps": 385, "loss": 0.0811, "learning_rate": 1.3666666666666668e-06, "epoch": 2.1093247588424435, "percentage": 42.6, "elapsed_time": "0:30:23", "remaining_time": "0:40:57", "throughput": "1475.35", "total_tokens": 2690688}
165
+ {"current_steps": 165, "total_steps": 385, "loss": 0.0663, "learning_rate": 1.3750000000000002e-06, "epoch": 2.122186495176849, "percentage": 42.86, "elapsed_time": "0:30:34", "remaining_time": "0:40:46", "throughput": "1475.17", "total_tokens": 2706720}
166
+ {"current_steps": 166, "total_steps": 385, "loss": 0.0802, "learning_rate": 1.3833333333333336e-06, "epoch": 2.135048231511254, "percentage": 43.12, "elapsed_time": "0:30:45", "remaining_time": "0:40:35", "throughput": "1475.13", "total_tokens": 2723008}
167
+ {"current_steps": 167, "total_steps": 385, "loss": 0.0587, "learning_rate": 1.3916666666666668e-06, "epoch": 2.147909967845659, "percentage": 43.38, "elapsed_time": "0:30:57", "remaining_time": "0:40:24", "throughput": "1474.82", "total_tokens": 2738784}
168
+ {"current_steps": 168, "total_steps": 385, "loss": 0.0953, "learning_rate": 1.4000000000000001e-06, "epoch": 2.1607717041800645, "percentage": 43.64, "elapsed_time": "0:31:08", "remaining_time": "0:40:13", "throughput": "1474.73", "total_tokens": 2755072}
169
+ {"current_steps": 169, "total_steps": 385, "loss": 0.0795, "learning_rate": 1.4083333333333335e-06, "epoch": 2.1736334405144695, "percentage": 43.9, "elapsed_time": "0:31:19", "remaining_time": "0:40:01", "throughput": "1474.63", "total_tokens": 2771296}
170
+ {"current_steps": 170, "total_steps": 385, "loss": 0.1015, "learning_rate": 1.4166666666666667e-06, "epoch": 2.1864951768488745, "percentage": 44.16, "elapsed_time": "0:31:30", "remaining_time": "0:39:50", "throughput": "1474.63", "total_tokens": 2787712}
171
+ {"current_steps": 171, "total_steps": 385, "loss": 0.0614, "learning_rate": 1.425e-06, "epoch": 2.19935691318328, "percentage": 44.42, "elapsed_time": "0:31:41", "remaining_time": "0:39:39", "throughput": "1474.37", "total_tokens": 2803552}
172
+ {"current_steps": 172, "total_steps": 385, "loss": 0.0753, "learning_rate": 1.4333333333333335e-06, "epoch": 2.212218649517685, "percentage": 44.68, "elapsed_time": "0:31:52", "remaining_time": "0:39:28", "throughput": "1474.59", "total_tokens": 2820352}
173
+ {"current_steps": 173, "total_steps": 385, "loss": 0.08, "learning_rate": 1.4416666666666667e-06, "epoch": 2.22508038585209, "percentage": 44.94, "elapsed_time": "0:32:03", "remaining_time": "0:39:17", "throughput": "1475.05", "total_tokens": 2837696}
174
+ {"current_steps": 174, "total_steps": 385, "loss": 0.0603, "learning_rate": 1.45e-06, "epoch": 2.237942122186495, "percentage": 45.19, "elapsed_time": "0:32:14", "remaining_time": "0:39:06", "throughput": "1475.13", "total_tokens": 2854272}
175
+ {"current_steps": 175, "total_steps": 385, "loss": 0.0874, "learning_rate": 1.4583333333333335e-06, "epoch": 2.2508038585209005, "percentage": 45.45, "elapsed_time": "0:32:26", "remaining_time": "0:38:55", "throughput": "1475.01", "total_tokens": 2870464}
176
+ {"current_steps": 176, "total_steps": 385, "loss": 0.0833, "learning_rate": 1.4666666666666669e-06, "epoch": 2.2636655948553055, "percentage": 45.71, "elapsed_time": "0:32:37", "remaining_time": "0:38:44", "throughput": "1475.02", "total_tokens": 2886880}
177
+ {"current_steps": 177, "total_steps": 385, "loss": 0.0676, "learning_rate": 1.475e-06, "epoch": 2.2765273311897105, "percentage": 45.97, "elapsed_time": "0:32:48", "remaining_time": "0:38:33", "throughput": "1474.80", "total_tokens": 2902880}
178
+ {"current_steps": 178, "total_steps": 385, "loss": 0.086, "learning_rate": 1.4833333333333337e-06, "epoch": 2.289389067524116, "percentage": 46.23, "elapsed_time": "0:32:59", "remaining_time": "0:38:21", "throughput": "1474.96", "total_tokens": 2919584}
179
+ {"current_steps": 179, "total_steps": 385, "loss": 0.0662, "learning_rate": 1.4916666666666669e-06, "epoch": 2.302250803858521, "percentage": 46.49, "elapsed_time": "0:33:10", "remaining_time": "0:38:10", "throughput": "1474.55", "total_tokens": 2935136}
180
+ {"current_steps": 180, "total_steps": 385, "loss": 0.1028, "learning_rate": 1.5e-06, "epoch": 2.315112540192926, "percentage": 46.75, "elapsed_time": "0:33:21", "remaining_time": "0:37:59", "throughput": "1474.63", "total_tokens": 2951680}
181
+ {"current_steps": 181, "total_steps": 385, "loss": 0.0882, "learning_rate": 1.5083333333333336e-06, "epoch": 2.327974276527331, "percentage": 47.01, "elapsed_time": "0:33:32", "remaining_time": "0:37:48", "throughput": "1474.45", "total_tokens": 2967712}
182
+ {"current_steps": 182, "total_steps": 385, "loss": 0.0806, "learning_rate": 1.5166666666666668e-06, "epoch": 2.3408360128617365, "percentage": 47.27, "elapsed_time": "0:33:43", "remaining_time": "0:37:37", "throughput": "1474.52", "total_tokens": 2984224}
183
+ {"current_steps": 183, "total_steps": 385, "loss": 0.1108, "learning_rate": 1.525e-06, "epoch": 2.3536977491961415, "percentage": 47.53, "elapsed_time": "0:33:54", "remaining_time": "0:37:26", "throughput": "1474.19", "total_tokens": 2999904}
184
+ {"current_steps": 184, "total_steps": 385, "loss": 0.0687, "learning_rate": 1.5333333333333334e-06, "epoch": 2.3665594855305465, "percentage": 47.79, "elapsed_time": "0:34:06", "remaining_time": "0:37:15", "throughput": "1474.68", "total_tokens": 3017376}
185
+ {"current_steps": 185, "total_steps": 385, "loss": 0.0736, "learning_rate": 1.5416666666666668e-06, "epoch": 2.379421221864952, "percentage": 48.05, "elapsed_time": "0:34:17", "remaining_time": "0:37:04", "throughput": "1474.67", "total_tokens": 3033728}
186
+ {"current_steps": 186, "total_steps": 385, "loss": 0.0779, "learning_rate": 1.5500000000000002e-06, "epoch": 2.392282958199357, "percentage": 48.31, "elapsed_time": "0:34:28", "remaining_time": "0:36:52", "throughput": "1474.70", "total_tokens": 3050176}
187
+ {"current_steps": 187, "total_steps": 385, "loss": 0.0709, "learning_rate": 1.5583333333333334e-06, "epoch": 2.405144694533762, "percentage": 48.57, "elapsed_time": "0:34:39", "remaining_time": "0:36:41", "throughput": "1474.61", "total_tokens": 3066400}
188
+ {"current_steps": 188, "total_steps": 385, "loss": 0.0652, "learning_rate": 1.566666666666667e-06, "epoch": 2.418006430868167, "percentage": 48.83, "elapsed_time": "0:34:50", "remaining_time": "0:36:30", "throughput": "1474.76", "total_tokens": 3083104}
189
+ {"current_steps": 189, "total_steps": 385, "loss": 0.1095, "learning_rate": 1.5750000000000002e-06, "epoch": 2.4308681672025725, "percentage": 49.09, "elapsed_time": "0:35:01", "remaining_time": "0:36:19", "throughput": "1475.00", "total_tokens": 3100000}
190
+ {"current_steps": 190, "total_steps": 385, "loss": 0.0618, "learning_rate": 1.5833333333333333e-06, "epoch": 2.4437299035369775, "percentage": 49.35, "elapsed_time": "0:35:12", "remaining_time": "0:36:08", "throughput": "1475.18", "total_tokens": 3116800}
191
+ {"current_steps": 191, "total_steps": 385, "loss": 0.0666, "learning_rate": 1.591666666666667e-06, "epoch": 2.4565916398713825, "percentage": 49.61, "elapsed_time": "0:35:23", "remaining_time": "0:35:57", "throughput": "1475.36", "total_tokens": 3133568}
192
+ {"current_steps": 192, "total_steps": 385, "loss": 0.0573, "learning_rate": 1.6000000000000001e-06, "epoch": 2.469453376205788, "percentage": 49.87, "elapsed_time": "0:35:35", "remaining_time": "0:35:46", "throughput": "1475.40", "total_tokens": 3150048}
193
+ {"current_steps": 193, "total_steps": 385, "loss": 0.0577, "learning_rate": 1.6083333333333333e-06, "epoch": 2.482315112540193, "percentage": 50.13, "elapsed_time": "0:35:46", "remaining_time": "0:35:35", "throughput": "1475.50", "total_tokens": 3166688}
194
+ {"current_steps": 194, "total_steps": 385, "loss": 0.0813, "learning_rate": 1.6166666666666667e-06, "epoch": 2.495176848874598, "percentage": 50.39, "elapsed_time": "0:35:57", "remaining_time": "0:35:23", "throughput": "1475.34", "total_tokens": 3182752}
195
+ {"current_steps": 195, "total_steps": 385, "loss": 0.066, "learning_rate": 1.6250000000000001e-06, "epoch": 2.508038585209003, "percentage": 50.65, "elapsed_time": "0:36:08", "remaining_time": "0:35:12", "throughput": "1475.24", "total_tokens": 3198944}
196
+ {"current_steps": 196, "total_steps": 385, "loss": 0.0622, "learning_rate": 1.6333333333333335e-06, "epoch": 2.5209003215434085, "percentage": 50.91, "elapsed_time": "0:36:19", "remaining_time": "0:35:01", "throughput": "1475.32", "total_tokens": 3215552}
197
+ {"current_steps": 197, "total_steps": 385, "loss": 0.0616, "learning_rate": 1.6416666666666667e-06, "epoch": 2.5337620578778135, "percentage": 51.17, "elapsed_time": "0:36:30", "remaining_time": "0:34:50", "throughput": "1475.12", "total_tokens": 3231488}
198
+ {"current_steps": 198, "total_steps": 385, "loss": 0.0993, "learning_rate": 1.6500000000000003e-06, "epoch": 2.5466237942122185, "percentage": 51.43, "elapsed_time": "0:36:41", "remaining_time": "0:34:39", "throughput": "1475.12", "total_tokens": 3247840}
199
+ {"current_steps": 199, "total_steps": 385, "loss": 0.0702, "learning_rate": 1.6583333333333335e-06, "epoch": 2.559485530546624, "percentage": 51.69, "elapsed_time": "0:36:52", "remaining_time": "0:34:28", "throughput": "1475.10", "total_tokens": 3264128}
200
+ {"current_steps": 200, "total_steps": 385, "loss": 0.0743, "learning_rate": 1.6666666666666667e-06, "epoch": 2.572347266881029, "percentage": 51.95, "elapsed_time": "0:37:03", "remaining_time": "0:34:17", "throughput": "1474.97", "total_tokens": 3280192}
201
+ {"current_steps": 201, "total_steps": 385, "loss": 0.0647, "learning_rate": 1.6750000000000003e-06, "epoch": 2.585209003215434, "percentage": 52.21, "elapsed_time": "0:37:15", "remaining_time": "0:34:05", "throughput": "1474.93", "total_tokens": 3296480}
202
+ {"current_steps": 202, "total_steps": 385, "loss": 0.0814, "learning_rate": 1.6833333333333335e-06, "epoch": 2.598070739549839, "percentage": 52.47, "elapsed_time": "0:37:26", "remaining_time": "0:33:54", "throughput": "1475.03", "total_tokens": 3313120}
203
+ {"current_steps": 203, "total_steps": 385, "loss": 0.0861, "learning_rate": 1.6916666666666666e-06, "epoch": 2.6109324758842445, "percentage": 52.73, "elapsed_time": "0:37:37", "remaining_time": "0:33:43", "throughput": "1474.89", "total_tokens": 3329184}
204
+ {"current_steps": 204, "total_steps": 385, "loss": 0.0769, "learning_rate": 1.7000000000000002e-06, "epoch": 2.6237942122186495, "percentage": 52.99, "elapsed_time": "0:37:48", "remaining_time": "0:33:32", "throughput": "1475.15", "total_tokens": 3346208}
205
+ {"current_steps": 205, "total_steps": 385, "loss": 0.0888, "learning_rate": 1.7083333333333334e-06, "epoch": 2.6366559485530545, "percentage": 53.25, "elapsed_time": "0:37:59", "remaining_time": "0:33:21", "throughput": "1475.31", "total_tokens": 3363008}
206
+ {"current_steps": 206, "total_steps": 385, "loss": 0.1017, "learning_rate": 1.7166666666666668e-06, "epoch": 2.64951768488746, "percentage": 53.51, "elapsed_time": "0:38:10", "remaining_time": "0:33:10", "throughput": "1475.34", "total_tokens": 3379488}
207
+ {"current_steps": 207, "total_steps": 385, "loss": 0.0677, "learning_rate": 1.725e-06, "epoch": 2.662379421221865, "percentage": 53.77, "elapsed_time": "0:38:21", "remaining_time": "0:32:59", "throughput": "1475.25", "total_tokens": 3395648}
208
+ {"current_steps": 208, "total_steps": 385, "loss": 0.0861, "learning_rate": 1.7333333333333336e-06, "epoch": 2.67524115755627, "percentage": 54.03, "elapsed_time": "0:38:32", "remaining_time": "0:32:48", "throughput": "1475.55", "total_tokens": 3412736}
209
+ {"current_steps": 209, "total_steps": 385, "loss": 0.0562, "learning_rate": 1.7416666666666668e-06, "epoch": 2.688102893890675, "percentage": 54.29, "elapsed_time": "0:38:43", "remaining_time": "0:32:37", "throughput": "1475.69", "total_tokens": 3429472}
210
+ {"current_steps": 210, "total_steps": 385, "loss": 0.0641, "learning_rate": 1.75e-06, "epoch": 2.7009646302250805, "percentage": 54.55, "elapsed_time": "0:38:55", "remaining_time": "0:32:25", "throughput": "1475.59", "total_tokens": 3445632}
211
+ {"current_steps": 211, "total_steps": 385, "loss": 0.0829, "learning_rate": 1.7583333333333336e-06, "epoch": 2.7138263665594855, "percentage": 54.81, "elapsed_time": "0:39:06", "remaining_time": "0:32:14", "throughput": "1475.88", "total_tokens": 3462720}
212
+ {"current_steps": 212, "total_steps": 385, "loss": 0.0632, "learning_rate": 1.7666666666666668e-06, "epoch": 2.7266881028938905, "percentage": 55.06, "elapsed_time": "0:39:17", "remaining_time": "0:32:03", "throughput": "1475.70", "total_tokens": 3478720}
213
+ {"current_steps": 213, "total_steps": 385, "loss": 0.062, "learning_rate": 1.7750000000000002e-06, "epoch": 2.739549839228296, "percentage": 55.32, "elapsed_time": "0:39:28", "remaining_time": "0:31:52", "throughput": "1475.36", "total_tokens": 3494304}
214
+ {"current_steps": 214, "total_steps": 385, "loss": 0.0816, "learning_rate": 1.7833333333333336e-06, "epoch": 2.752411575562701, "percentage": 55.58, "elapsed_time": "0:39:39", "remaining_time": "0:31:41", "throughput": "1475.14", "total_tokens": 3510176}
215
+ {"current_steps": 215, "total_steps": 385, "loss": 0.096, "learning_rate": 1.7916666666666667e-06, "epoch": 2.765273311897106, "percentage": 55.84, "elapsed_time": "0:39:50", "remaining_time": "0:31:30", "throughput": "1475.26", "total_tokens": 3526848}
216
+ {"current_steps": 216, "total_steps": 385, "loss": 0.0639, "learning_rate": 1.8000000000000001e-06, "epoch": 2.778135048231511, "percentage": 56.1, "elapsed_time": "0:40:01", "remaining_time": "0:31:19", "throughput": "1475.21", "total_tokens": 3543136}
217
+ {"current_steps": 217, "total_steps": 385, "loss": 0.0915, "learning_rate": 1.8083333333333335e-06, "epoch": 2.7909967845659165, "percentage": 56.36, "elapsed_time": "0:40:12", "remaining_time": "0:31:08", "throughput": "1474.69", "total_tokens": 3558240}
218
+ {"current_steps": 218, "total_steps": 385, "loss": 0.061, "learning_rate": 1.816666666666667e-06, "epoch": 2.8038585209003215, "percentage": 56.62, "elapsed_time": "0:40:23", "remaining_time": "0:30:56", "throughput": "1474.53", "total_tokens": 3574240}
219
+ {"current_steps": 219, "total_steps": 385, "loss": 0.0572, "learning_rate": 1.825e-06, "epoch": 2.816720257234727, "percentage": 56.88, "elapsed_time": "0:40:35", "remaining_time": "0:30:45", "throughput": "1474.35", "total_tokens": 3590240}
220
+ {"current_steps": 220, "total_steps": 385, "loss": 0.0497, "learning_rate": 1.8333333333333333e-06, "epoch": 2.829581993569132, "percentage": 57.14, "elapsed_time": "0:40:46", "remaining_time": "0:30:34", "throughput": "1474.44", "total_tokens": 3606912}
221
+ {"current_steps": 221, "total_steps": 385, "loss": 0.0672, "learning_rate": 1.8416666666666669e-06, "epoch": 2.842443729903537, "percentage": 57.4, "elapsed_time": "0:40:57", "remaining_time": "0:30:23", "throughput": "1474.31", "total_tokens": 3623008}
222
+ {"current_steps": 222, "total_steps": 385, "loss": 0.0563, "learning_rate": 1.85e-06, "epoch": 2.855305466237942, "percentage": 57.66, "elapsed_time": "0:41:08", "remaining_time": "0:30:12", "throughput": "1474.33", "total_tokens": 3639456}
223
+ {"current_steps": 223, "total_steps": 385, "loss": 0.069, "learning_rate": 1.8583333333333335e-06, "epoch": 2.868167202572347, "percentage": 57.92, "elapsed_time": "0:41:19", "remaining_time": "0:30:01", "throughput": "1474.50", "total_tokens": 3656288}
224
+ {"current_steps": 224, "total_steps": 385, "loss": 0.0824, "learning_rate": 1.8666666666666669e-06, "epoch": 2.8810289389067525, "percentage": 58.18, "elapsed_time": "0:41:30", "remaining_time": "0:29:50", "throughput": "1474.59", "total_tokens": 3672896}
225
+ {"current_steps": 225, "total_steps": 385, "loss": 0.057, "learning_rate": 1.8750000000000003e-06, "epoch": 2.8938906752411575, "percentage": 58.44, "elapsed_time": "0:41:41", "remaining_time": "0:29:39", "throughput": "1474.72", "total_tokens": 3689632}
226
+ {"current_steps": 226, "total_steps": 385, "loss": 0.0549, "learning_rate": 1.8833333333333334e-06, "epoch": 2.906752411575563, "percentage": 58.7, "elapsed_time": "0:41:53", "remaining_time": "0:29:28", "throughput": "1475.08", "total_tokens": 3706944}
227
+ {"current_steps": 227, "total_steps": 385, "loss": 0.0652, "learning_rate": 1.8916666666666668e-06, "epoch": 2.919614147909968, "percentage": 58.96, "elapsed_time": "0:42:04", "remaining_time": "0:29:16", "throughput": "1474.98", "total_tokens": 3723072}
228
+ {"current_steps": 228, "total_steps": 385, "loss": 0.0743, "learning_rate": 1.9000000000000002e-06, "epoch": 2.932475884244373, "percentage": 59.22, "elapsed_time": "0:42:15", "remaining_time": "0:29:05", "throughput": "1475.20", "total_tokens": 3740064}
229
+ {"current_steps": 229, "total_steps": 385, "loss": 0.0416, "learning_rate": 1.9083333333333334e-06, "epoch": 2.945337620578778, "percentage": 59.48, "elapsed_time": "0:42:26", "remaining_time": "0:28:54", "throughput": "1475.35", "total_tokens": 3756864}
230
+ {"current_steps": 230, "total_steps": 385, "loss": 0.0668, "learning_rate": 1.916666666666667e-06, "epoch": 2.958199356913183, "percentage": 59.74, "elapsed_time": "0:42:37", "remaining_time": "0:28:43", "throughput": "1475.75", "total_tokens": 3774336}
231
+ {"current_steps": 231, "total_steps": 385, "loss": 0.0603, "learning_rate": 1.925e-06, "epoch": 2.9710610932475885, "percentage": 60.0, "elapsed_time": "0:42:48", "remaining_time": "0:28:32", "throughput": "1475.60", "total_tokens": 3790336}
232
+ {"current_steps": 232, "total_steps": 385, "loss": 0.066, "learning_rate": 1.9333333333333336e-06, "epoch": 2.9839228295819935, "percentage": 60.26, "elapsed_time": "0:42:59", "remaining_time": "0:28:21", "throughput": "1475.88", "total_tokens": 3807520}
233
+ {"current_steps": 233, "total_steps": 385, "loss": 0.0692, "learning_rate": 1.9416666666666666e-06, "epoch": 2.996784565916399, "percentage": 60.52, "elapsed_time": "0:43:10", "remaining_time": "0:28:10", "throughput": "1475.87", "total_tokens": 3823872}
234
+ {"current_steps": 234, "total_steps": 385, "loss": 0.0323, "learning_rate": 1.9500000000000004e-06, "epoch": 3.009646302250804, "percentage": 60.78, "elapsed_time": "0:43:22", "remaining_time": "0:27:59", "throughput": "1475.89", "total_tokens": 3840320}
235
+ {"current_steps": 235, "total_steps": 385, "loss": 0.0403, "learning_rate": 1.9583333333333334e-06, "epoch": 3.022508038585209, "percentage": 61.04, "elapsed_time": "0:43:33", "remaining_time": "0:27:47", "throughput": "1475.72", "total_tokens": 3856256}
236
+ {"current_steps": 236, "total_steps": 385, "loss": 0.0477, "learning_rate": 1.9666666666666668e-06, "epoch": 3.035369774919614, "percentage": 61.3, "elapsed_time": "0:43:44", "remaining_time": "0:27:36", "throughput": "1475.66", "total_tokens": 3872512}
237
+ {"current_steps": 237, "total_steps": 385, "loss": 0.0356, "learning_rate": 1.975e-06, "epoch": 3.0482315112540195, "percentage": 61.56, "elapsed_time": "0:43:55", "remaining_time": "0:27:25", "throughput": "1475.41", "total_tokens": 3888256}
238
+ {"current_steps": 238, "total_steps": 385, "loss": 0.0324, "learning_rate": 1.9833333333333335e-06, "epoch": 3.0610932475884245, "percentage": 61.82, "elapsed_time": "0:44:06", "remaining_time": "0:27:14", "throughput": "1475.56", "total_tokens": 3905024}
239
+ {"current_steps": 239, "total_steps": 385, "loss": 0.0428, "learning_rate": 1.991666666666667e-06, "epoch": 3.0739549839228295, "percentage": 62.08, "elapsed_time": "0:44:17", "remaining_time": "0:27:03", "throughput": "1475.76", "total_tokens": 3922016}
240
+ {"current_steps": 240, "total_steps": 385, "loss": 0.0315, "learning_rate": 2.0000000000000003e-06, "epoch": 3.0868167202572345, "percentage": 62.34, "elapsed_time": "0:44:28", "remaining_time": "0:26:52", "throughput": "1475.75", "total_tokens": 3938400}
241
+ {"current_steps": 241, "total_steps": 385, "loss": 0.0366, "learning_rate": 2.0083333333333337e-06, "epoch": 3.09967845659164, "percentage": 62.6, "elapsed_time": "0:44:39", "remaining_time": "0:26:41", "throughput": "1475.78", "total_tokens": 3954912}
242
+ {"current_steps": 242, "total_steps": 385, "loss": 0.0307, "learning_rate": 2.0166666666666667e-06, "epoch": 3.112540192926045, "percentage": 62.86, "elapsed_time": "0:44:50", "remaining_time": "0:26:30", "throughput": "1475.47", "total_tokens": 3970400}
243
+ {"current_steps": 243, "total_steps": 385, "loss": 0.0338, "learning_rate": 2.025e-06, "epoch": 3.12540192926045, "percentage": 63.12, "elapsed_time": "0:45:02", "remaining_time": "0:26:18", "throughput": "1475.52", "total_tokens": 3986944}
244
+ {"current_steps": 244, "total_steps": 385, "loss": 0.0348, "learning_rate": 2.0333333333333335e-06, "epoch": 3.1382636655948555, "percentage": 63.38, "elapsed_time": "0:45:13", "remaining_time": "0:26:07", "throughput": "1475.62", "total_tokens": 4003648}
245
+ {"current_steps": 245, "total_steps": 385, "loss": 0.0355, "learning_rate": 2.041666666666667e-06, "epoch": 3.1511254019292605, "percentage": 63.64, "elapsed_time": "0:45:24", "remaining_time": "0:25:56", "throughput": "1475.75", "total_tokens": 4020384}
246
+ {"current_steps": 246, "total_steps": 385, "loss": 0.0272, "learning_rate": 2.05e-06, "epoch": 3.1639871382636655, "percentage": 63.9, "elapsed_time": "0:45:35", "remaining_time": "0:25:45", "throughput": "1475.84", "total_tokens": 4037088}
247
+ {"current_steps": 247, "total_steps": 385, "loss": 0.0464, "learning_rate": 2.0583333333333337e-06, "epoch": 3.176848874598071, "percentage": 64.16, "elapsed_time": "0:45:46", "remaining_time": "0:25:34", "throughput": "1475.83", "total_tokens": 4053472}
248
+ {"current_steps": 248, "total_steps": 385, "loss": 0.0268, "learning_rate": 2.0666666666666666e-06, "epoch": 3.189710610932476, "percentage": 64.42, "elapsed_time": "0:45:57", "remaining_time": "0:25:23", "throughput": "1475.60", "total_tokens": 4069248}
249
+ {"current_steps": 249, "total_steps": 385, "loss": 0.0229, "learning_rate": 2.075e-06, "epoch": 3.202572347266881, "percentage": 64.68, "elapsed_time": "0:46:08", "remaining_time": "0:25:12", "throughput": "1475.38", "total_tokens": 4085024}
250
+ {"current_steps": 250, "total_steps": 385, "loss": 0.0373, "learning_rate": 2.0833333333333334e-06, "epoch": 3.215434083601286, "percentage": 64.94, "elapsed_time": "0:46:19", "remaining_time": "0:25:01", "throughput": "1475.74", "total_tokens": 4102432}
251
+ {"current_steps": 251, "total_steps": 385, "loss": 0.0361, "learning_rate": 2.091666666666667e-06, "epoch": 3.2282958199356915, "percentage": 65.19, "elapsed_time": "0:46:31", "remaining_time": "0:24:50", "throughput": "1475.59", "total_tokens": 4118368}
252
+ {"current_steps": 252, "total_steps": 385, "loss": 0.0401, "learning_rate": 2.1000000000000002e-06, "epoch": 3.2411575562700965, "percentage": 65.45, "elapsed_time": "0:46:42", "remaining_time": "0:24:38", "throughput": "1475.60", "total_tokens": 4134784}
253
+ {"current_steps": 253, "total_steps": 385, "loss": 0.0262, "learning_rate": 2.1083333333333336e-06, "epoch": 3.2540192926045015, "percentage": 65.71, "elapsed_time": "0:46:53", "remaining_time": "0:24:27", "throughput": "1475.38", "total_tokens": 4150528}
254
+ {"current_steps": 254, "total_steps": 385, "loss": 0.0481, "learning_rate": 2.116666666666667e-06, "epoch": 3.266881028938907, "percentage": 65.97, "elapsed_time": "0:47:04", "remaining_time": "0:24:16", "throughput": "1475.34", "total_tokens": 4166816}
255
+ {"current_steps": 255, "total_steps": 385, "loss": 0.0417, "learning_rate": 2.125e-06, "epoch": 3.279742765273312, "percentage": 66.23, "elapsed_time": "0:47:15", "remaining_time": "0:24:05", "throughput": "1475.21", "total_tokens": 4182880}
256
+ {"current_steps": 256, "total_steps": 385, "loss": 0.0457, "learning_rate": 2.133333333333334e-06, "epoch": 3.292604501607717, "percentage": 66.49, "elapsed_time": "0:47:26", "remaining_time": "0:23:54", "throughput": "1475.48", "total_tokens": 4200128}
257
+ {"current_steps": 257, "total_steps": 385, "loss": 0.0175, "learning_rate": 2.1416666666666668e-06, "epoch": 3.305466237942122, "percentage": 66.75, "elapsed_time": "0:47:37", "remaining_time": "0:23:43", "throughput": "1475.19", "total_tokens": 4215680}
258
+ {"current_steps": 258, "total_steps": 385, "loss": 0.0371, "learning_rate": 2.15e-06, "epoch": 3.3183279742765275, "percentage": 67.01, "elapsed_time": "0:47:48", "remaining_time": "0:23:32", "throughput": "1475.40", "total_tokens": 4232736}
259
+ {"current_steps": 259, "total_steps": 385, "loss": 0.0268, "learning_rate": 2.1583333333333336e-06, "epoch": 3.3311897106109325, "percentage": 67.27, "elapsed_time": "0:47:59", "remaining_time": "0:23:21", "throughput": "1475.58", "total_tokens": 4249664}
260
+ {"current_steps": 260, "total_steps": 385, "loss": 0.0417, "learning_rate": 2.166666666666667e-06, "epoch": 3.3440514469453375, "percentage": 67.53, "elapsed_time": "0:48:11", "remaining_time": "0:23:09", "throughput": "1475.58", "total_tokens": 4266016}
261
+ {"current_steps": 261, "total_steps": 385, "loss": 0.0264, "learning_rate": 2.1750000000000004e-06, "epoch": 3.356913183279743, "percentage": 67.79, "elapsed_time": "0:48:22", "remaining_time": "0:22:58", "throughput": "1475.32", "total_tokens": 4281664}
262
+ {"current_steps": 262, "total_steps": 385, "loss": 0.0336, "learning_rate": 2.1833333333333333e-06, "epoch": 3.369774919614148, "percentage": 68.05, "elapsed_time": "0:48:33", "remaining_time": "0:22:47", "throughput": "1475.42", "total_tokens": 4298368}
263
+ {"current_steps": 263, "total_steps": 385, "loss": 0.0434, "learning_rate": 2.191666666666667e-06, "epoch": 3.382636655948553, "percentage": 68.31, "elapsed_time": "0:48:44", "remaining_time": "0:22:36", "throughput": "1475.28", "total_tokens": 4314336}
264
+ {"current_steps": 264, "total_steps": 385, "loss": 0.0389, "learning_rate": 2.2e-06, "epoch": 3.395498392282958, "percentage": 68.57, "elapsed_time": "0:48:55", "remaining_time": "0:22:25", "throughput": "1475.08", "total_tokens": 4330144}
265
+ {"current_steps": 265, "total_steps": 385, "loss": 0.045, "learning_rate": 2.2083333333333335e-06, "epoch": 3.4083601286173635, "percentage": 68.83, "elapsed_time": "0:49:06", "remaining_time": "0:22:14", "throughput": "1474.84", "total_tokens": 4345856}
266
+ {"current_steps": 266, "total_steps": 385, "loss": 0.0331, "learning_rate": 2.216666666666667e-06, "epoch": 3.4212218649517685, "percentage": 69.09, "elapsed_time": "0:49:17", "remaining_time": "0:22:03", "throughput": "1474.66", "total_tokens": 4361696}
267
+ {"current_steps": 267, "total_steps": 385, "loss": 0.0228, "learning_rate": 2.2250000000000003e-06, "epoch": 3.4340836012861735, "percentage": 69.35, "elapsed_time": "0:49:28", "remaining_time": "0:21:52", "throughput": "1474.73", "total_tokens": 4378304}
268
+ {"current_steps": 268, "total_steps": 385, "loss": 0.0307, "learning_rate": 2.2333333333333333e-06, "epoch": 3.446945337620579, "percentage": 69.61, "elapsed_time": "0:49:39", "remaining_time": "0:21:40", "throughput": "1474.93", "total_tokens": 4395232}
269
+ {"current_steps": 269, "total_steps": 385, "loss": 0.0332, "learning_rate": 2.2416666666666667e-06, "epoch": 3.459807073954984, "percentage": 69.87, "elapsed_time": "0:49:51", "remaining_time": "0:21:29", "throughput": "1474.79", "total_tokens": 4411232}
270
+ {"current_steps": 270, "total_steps": 385, "loss": 0.0662, "learning_rate": 2.25e-06, "epoch": 3.472668810289389, "percentage": 70.13, "elapsed_time": "0:50:02", "remaining_time": "0:21:18", "throughput": "1474.75", "total_tokens": 4427520}
271
+ {"current_steps": 271, "total_steps": 385, "loss": 0.0431, "learning_rate": 2.2583333333333335e-06, "epoch": 3.485530546623794, "percentage": 70.39, "elapsed_time": "0:50:13", "remaining_time": "0:21:07", "throughput": "1474.76", "total_tokens": 4443904}
272
+ {"current_steps": 272, "total_steps": 385, "loss": 0.0423, "learning_rate": 2.266666666666667e-06, "epoch": 3.4983922829581995, "percentage": 70.65, "elapsed_time": "0:50:24", "remaining_time": "0:20:56", "throughput": "1474.84", "total_tokens": 4460608}
273
+ {"current_steps": 273, "total_steps": 385, "loss": 0.0447, "learning_rate": 2.2750000000000002e-06, "epoch": 3.5112540192926045, "percentage": 70.91, "elapsed_time": "0:50:35", "remaining_time": "0:20:45", "throughput": "1474.86", "total_tokens": 4477120}
274
+ {"current_steps": 274, "total_steps": 385, "loss": 0.0337, "learning_rate": 2.2833333333333336e-06, "epoch": 3.5241157556270095, "percentage": 71.17, "elapsed_time": "0:50:46", "remaining_time": "0:20:34", "throughput": "1474.75", "total_tokens": 4493152}
275
+ {"current_steps": 275, "total_steps": 385, "loss": 0.0319, "learning_rate": 2.2916666666666666e-06, "epoch": 3.536977491961415, "percentage": 71.43, "elapsed_time": "0:50:57", "remaining_time": "0:20:23", "throughput": "1474.61", "total_tokens": 4509120}
276
+ {"current_steps": 276, "total_steps": 385, "loss": 0.027, "learning_rate": 2.3000000000000004e-06, "epoch": 3.54983922829582, "percentage": 71.69, "elapsed_time": "0:51:08", "remaining_time": "0:20:12", "throughput": "1474.75", "total_tokens": 4525984}
277
+ {"current_steps": 277, "total_steps": 385, "loss": 0.0244, "learning_rate": 2.3083333333333334e-06, "epoch": 3.562700964630225, "percentage": 71.95, "elapsed_time": "0:51:20", "remaining_time": "0:20:00", "throughput": "1474.91", "total_tokens": 4542816}
278
+ {"current_steps": 278, "total_steps": 385, "loss": 0.0377, "learning_rate": 2.316666666666667e-06, "epoch": 3.57556270096463, "percentage": 72.21, "elapsed_time": "0:51:31", "remaining_time": "0:19:49", "throughput": "1475.12", "total_tokens": 4559872}
279
+ {"current_steps": 279, "total_steps": 385, "loss": 0.0477, "learning_rate": 2.325e-06, "epoch": 3.5884244372990355, "percentage": 72.47, "elapsed_time": "0:51:42", "remaining_time": "0:19:38", "throughput": "1475.12", "total_tokens": 4576288}
280
+ {"current_steps": 280, "total_steps": 385, "loss": 0.0332, "learning_rate": 2.3333333333333336e-06, "epoch": 3.6012861736334405, "percentage": 72.73, "elapsed_time": "0:51:53", "remaining_time": "0:19:27", "throughput": "1474.74", "total_tokens": 4591456}
281
+ {"current_steps": 281, "total_steps": 385, "loss": 0.0285, "learning_rate": 2.341666666666667e-06, "epoch": 3.6141479099678455, "percentage": 72.99, "elapsed_time": "0:52:04", "remaining_time": "0:19:16", "throughput": "1474.97", "total_tokens": 4608608}
282
+ {"current_steps": 282, "total_steps": 385, "loss": 0.0468, "learning_rate": 2.35e-06, "epoch": 3.627009646302251, "percentage": 73.25, "elapsed_time": "0:52:15", "remaining_time": "0:19:05", "throughput": "1475.00", "total_tokens": 4625120}
283
+ {"current_steps": 283, "total_steps": 385, "loss": 0.037, "learning_rate": 2.3583333333333338e-06, "epoch": 3.639871382636656, "percentage": 73.51, "elapsed_time": "0:52:26", "remaining_time": "0:18:54", "throughput": "1475.13", "total_tokens": 4641952}
284
+ {"current_steps": 284, "total_steps": 385, "loss": 0.041, "learning_rate": 2.3666666666666667e-06, "epoch": 3.652733118971061, "percentage": 73.77, "elapsed_time": "0:52:37", "remaining_time": "0:18:43", "throughput": "1474.98", "total_tokens": 4657920}
285
+ {"current_steps": 285, "total_steps": 385, "loss": 0.0461, "learning_rate": 2.375e-06, "epoch": 3.665594855305466, "percentage": 74.03, "elapsed_time": "0:52:49", "remaining_time": "0:18:31", "throughput": "1475.10", "total_tokens": 4674688}
286
+ {"current_steps": 286, "total_steps": 385, "loss": 0.0594, "learning_rate": 2.3833333333333335e-06, "epoch": 3.6784565916398715, "percentage": 74.29, "elapsed_time": "0:53:00", "remaining_time": "0:18:20", "throughput": "1474.95", "total_tokens": 4690592}
287
+ {"current_steps": 287, "total_steps": 385, "loss": 0.0728, "learning_rate": 2.391666666666667e-06, "epoch": 3.6913183279742765, "percentage": 74.55, "elapsed_time": "0:53:11", "remaining_time": "0:18:09", "throughput": "1475.07", "total_tokens": 4707360}
288
+ {"current_steps": 288, "total_steps": 385, "loss": 0.029, "learning_rate": 2.4000000000000003e-06, "epoch": 3.7041800643086815, "percentage": 74.81, "elapsed_time": "0:53:22", "remaining_time": "0:17:58", "throughput": "1475.20", "total_tokens": 4724192}
289
+ {"current_steps": 289, "total_steps": 385, "loss": 0.0412, "learning_rate": 2.4083333333333337e-06, "epoch": 3.717041800643087, "percentage": 75.06, "elapsed_time": "0:53:33", "remaining_time": "0:17:47", "throughput": "1475.44", "total_tokens": 4741344}
290
+ {"current_steps": 290, "total_steps": 385, "loss": 0.0262, "learning_rate": 2.4166666666666667e-06, "epoch": 3.729903536977492, "percentage": 75.32, "elapsed_time": "0:53:44", "remaining_time": "0:17:36", "throughput": "1475.13", "total_tokens": 4756768}
291
+ {"current_steps": 291, "total_steps": 385, "loss": 0.0796, "learning_rate": 2.425e-06, "epoch": 3.742765273311897, "percentage": 75.58, "elapsed_time": "0:53:55", "remaining_time": "0:17:25", "throughput": "1474.96", "total_tokens": 4772608}
292
+ {"current_steps": 292, "total_steps": 385, "loss": 0.0447, "learning_rate": 2.4333333333333335e-06, "epoch": 3.755627009646302, "percentage": 75.84, "elapsed_time": "0:54:06", "remaining_time": "0:17:14", "throughput": "1474.93", "total_tokens": 4788928}
293
+ {"current_steps": 293, "total_steps": 385, "loss": 0.0252, "learning_rate": 2.441666666666667e-06, "epoch": 3.7684887459807075, "percentage": 76.1, "elapsed_time": "0:54:18", "remaining_time": "0:17:02", "throughput": "1474.95", "total_tokens": 4805408}
294
+ {"current_steps": 294, "total_steps": 385, "loss": 0.0458, "learning_rate": 2.4500000000000003e-06, "epoch": 3.7813504823151125, "percentage": 76.36, "elapsed_time": "0:54:29", "remaining_time": "0:16:51", "throughput": "1474.79", "total_tokens": 4821248}
295
+ {"current_steps": 295, "total_steps": 385, "loss": 0.0431, "learning_rate": 2.4583333333333332e-06, "epoch": 3.7942122186495175, "percentage": 76.62, "elapsed_time": "0:54:40", "remaining_time": "0:16:40", "throughput": "1474.62", "total_tokens": 4837024}
296
+ {"current_steps": 296, "total_steps": 385, "loss": 0.0422, "learning_rate": 2.466666666666667e-06, "epoch": 3.807073954983923, "percentage": 76.88, "elapsed_time": "0:54:51", "remaining_time": "0:16:29", "throughput": "1474.72", "total_tokens": 4853760}
297
+ {"current_steps": 297, "total_steps": 385, "loss": 0.0428, "learning_rate": 2.475e-06, "epoch": 3.819935691318328, "percentage": 77.14, "elapsed_time": "0:55:02", "remaining_time": "0:16:18", "throughput": "1474.85", "total_tokens": 4870560}
298
+ {"current_steps": 298, "total_steps": 385, "loss": 0.0473, "learning_rate": 2.4833333333333334e-06, "epoch": 3.832797427652733, "percentage": 77.4, "elapsed_time": "0:55:13", "remaining_time": "0:16:07", "throughput": "1474.88", "total_tokens": 4887040}
299
+ {"current_steps": 299, "total_steps": 385, "loss": 0.0223, "learning_rate": 2.491666666666667e-06, "epoch": 3.845659163987138, "percentage": 77.66, "elapsed_time": "0:55:24", "remaining_time": "0:15:56", "throughput": "1474.81", "total_tokens": 4903232}
300
+ {"current_steps": 300, "total_steps": 385, "loss": 0.0274, "learning_rate": 2.5e-06, "epoch": 3.8585209003215435, "percentage": 77.92, "elapsed_time": "0:55:35", "remaining_time": "0:15:45", "throughput": "1474.73", "total_tokens": 4919392}
301
+ {"current_steps": 301, "total_steps": 385, "loss": 0.0454, "learning_rate": 2.5083333333333336e-06, "epoch": 3.8713826366559485, "percentage": 78.18, "elapsed_time": "0:55:46", "remaining_time": "0:15:34", "throughput": "1474.68", "total_tokens": 4935648}
302
+ {"current_steps": 302, "total_steps": 385, "loss": 0.022, "learning_rate": 2.5166666666666666e-06, "epoch": 3.884244372990354, "percentage": 78.44, "elapsed_time": "0:55:58", "remaining_time": "0:15:22", "throughput": "1474.90", "total_tokens": 4952768}
303
+ {"current_steps": 303, "total_steps": 385, "loss": 0.0357, "learning_rate": 2.5250000000000004e-06, "epoch": 3.897106109324759, "percentage": 78.7, "elapsed_time": "0:56:09", "remaining_time": "0:15:11", "throughput": "1474.97", "total_tokens": 4969408}
304
+ {"current_steps": 304, "total_steps": 385, "loss": 0.0458, "learning_rate": 2.5333333333333338e-06, "epoch": 3.909967845659164, "percentage": 78.96, "elapsed_time": "0:56:20", "remaining_time": "0:15:00", "throughput": "1475.20", "total_tokens": 4986592}
305
+ {"current_steps": 305, "total_steps": 385, "loss": 0.0454, "learning_rate": 2.5416666666666668e-06, "epoch": 3.922829581993569, "percentage": 79.22, "elapsed_time": "0:56:31", "remaining_time": "0:14:49", "throughput": "1475.13", "total_tokens": 5002720}
306
+ {"current_steps": 306, "total_steps": 385, "loss": 0.0262, "learning_rate": 2.55e-06, "epoch": 3.935691318327974, "percentage": 79.48, "elapsed_time": "0:56:42", "remaining_time": "0:14:38", "throughput": "1475.05", "total_tokens": 5018848}
307
+ {"current_steps": 307, "total_steps": 385, "loss": 0.0234, "learning_rate": 2.558333333333334e-06, "epoch": 3.9485530546623795, "percentage": 79.74, "elapsed_time": "0:56:53", "remaining_time": "0:14:27", "throughput": "1474.86", "total_tokens": 5034528}
308
+ {"current_steps": 308, "total_steps": 385, "loss": 0.0366, "learning_rate": 2.566666666666667e-06, "epoch": 3.9614147909967845, "percentage": 80.0, "elapsed_time": "0:57:04", "remaining_time": "0:14:16", "throughput": "1474.97", "total_tokens": 5051328}
309
+ {"current_steps": 309, "total_steps": 385, "loss": 0.0236, "learning_rate": 2.5750000000000003e-06, "epoch": 3.97427652733119, "percentage": 80.26, "elapsed_time": "0:57:15", "remaining_time": "0:14:05", "throughput": "1474.97", "total_tokens": 5067712}
310
+ {"current_steps": 310, "total_steps": 385, "loss": 0.0403, "learning_rate": 2.5833333333333337e-06, "epoch": 3.987138263665595, "percentage": 80.52, "elapsed_time": "0:57:26", "remaining_time": "0:13:53", "throughput": "1475.24", "total_tokens": 5085088}
311
+ {"current_steps": 311, "total_steps": 385, "loss": 0.0395, "learning_rate": 2.5916666666666667e-06, "epoch": 4.0, "percentage": 80.78, "elapsed_time": "0:57:38", "remaining_time": "0:13:42", "throughput": "1475.24", "total_tokens": 5101536}
312
+ {"current_steps": 312, "total_steps": 385, "loss": 0.0163, "learning_rate": 2.6e-06, "epoch": 4.012861736334405, "percentage": 81.04, "elapsed_time": "0:57:49", "remaining_time": "0:13:31", "throughput": "1475.19", "total_tokens": 5117696}
313
+ {"current_steps": 313, "total_steps": 385, "loss": 0.0181, "learning_rate": 2.608333333333333e-06, "epoch": 4.02572347266881, "percentage": 81.3, "elapsed_time": "0:58:00", "remaining_time": "0:13:20", "throughput": "1475.00", "total_tokens": 5133408}
314
+ {"current_steps": 314, "total_steps": 385, "loss": 0.013, "learning_rate": 2.616666666666667e-06, "epoch": 4.038585209003215, "percentage": 81.56, "elapsed_time": "0:58:11", "remaining_time": "0:13:09", "throughput": "1474.96", "total_tokens": 5149664}
315
+ {"current_steps": 315, "total_steps": 385, "loss": 0.0178, "learning_rate": 2.6250000000000003e-06, "epoch": 4.051446945337621, "percentage": 81.82, "elapsed_time": "0:58:22", "remaining_time": "0:12:58", "throughput": "1474.78", "total_tokens": 5165344}
316
+ {"current_steps": 316, "total_steps": 385, "loss": 0.0153, "learning_rate": 2.6333333333333332e-06, "epoch": 4.064308681672026, "percentage": 82.08, "elapsed_time": "0:58:33", "remaining_time": "0:12:47", "throughput": "1475.20", "total_tokens": 5183264}
317
+ {"current_steps": 317, "total_steps": 385, "loss": 0.0205, "learning_rate": 2.6416666666666666e-06, "epoch": 4.077170418006431, "percentage": 82.34, "elapsed_time": "0:58:44", "remaining_time": "0:12:36", "throughput": "1475.09", "total_tokens": 5199296}
318
+ {"current_steps": 318, "total_steps": 385, "loss": 0.0021, "learning_rate": 2.6500000000000005e-06, "epoch": 4.090032154340836, "percentage": 82.6, "elapsed_time": "0:58:55", "remaining_time": "0:12:24", "throughput": "1475.17", "total_tokens": 5216032}
319
+ {"current_steps": 319, "total_steps": 385, "loss": 0.022, "learning_rate": 2.6583333333333334e-06, "epoch": 4.102893890675241, "percentage": 82.86, "elapsed_time": "0:59:07", "remaining_time": "0:12:13", "throughput": "1475.20", "total_tokens": 5232544}
320
+ {"current_steps": 320, "total_steps": 385, "loss": 0.0134, "learning_rate": 2.666666666666667e-06, "epoch": 4.115755627009646, "percentage": 83.12, "elapsed_time": "0:59:18", "remaining_time": "0:12:02", "throughput": "1475.14", "total_tokens": 5248704}
321
+ {"current_steps": 321, "total_steps": 385, "loss": 0.0175, "learning_rate": 2.6750000000000002e-06, "epoch": 4.128617363344051, "percentage": 83.38, "elapsed_time": "0:59:29", "remaining_time": "0:11:51", "throughput": "1474.95", "total_tokens": 5264384}
322
+ {"current_steps": 322, "total_steps": 385, "loss": 0.023, "learning_rate": 2.683333333333333e-06, "epoch": 4.141479099678457, "percentage": 83.64, "elapsed_time": "0:59:40", "remaining_time": "0:11:40", "throughput": "1474.98", "total_tokens": 5280928}
323
+ {"current_steps": 323, "total_steps": 385, "loss": 0.0303, "learning_rate": 2.691666666666667e-06, "epoch": 4.154340836012862, "percentage": 83.9, "elapsed_time": "0:59:51", "remaining_time": "0:11:29", "throughput": "1474.77", "total_tokens": 5296512}
324
+ {"current_steps": 324, "total_steps": 385, "loss": 0.0187, "learning_rate": 2.7000000000000004e-06, "epoch": 4.167202572347267, "percentage": 84.16, "elapsed_time": "1:00:02", "remaining_time": "0:11:18", "throughput": "1474.91", "total_tokens": 5313440}
325
+ {"current_steps": 325, "total_steps": 385, "loss": 0.0126, "learning_rate": 2.7083333333333334e-06, "epoch": 4.180064308681672, "percentage": 84.42, "elapsed_time": "1:00:13", "remaining_time": "0:11:07", "throughput": "1474.71", "total_tokens": 5329088}
326
+ {"current_steps": 326, "total_steps": 385, "loss": 0.0203, "learning_rate": 2.7166666666666668e-06, "epoch": 4.192926045016077, "percentage": 84.68, "elapsed_time": "1:00:24", "remaining_time": "0:10:56", "throughput": "1474.67", "total_tokens": 5345376}
327
+ {"current_steps": 327, "total_steps": 385, "loss": 0.0078, "learning_rate": 2.7250000000000006e-06, "epoch": 4.205787781350482, "percentage": 84.94, "elapsed_time": "1:00:35", "remaining_time": "0:10:44", "throughput": "1474.62", "total_tokens": 5361568}
328
+ {"current_steps": 328, "total_steps": 385, "loss": 0.0165, "learning_rate": 2.7333333333333336e-06, "epoch": 4.218649517684887, "percentage": 85.19, "elapsed_time": "1:00:47", "remaining_time": "0:10:33", "throughput": "1474.50", "total_tokens": 5377536}
329
+ {"current_steps": 329, "total_steps": 385, "loss": 0.0113, "learning_rate": 2.741666666666667e-06, "epoch": 4.231511254019293, "percentage": 85.45, "elapsed_time": "1:00:58", "remaining_time": "0:10:22", "throughput": "1474.78", "total_tokens": 5395040}
330
+ {"current_steps": 330, "total_steps": 385, "loss": 0.0058, "learning_rate": 2.7500000000000004e-06, "epoch": 4.244372990353698, "percentage": 85.71, "elapsed_time": "1:01:09", "remaining_time": "0:10:11", "throughput": "1474.81", "total_tokens": 5411488}
331
+ {"current_steps": 331, "total_steps": 385, "loss": 0.007, "learning_rate": 2.7583333333333333e-06, "epoch": 4.257234726688103, "percentage": 85.97, "elapsed_time": "1:01:20", "remaining_time": "0:10:00", "throughput": "1474.67", "total_tokens": 5427328}
332
+ {"current_steps": 332, "total_steps": 385, "loss": 0.027, "learning_rate": 2.766666666666667e-06, "epoch": 4.270096463022508, "percentage": 86.23, "elapsed_time": "1:01:31", "remaining_time": "0:09:49", "throughput": "1474.84", "total_tokens": 5444352}
333
+ {"current_steps": 333, "total_steps": 385, "loss": 0.0276, "learning_rate": 2.7750000000000005e-06, "epoch": 4.282958199356913, "percentage": 86.49, "elapsed_time": "1:01:42", "remaining_time": "0:09:38", "throughput": "1474.61", "total_tokens": 5459840}
334
+ {"current_steps": 334, "total_steps": 385, "loss": 0.0367, "learning_rate": 2.7833333333333335e-06, "epoch": 4.295819935691318, "percentage": 86.75, "elapsed_time": "1:01:53", "remaining_time": "0:09:27", "throughput": "1474.55", "total_tokens": 5476000}
335
+ {"current_steps": 335, "total_steps": 385, "loss": 0.0161, "learning_rate": 2.791666666666667e-06, "epoch": 4.308681672025724, "percentage": 87.01, "elapsed_time": "1:02:04", "remaining_time": "0:09:15", "throughput": "1474.44", "total_tokens": 5491968}
336
+ {"current_steps": 336, "total_steps": 385, "loss": 0.018, "learning_rate": 2.8000000000000003e-06, "epoch": 4.321543408360129, "percentage": 87.27, "elapsed_time": "1:02:15", "remaining_time": "0:09:04", "throughput": "1474.57", "total_tokens": 5508864}
337
+ {"current_steps": 337, "total_steps": 385, "loss": 0.0044, "learning_rate": 2.8083333333333333e-06, "epoch": 4.334405144694534, "percentage": 87.53, "elapsed_time": "1:02:27", "remaining_time": "0:08:53", "throughput": "1474.64", "total_tokens": 5525536}
338
+ {"current_steps": 338, "total_steps": 385, "loss": 0.0109, "learning_rate": 2.816666666666667e-06, "epoch": 4.347266881028939, "percentage": 87.79, "elapsed_time": "1:02:38", "remaining_time": "0:08:42", "throughput": "1474.75", "total_tokens": 5542368}
339
+ {"current_steps": 339, "total_steps": 385, "loss": 0.0173, "learning_rate": 2.825e-06, "epoch": 4.360128617363344, "percentage": 88.05, "elapsed_time": "1:02:49", "remaining_time": "0:08:31", "throughput": "1474.67", "total_tokens": 5558400}
340
+ {"current_steps": 340, "total_steps": 385, "loss": 0.0107, "learning_rate": 2.8333333333333335e-06, "epoch": 4.372990353697749, "percentage": 88.31, "elapsed_time": "1:03:00", "remaining_time": "0:08:20", "throughput": "1474.70", "total_tokens": 5575008}
341
+ {"current_steps": 341, "total_steps": 385, "loss": 0.0116, "learning_rate": 2.841666666666667e-06, "epoch": 4.385852090032154, "percentage": 88.57, "elapsed_time": "1:03:11", "remaining_time": "0:08:09", "throughput": "1474.55", "total_tokens": 5590784}
342
+ {"current_steps": 342, "total_steps": 385, "loss": 0.0281, "learning_rate": 2.85e-06, "epoch": 4.39871382636656, "percentage": 88.83, "elapsed_time": "1:03:22", "remaining_time": "0:07:58", "throughput": "1474.78", "total_tokens": 5608032}
343
+ {"current_steps": 343, "total_steps": 385, "loss": 0.0246, "learning_rate": 2.8583333333333336e-06, "epoch": 4.411575562700965, "percentage": 89.09, "elapsed_time": "1:03:33", "remaining_time": "0:07:46", "throughput": "1474.86", "total_tokens": 5624704}
344
+ {"current_steps": 344, "total_steps": 385, "loss": 0.0146, "learning_rate": 2.866666666666667e-06, "epoch": 4.42443729903537, "percentage": 89.35, "elapsed_time": "1:03:44", "remaining_time": "0:07:35", "throughput": "1474.84", "total_tokens": 5641056}
345
+ {"current_steps": 345, "total_steps": 385, "loss": 0.0439, "learning_rate": 2.875e-06, "epoch": 4.437299035369775, "percentage": 89.61, "elapsed_time": "1:03:55", "remaining_time": "0:07:24", "throughput": "1474.62", "total_tokens": 5656608}
346
+ {"current_steps": 346, "total_steps": 385, "loss": 0.0279, "learning_rate": 2.8833333333333334e-06, "epoch": 4.45016077170418, "percentage": 89.87, "elapsed_time": "1:04:07", "remaining_time": "0:07:13", "throughput": "1474.60", "total_tokens": 5672928}
347
+ {"current_steps": 347, "total_steps": 385, "loss": 0.0276, "learning_rate": 2.8916666666666672e-06, "epoch": 4.463022508038585, "percentage": 90.13, "elapsed_time": "1:04:18", "remaining_time": "0:07:02", "throughput": "1474.70", "total_tokens": 5689728}
348
+ {"current_steps": 348, "total_steps": 385, "loss": 0.0167, "learning_rate": 2.9e-06, "epoch": 4.47588424437299, "percentage": 90.39, "elapsed_time": "1:04:29", "remaining_time": "0:06:51", "throughput": "1474.63", "total_tokens": 5705824}
349
+ {"current_steps": 349, "total_steps": 385, "loss": 0.0258, "learning_rate": 2.9083333333333336e-06, "epoch": 4.488745980707396, "percentage": 90.65, "elapsed_time": "1:04:40", "remaining_time": "0:06:40", "throughput": "1474.83", "total_tokens": 5723008}
350
+ {"current_steps": 350, "total_steps": 385, "loss": 0.0306, "learning_rate": 2.916666666666667e-06, "epoch": 4.501607717041801, "percentage": 90.91, "elapsed_time": "1:04:51", "remaining_time": "0:06:29", "throughput": "1474.91", "total_tokens": 5739680}
351
+ {"current_steps": 351, "total_steps": 385, "loss": 0.0395, "learning_rate": 2.925e-06, "epoch": 4.514469453376206, "percentage": 91.17, "elapsed_time": "1:05:02", "remaining_time": "0:06:18", "throughput": "1475.01", "total_tokens": 5756480}
352
+ {"current_steps": 352, "total_steps": 385, "loss": 0.0203, "learning_rate": 2.9333333333333338e-06, "epoch": 4.527331189710611, "percentage": 91.43, "elapsed_time": "1:05:13", "remaining_time": "0:06:06", "throughput": "1475.06", "total_tokens": 5773088}
353
+ {"current_steps": 353, "total_steps": 385, "loss": 0.0241, "learning_rate": 2.941666666666667e-06, "epoch": 4.540192926045016, "percentage": 91.69, "elapsed_time": "1:05:24", "remaining_time": "0:05:55", "throughput": "1475.01", "total_tokens": 5789312}
354
+ {"current_steps": 354, "total_steps": 385, "loss": 0.0151, "learning_rate": 2.95e-06, "epoch": 4.553054662379421, "percentage": 91.95, "elapsed_time": "1:05:36", "remaining_time": "0:05:44", "throughput": "1474.68", "total_tokens": 5804352}
355
+ {"current_steps": 355, "total_steps": 385, "loss": 0.0355, "learning_rate": 2.9583333333333335e-06, "epoch": 4.565916398713826, "percentage": 92.21, "elapsed_time": "1:05:47", "remaining_time": "0:05:33", "throughput": "1474.59", "total_tokens": 5820384}
356
+ {"current_steps": 356, "total_steps": 385, "loss": 0.0093, "learning_rate": 2.9666666666666673e-06, "epoch": 4.578778135048232, "percentage": 92.47, "elapsed_time": "1:05:58", "remaining_time": "0:05:22", "throughput": "1474.72", "total_tokens": 5837280}
357
+ {"current_steps": 357, "total_steps": 385, "loss": 0.0314, "learning_rate": 2.9750000000000003e-06, "epoch": 4.591639871382637, "percentage": 92.73, "elapsed_time": "1:06:09", "remaining_time": "0:05:11", "throughput": "1474.75", "total_tokens": 5853760}
358
+ {"current_steps": 358, "total_steps": 385, "loss": 0.0155, "learning_rate": 2.9833333333333337e-06, "epoch": 4.604501607717042, "percentage": 92.99, "elapsed_time": "1:06:20", "remaining_time": "0:05:00", "throughput": "1474.77", "total_tokens": 5870240}
359
+ {"current_steps": 359, "total_steps": 385, "loss": 0.0138, "learning_rate": 2.991666666666667e-06, "epoch": 4.617363344051447, "percentage": 93.25, "elapsed_time": "1:06:31", "remaining_time": "0:04:49", "throughput": "1474.94", "total_tokens": 5887296}
360
+ {"current_steps": 360, "total_steps": 385, "loss": 0.0212, "learning_rate": 3e-06, "epoch": 4.630225080385852, "percentage": 93.51, "elapsed_time": "1:06:42", "remaining_time": "0:04:37", "throughput": "1475.10", "total_tokens": 5904384}
361
+ {"current_steps": 361, "total_steps": 385, "loss": 0.0255, "learning_rate": 3.0083333333333335e-06, "epoch": 4.643086816720257, "percentage": 93.77, "elapsed_time": "1:06:53", "remaining_time": "0:04:26", "throughput": "1475.11", "total_tokens": 5920832}
362
+ {"current_steps": 362, "total_steps": 385, "loss": 0.0231, "learning_rate": 3.0166666666666673e-06, "epoch": 4.655948553054662, "percentage": 94.03, "elapsed_time": "1:07:04", "remaining_time": "0:04:15", "throughput": "1474.99", "total_tokens": 5936736}
363
+ {"current_steps": 363, "total_steps": 385, "loss": 0.0083, "learning_rate": 3.0250000000000003e-06, "epoch": 4.668810289389068, "percentage": 94.29, "elapsed_time": "1:07:16", "remaining_time": "0:04:04", "throughput": "1474.99", "total_tokens": 5953120}
364
+ {"current_steps": 364, "total_steps": 385, "loss": 0.0122, "learning_rate": 3.0333333333333337e-06, "epoch": 4.681672025723473, "percentage": 94.55, "elapsed_time": "1:07:27", "remaining_time": "0:03:53", "throughput": "1475.18", "total_tokens": 5970336}
365
+ {"current_steps": 365, "total_steps": 385, "loss": 0.0142, "learning_rate": 3.0416666666666666e-06, "epoch": 4.694533762057878, "percentage": 94.81, "elapsed_time": "1:07:38", "remaining_time": "0:03:42", "throughput": "1475.37", "total_tokens": 5987488}
366
+ {"current_steps": 366, "total_steps": 385, "loss": 0.0293, "learning_rate": 3.05e-06, "epoch": 4.707395498392283, "percentage": 95.06, "elapsed_time": "1:07:49", "remaining_time": "0:03:31", "throughput": "1475.24", "total_tokens": 6003296}
367
+ {"current_steps": 367, "total_steps": 385, "loss": 0.0292, "learning_rate": 3.058333333333334e-06, "epoch": 4.720257234726688, "percentage": 95.32, "elapsed_time": "1:08:00", "remaining_time": "0:03:20", "throughput": "1475.50", "total_tokens": 6020768}
368
+ {"current_steps": 368, "total_steps": 385, "loss": 0.032, "learning_rate": 3.066666666666667e-06, "epoch": 4.733118971061093, "percentage": 95.58, "elapsed_time": "1:08:11", "remaining_time": "0:03:09", "throughput": "1475.46", "total_tokens": 6036992}
369
+ {"current_steps": 369, "total_steps": 385, "loss": 0.0189, "learning_rate": 3.075e-06, "epoch": 4.745980707395498, "percentage": 95.84, "elapsed_time": "1:08:22", "remaining_time": "0:02:57", "throughput": "1475.50", "total_tokens": 6053568}
370
+ {"current_steps": 370, "total_steps": 385, "loss": 0.022, "learning_rate": 3.0833333333333336e-06, "epoch": 4.758842443729904, "percentage": 96.1, "elapsed_time": "1:08:33", "remaining_time": "0:02:46", "throughput": "1475.57", "total_tokens": 6070336}
371
+ {"current_steps": 371, "total_steps": 385, "loss": 0.0242, "learning_rate": 3.0916666666666666e-06, "epoch": 4.771704180064309, "percentage": 96.36, "elapsed_time": "1:08:45", "remaining_time": "0:02:35", "throughput": "1475.68", "total_tokens": 6087200}
372
+ {"current_steps": 372, "total_steps": 385, "loss": 0.015, "learning_rate": 3.1000000000000004e-06, "epoch": 4.784565916398714, "percentage": 96.62, "elapsed_time": "1:08:56", "remaining_time": "0:02:24", "throughput": "1475.82", "total_tokens": 6104224}
373
+ {"current_steps": 373, "total_steps": 385, "loss": 0.0154, "learning_rate": 3.1083333333333338e-06, "epoch": 4.797427652733119, "percentage": 96.88, "elapsed_time": "1:09:07", "remaining_time": "0:02:13", "throughput": "1475.81", "total_tokens": 6120576}
374
+ {"current_steps": 374, "total_steps": 385, "loss": 0.0195, "learning_rate": 3.1166666666666668e-06, "epoch": 4.810289389067524, "percentage": 97.14, "elapsed_time": "1:09:18", "remaining_time": "0:02:02", "throughput": "1475.92", "total_tokens": 6137440}
375
+ {"current_steps": 375, "total_steps": 385, "loss": 0.031, "learning_rate": 3.125e-06, "epoch": 4.823151125401929, "percentage": 97.4, "elapsed_time": "1:09:29", "remaining_time": "0:01:51", "throughput": "1476.19", "total_tokens": 6154976}
376
+ {"current_steps": 376, "total_steps": 385, "loss": 0.0376, "learning_rate": 3.133333333333334e-06, "epoch": 4.836012861736334, "percentage": 97.66, "elapsed_time": "1:09:40", "remaining_time": "0:01:40", "throughput": "1476.09", "total_tokens": 6170912}
377
+ {"current_steps": 377, "total_steps": 385, "loss": 0.0093, "learning_rate": 3.141666666666667e-06, "epoch": 4.84887459807074, "percentage": 97.92, "elapsed_time": "1:09:51", "remaining_time": "0:01:28", "throughput": "1476.24", "total_tokens": 6187968}
378
+ {"current_steps": 378, "total_steps": 385, "loss": 0.027, "learning_rate": 3.1500000000000003e-06, "epoch": 4.861736334405145, "percentage": 98.18, "elapsed_time": "1:10:02", "remaining_time": "0:01:17", "throughput": "1476.22", "total_tokens": 6204320}
379
+ {"current_steps": 379, "total_steps": 385, "loss": 0.0191, "learning_rate": 3.1583333333333337e-06, "epoch": 4.87459807073955, "percentage": 98.44, "elapsed_time": "1:10:13", "remaining_time": "0:01:06", "throughput": "1476.16", "total_tokens": 6220512}
380
+ {"current_steps": 380, "total_steps": 385, "loss": 0.0132, "learning_rate": 3.1666666666666667e-06, "epoch": 4.887459807073955, "percentage": 98.7, "elapsed_time": "1:10:25", "remaining_time": "0:00:55", "throughput": "1476.06", "total_tokens": 6236512}
381
+ {"current_steps": 381, "total_steps": 385, "loss": 0.0111, "learning_rate": 3.175e-06, "epoch": 4.90032154340836, "percentage": 98.96, "elapsed_time": "1:10:36", "remaining_time": "0:00:44", "throughput": "1475.94", "total_tokens": 6252416}
382
+ {"current_steps": 382, "total_steps": 385, "loss": 0.0145, "learning_rate": 3.183333333333334e-06, "epoch": 4.913183279742765, "percentage": 99.22, "elapsed_time": "1:10:47", "remaining_time": "0:00:33", "throughput": "1475.98", "total_tokens": 6268992}
383
+ {"current_steps": 383, "total_steps": 385, "loss": 0.0082, "learning_rate": 3.191666666666667e-06, "epoch": 4.92604501607717, "percentage": 99.48, "elapsed_time": "1:10:58", "remaining_time": "0:00:22", "throughput": "1475.97", "total_tokens": 6285312}
384
+ {"current_steps": 384, "total_steps": 385, "loss": 0.0165, "learning_rate": 3.2000000000000003e-06, "epoch": 4.938906752411576, "percentage": 99.74, "elapsed_time": "1:11:09", "remaining_time": "0:00:11", "throughput": "1475.81", "total_tokens": 6300992}
385
+ {"current_steps": 385, "total_steps": 385, "loss": 0.0243, "learning_rate": 3.2083333333333337e-06, "epoch": 4.951768488745981, "percentage": 100.0, "elapsed_time": "1:11:20", "remaining_time": "0:00:00", "throughput": "1476.08", "total_tokens": 6318560}
386
+ {"current_steps": 385, "total_steps": 385, "epoch": 4.951768488745981, "percentage": 100.0, "elapsed_time": "1:12:11", "remaining_time": "0:00:00", "throughput": "1458.88", "total_tokens": 6318560}
trainer_state.json ADDED
@@ -0,0 +1,3123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 4.951768488745981,
5
+ "eval_steps": 500,
6
+ "global_step": 385,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.012861736334405145,
13
+ "grad_norm": 258.1509094238281,
14
+ "learning_rate": 8.333333333333335e-09,
15
+ "loss": 8.1083,
16
+ "num_input_tokens_seen": 16544,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.02572347266881029,
21
+ "grad_norm": 266.15087890625,
22
+ "learning_rate": 1.666666666666667e-08,
23
+ "loss": 8.1052,
24
+ "num_input_tokens_seen": 33248,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.03858520900321544,
29
+ "grad_norm": 276.69952392578125,
30
+ "learning_rate": 2.5000000000000002e-08,
31
+ "loss": 8.1366,
32
+ "num_input_tokens_seen": 49760,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.05144694533762058,
37
+ "grad_norm": 268.43804931640625,
38
+ "learning_rate": 3.333333333333334e-08,
39
+ "loss": 8.0413,
40
+ "num_input_tokens_seen": 65824,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.06430868167202572,
45
+ "grad_norm": 269.6364440917969,
46
+ "learning_rate": 4.166666666666667e-08,
47
+ "loss": 8.1055,
48
+ "num_input_tokens_seen": 82560,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.07717041800643087,
53
+ "grad_norm": 274.33538818359375,
54
+ "learning_rate": 5.0000000000000004e-08,
55
+ "loss": 7.9666,
56
+ "num_input_tokens_seen": 99808,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.09003215434083602,
61
+ "grad_norm": 266.3240051269531,
62
+ "learning_rate": 5.833333333333334e-08,
63
+ "loss": 8.0182,
64
+ "num_input_tokens_seen": 115808,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.10289389067524116,
69
+ "grad_norm": 274.253662109375,
70
+ "learning_rate": 6.666666666666668e-08,
71
+ "loss": 8.0363,
72
+ "num_input_tokens_seen": 131392,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.1157556270096463,
77
+ "grad_norm": 263.321533203125,
78
+ "learning_rate": 7.500000000000001e-08,
79
+ "loss": 8.0918,
80
+ "num_input_tokens_seen": 147840,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.12861736334405144,
85
+ "grad_norm": 266.48394775390625,
86
+ "learning_rate": 8.333333333333334e-08,
87
+ "loss": 8.0197,
88
+ "num_input_tokens_seen": 164064,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.1414790996784566,
93
+ "grad_norm": 258.7409362792969,
94
+ "learning_rate": 9.166666666666668e-08,
95
+ "loss": 7.9714,
96
+ "num_input_tokens_seen": 180704,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.15434083601286175,
101
+ "grad_norm": 271.2587585449219,
102
+ "learning_rate": 1.0000000000000001e-07,
103
+ "loss": 8.0131,
104
+ "num_input_tokens_seen": 196064,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.16720257234726688,
109
+ "grad_norm": 255.18431091308594,
110
+ "learning_rate": 1.0833333333333335e-07,
111
+ "loss": 7.9796,
112
+ "num_input_tokens_seen": 211424,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.18006430868167203,
117
+ "grad_norm": 269.7242736816406,
118
+ "learning_rate": 1.1666666666666668e-07,
119
+ "loss": 7.9999,
120
+ "num_input_tokens_seen": 228096,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.19292604501607716,
125
+ "grad_norm": 264.5142517089844,
126
+ "learning_rate": 1.2500000000000002e-07,
127
+ "loss": 8.0168,
128
+ "num_input_tokens_seen": 244416,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.2057877813504823,
133
+ "grad_norm": 267.4490661621094,
134
+ "learning_rate": 1.3333333333333336e-07,
135
+ "loss": 7.8423,
136
+ "num_input_tokens_seen": 261056,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.21864951768488747,
141
+ "grad_norm": 269.4408874511719,
142
+ "learning_rate": 1.4166666666666668e-07,
143
+ "loss": 7.9208,
144
+ "num_input_tokens_seen": 276992,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.2315112540192926,
149
+ "grad_norm": 256.512939453125,
150
+ "learning_rate": 1.5000000000000002e-07,
151
+ "loss": 7.6898,
152
+ "num_input_tokens_seen": 293536,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.24437299035369775,
157
+ "grad_norm": 265.34490966796875,
158
+ "learning_rate": 1.5833333333333336e-07,
159
+ "loss": 7.9285,
160
+ "num_input_tokens_seen": 309024,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.2572347266881029,
165
+ "grad_norm": 268.9532470703125,
166
+ "learning_rate": 1.6666666666666668e-07,
167
+ "loss": 7.8924,
168
+ "num_input_tokens_seen": 325024,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.27009646302250806,
173
+ "grad_norm": 268.1192321777344,
174
+ "learning_rate": 1.7500000000000002e-07,
175
+ "loss": 7.6173,
176
+ "num_input_tokens_seen": 341856,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.2829581993569132,
181
+ "grad_norm": 271.13006591796875,
182
+ "learning_rate": 1.8333333333333336e-07,
183
+ "loss": 7.7661,
184
+ "num_input_tokens_seen": 358848,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.2958199356913183,
189
+ "grad_norm": 260.5618591308594,
190
+ "learning_rate": 1.9166666666666668e-07,
191
+ "loss": 7.2936,
192
+ "num_input_tokens_seen": 375360,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.3086816720257235,
197
+ "grad_norm": 249.86729431152344,
198
+ "learning_rate": 2.0000000000000002e-07,
199
+ "loss": 7.3044,
200
+ "num_input_tokens_seen": 392608,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.3215434083601286,
205
+ "grad_norm": 257.8570861816406,
206
+ "learning_rate": 2.0833333333333333e-07,
207
+ "loss": 7.35,
208
+ "num_input_tokens_seen": 408800,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.33440514469453375,
213
+ "grad_norm": 246.40611267089844,
214
+ "learning_rate": 2.166666666666667e-07,
215
+ "loss": 7.1213,
216
+ "num_input_tokens_seen": 425632,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.34726688102893893,
221
+ "grad_norm": 252.2755889892578,
222
+ "learning_rate": 2.2500000000000002e-07,
223
+ "loss": 7.1363,
224
+ "num_input_tokens_seen": 441952,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.36012861736334406,
229
+ "grad_norm": 235.94859313964844,
230
+ "learning_rate": 2.3333333333333336e-07,
231
+ "loss": 6.9016,
232
+ "num_input_tokens_seen": 458080,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.3729903536977492,
237
+ "grad_norm": 243.25863647460938,
238
+ "learning_rate": 2.416666666666667e-07,
239
+ "loss": 6.9764,
240
+ "num_input_tokens_seen": 473824,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.3858520900321543,
245
+ "grad_norm": 250.39564514160156,
246
+ "learning_rate": 2.5000000000000004e-07,
247
+ "loss": 6.9005,
248
+ "num_input_tokens_seen": 490336,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.3987138263665595,
253
+ "grad_norm": 253.6007843017578,
254
+ "learning_rate": 2.5833333333333333e-07,
255
+ "loss": 6.9852,
256
+ "num_input_tokens_seen": 506976,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.4115755627009646,
261
+ "grad_norm": 155.81201171875,
262
+ "learning_rate": 2.666666666666667e-07,
263
+ "loss": 5.834,
264
+ "num_input_tokens_seen": 523520,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.42443729903536975,
269
+ "grad_norm": 124.55789947509766,
270
+ "learning_rate": 2.75e-07,
271
+ "loss": 5.5452,
272
+ "num_input_tokens_seen": 540672,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.43729903536977494,
277
+ "grad_norm": 130.3427276611328,
278
+ "learning_rate": 2.8333333333333336e-07,
279
+ "loss": 5.5189,
280
+ "num_input_tokens_seen": 557696,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.45016077170418006,
285
+ "grad_norm": 126.62003326416016,
286
+ "learning_rate": 2.916666666666667e-07,
287
+ "loss": 5.4654,
288
+ "num_input_tokens_seen": 574400,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.4630225080385852,
293
+ "grad_norm": 120.25413513183594,
294
+ "learning_rate": 3.0000000000000004e-07,
295
+ "loss": 5.3117,
296
+ "num_input_tokens_seen": 590112,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.4758842443729904,
301
+ "grad_norm": 123.52056884765625,
302
+ "learning_rate": 3.083333333333334e-07,
303
+ "loss": 5.2744,
304
+ "num_input_tokens_seen": 605920,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 0.4887459807073955,
309
+ "grad_norm": 124.25894927978516,
310
+ "learning_rate": 3.166666666666667e-07,
311
+ "loss": 5.2821,
312
+ "num_input_tokens_seen": 622208,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 0.5016077170418006,
317
+ "grad_norm": 111.38367462158203,
318
+ "learning_rate": 3.25e-07,
319
+ "loss": 5.0967,
320
+ "num_input_tokens_seen": 638464,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 0.5144694533762058,
325
+ "grad_norm": 119.48200225830078,
326
+ "learning_rate": 3.3333333333333335e-07,
327
+ "loss": 5.2167,
328
+ "num_input_tokens_seen": 654656,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 0.5273311897106109,
333
+ "grad_norm": 108.62528991699219,
334
+ "learning_rate": 3.416666666666667e-07,
335
+ "loss": 5.1517,
336
+ "num_input_tokens_seen": 671424,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 0.5401929260450161,
341
+ "grad_norm": 109.66475677490234,
342
+ "learning_rate": 3.5000000000000004e-07,
343
+ "loss": 4.6959,
344
+ "num_input_tokens_seen": 687968,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 0.5530546623794212,
349
+ "grad_norm": 107.45171356201172,
350
+ "learning_rate": 3.583333333333334e-07,
351
+ "loss": 4.1458,
352
+ "num_input_tokens_seen": 704224,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 0.5659163987138264,
357
+ "grad_norm": 102.30545806884766,
358
+ "learning_rate": 3.666666666666667e-07,
359
+ "loss": 3.6692,
360
+ "num_input_tokens_seen": 720704,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 0.5787781350482315,
365
+ "grad_norm": 96.8830795288086,
366
+ "learning_rate": 3.75e-07,
367
+ "loss": 3.3322,
368
+ "num_input_tokens_seen": 737408,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 0.5916398713826366,
373
+ "grad_norm": 102.91023254394531,
374
+ "learning_rate": 3.8333333333333335e-07,
375
+ "loss": 3.2857,
376
+ "num_input_tokens_seen": 753728,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 0.6045016077170418,
381
+ "grad_norm": 105.37537384033203,
382
+ "learning_rate": 3.9166666666666675e-07,
383
+ "loss": 3.0806,
384
+ "num_input_tokens_seen": 770080,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 0.617363344051447,
389
+ "grad_norm": 98.45983123779297,
390
+ "learning_rate": 4.0000000000000003e-07,
391
+ "loss": 2.8239,
392
+ "num_input_tokens_seen": 786912,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 0.6302250803858521,
397
+ "grad_norm": 108.93148040771484,
398
+ "learning_rate": 4.083333333333334e-07,
399
+ "loss": 2.8695,
400
+ "num_input_tokens_seen": 804192,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 0.6430868167202572,
405
+ "grad_norm": 100.31180572509766,
406
+ "learning_rate": 4.1666666666666667e-07,
407
+ "loss": 2.6218,
408
+ "num_input_tokens_seen": 820928,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 0.6559485530546624,
413
+ "grad_norm": 101.31784057617188,
414
+ "learning_rate": 4.2500000000000006e-07,
415
+ "loss": 2.3993,
416
+ "num_input_tokens_seen": 837152,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 0.6688102893890675,
421
+ "grad_norm": 101.09466552734375,
422
+ "learning_rate": 4.333333333333334e-07,
423
+ "loss": 2.2828,
424
+ "num_input_tokens_seen": 853568,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 0.6816720257234726,
429
+ "grad_norm": 99.55025482177734,
430
+ "learning_rate": 4.416666666666667e-07,
431
+ "loss": 2.2063,
432
+ "num_input_tokens_seen": 870592,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 0.6945337620578779,
437
+ "grad_norm": 104.6786117553711,
438
+ "learning_rate": 4.5000000000000003e-07,
439
+ "loss": 1.8878,
440
+ "num_input_tokens_seen": 886080,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 0.707395498392283,
445
+ "grad_norm": 106.05968475341797,
446
+ "learning_rate": 4.583333333333333e-07,
447
+ "loss": 1.5971,
448
+ "num_input_tokens_seen": 903296,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 0.7202572347266881,
453
+ "grad_norm": 93.43476867675781,
454
+ "learning_rate": 4.666666666666667e-07,
455
+ "loss": 0.9604,
456
+ "num_input_tokens_seen": 919296,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 0.7331189710610932,
461
+ "grad_norm": 60.13694763183594,
462
+ "learning_rate": 4.7500000000000006e-07,
463
+ "loss": 0.6287,
464
+ "num_input_tokens_seen": 936096,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 0.7459807073954984,
469
+ "grad_norm": 42.870086669921875,
470
+ "learning_rate": 4.833333333333334e-07,
471
+ "loss": 0.4844,
472
+ "num_input_tokens_seen": 953024,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 0.7588424437299035,
477
+ "grad_norm": 45.984989166259766,
478
+ "learning_rate": 4.916666666666667e-07,
479
+ "loss": 0.3891,
480
+ "num_input_tokens_seen": 969024,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 0.7717041800643086,
485
+ "grad_norm": 44.375484466552734,
486
+ "learning_rate": 5.000000000000001e-07,
487
+ "loss": 0.357,
488
+ "num_input_tokens_seen": 985600,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 0.7845659163987139,
493
+ "grad_norm": 28.2038516998291,
494
+ "learning_rate": 5.083333333333334e-07,
495
+ "loss": 0.2854,
496
+ "num_input_tokens_seen": 1002336,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 0.797427652733119,
501
+ "grad_norm": 13.842344284057617,
502
+ "learning_rate": 5.166666666666667e-07,
503
+ "loss": 0.2403,
504
+ "num_input_tokens_seen": 1018496,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 0.8102893890675241,
509
+ "grad_norm": 21.351642608642578,
510
+ "learning_rate": 5.250000000000001e-07,
511
+ "loss": 0.2522,
512
+ "num_input_tokens_seen": 1035552,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 0.8231511254019293,
517
+ "grad_norm": 21.38069725036621,
518
+ "learning_rate": 5.333333333333335e-07,
519
+ "loss": 0.2339,
520
+ "num_input_tokens_seen": 1051584,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 0.8360128617363344,
525
+ "grad_norm": 9.553906440734863,
526
+ "learning_rate": 5.416666666666667e-07,
527
+ "loss": 0.2214,
528
+ "num_input_tokens_seen": 1068640,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 0.8488745980707395,
533
+ "grad_norm": 6.100700855255127,
534
+ "learning_rate": 5.5e-07,
535
+ "loss": 0.1912,
536
+ "num_input_tokens_seen": 1085568,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 0.8617363344051447,
541
+ "grad_norm": 18.959564208984375,
542
+ "learning_rate": 5.583333333333333e-07,
543
+ "loss": 0.2157,
544
+ "num_input_tokens_seen": 1102784,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 0.8745980707395499,
549
+ "grad_norm": 16.303438186645508,
550
+ "learning_rate": 5.666666666666667e-07,
551
+ "loss": 0.2045,
552
+ "num_input_tokens_seen": 1118432,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 0.887459807073955,
557
+ "grad_norm": 12.491047859191895,
558
+ "learning_rate": 5.750000000000001e-07,
559
+ "loss": 0.1964,
560
+ "num_input_tokens_seen": 1135232,
561
+ "step": 69
562
+ },
563
+ {
564
+ "epoch": 0.9003215434083601,
565
+ "grad_norm": 16.655309677124023,
566
+ "learning_rate": 5.833333333333334e-07,
567
+ "loss": 0.1901,
568
+ "num_input_tokens_seen": 1150496,
569
+ "step": 70
570
+ },
571
+ {
572
+ "epoch": 0.9131832797427653,
573
+ "grad_norm": 12.015859603881836,
574
+ "learning_rate": 5.916666666666667e-07,
575
+ "loss": 0.1891,
576
+ "num_input_tokens_seen": 1166848,
577
+ "step": 71
578
+ },
579
+ {
580
+ "epoch": 0.9260450160771704,
581
+ "grad_norm": 12.255152702331543,
582
+ "learning_rate": 6.000000000000001e-07,
583
+ "loss": 0.1841,
584
+ "num_input_tokens_seen": 1183552,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 0.9389067524115756,
589
+ "grad_norm": 5.163099765777588,
590
+ "learning_rate": 6.083333333333334e-07,
591
+ "loss": 0.1803,
592
+ "num_input_tokens_seen": 1199968,
593
+ "step": 73
594
+ },
595
+ {
596
+ "epoch": 0.9517684887459807,
597
+ "grad_norm": 10.502095222473145,
598
+ "learning_rate": 6.166666666666668e-07,
599
+ "loss": 0.1657,
600
+ "num_input_tokens_seen": 1216256,
601
+ "step": 74
602
+ },
603
+ {
604
+ "epoch": 0.9646302250803859,
605
+ "grad_norm": 23.80043601989746,
606
+ "learning_rate": 6.25e-07,
607
+ "loss": 0.2157,
608
+ "num_input_tokens_seen": 1232736,
609
+ "step": 75
610
+ },
611
+ {
612
+ "epoch": 0.977491961414791,
613
+ "grad_norm": 19.7410831451416,
614
+ "learning_rate": 6.333333333333334e-07,
615
+ "loss": 0.2,
616
+ "num_input_tokens_seen": 1249248,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 0.9903536977491961,
621
+ "grad_norm": 4.730998516082764,
622
+ "learning_rate": 6.416666666666667e-07,
623
+ "loss": 0.1519,
624
+ "num_input_tokens_seen": 1265152,
625
+ "step": 77
626
+ },
627
+ {
628
+ "epoch": 1.0032154340836013,
629
+ "grad_norm": 14.700318336486816,
630
+ "learning_rate": 6.5e-07,
631
+ "loss": 0.1765,
632
+ "num_input_tokens_seen": 1282336,
633
+ "step": 78
634
+ },
635
+ {
636
+ "epoch": 1.0160771704180065,
637
+ "grad_norm": 18.6468448638916,
638
+ "learning_rate": 6.583333333333333e-07,
639
+ "loss": 0.1907,
640
+ "num_input_tokens_seen": 1299168,
641
+ "step": 79
642
+ },
643
+ {
644
+ "epoch": 1.0289389067524115,
645
+ "grad_norm": 11.44071102142334,
646
+ "learning_rate": 6.666666666666667e-07,
647
+ "loss": 0.1593,
648
+ "num_input_tokens_seen": 1314816,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 1.0418006430868167,
653
+ "grad_norm": 3.6438238620758057,
654
+ "learning_rate": 6.750000000000001e-07,
655
+ "loss": 0.1659,
656
+ "num_input_tokens_seen": 1331168,
657
+ "step": 81
658
+ },
659
+ {
660
+ "epoch": 1.0546623794212218,
661
+ "grad_norm": 3.6471991539001465,
662
+ "learning_rate": 6.833333333333334e-07,
663
+ "loss": 0.1619,
664
+ "num_input_tokens_seen": 1347968,
665
+ "step": 82
666
+ },
667
+ {
668
+ "epoch": 1.067524115755627,
669
+ "grad_norm": 4.136232376098633,
670
+ "learning_rate": 6.916666666666668e-07,
671
+ "loss": 0.168,
672
+ "num_input_tokens_seen": 1363872,
673
+ "step": 83
674
+ },
675
+ {
676
+ "epoch": 1.0803858520900322,
677
+ "grad_norm": 4.436996936798096,
678
+ "learning_rate": 7.000000000000001e-07,
679
+ "loss": 0.1627,
680
+ "num_input_tokens_seen": 1380896,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 1.0932475884244373,
685
+ "grad_norm": 10.516170501708984,
686
+ "learning_rate": 7.083333333333334e-07,
687
+ "loss": 0.1421,
688
+ "num_input_tokens_seen": 1397792,
689
+ "step": 85
690
+ },
691
+ {
692
+ "epoch": 1.1061093247588425,
693
+ "grad_norm": 15.584237098693848,
694
+ "learning_rate": 7.166666666666668e-07,
695
+ "loss": 0.1517,
696
+ "num_input_tokens_seen": 1414272,
697
+ "step": 86
698
+ },
699
+ {
700
+ "epoch": 1.1189710610932475,
701
+ "grad_norm": 8.475227355957031,
702
+ "learning_rate": 7.25e-07,
703
+ "loss": 0.1519,
704
+ "num_input_tokens_seen": 1429696,
705
+ "step": 87
706
+ },
707
+ {
708
+ "epoch": 1.1318327974276527,
709
+ "grad_norm": 5.768808841705322,
710
+ "learning_rate": 7.333333333333334e-07,
711
+ "loss": 0.128,
712
+ "num_input_tokens_seen": 1446720,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 1.144694533762058,
717
+ "grad_norm": 15.064901351928711,
718
+ "learning_rate": 7.416666666666668e-07,
719
+ "loss": 0.1481,
720
+ "num_input_tokens_seen": 1463008,
721
+ "step": 89
722
+ },
723
+ {
724
+ "epoch": 1.157556270096463,
725
+ "grad_norm": 17.70471954345703,
726
+ "learning_rate": 7.5e-07,
727
+ "loss": 0.1636,
728
+ "num_input_tokens_seen": 1480096,
729
+ "step": 90
730
+ },
731
+ {
732
+ "epoch": 1.1704180064308682,
733
+ "grad_norm": 5.037917613983154,
734
+ "learning_rate": 7.583333333333334e-07,
735
+ "loss": 0.1443,
736
+ "num_input_tokens_seen": 1497024,
737
+ "step": 91
738
+ },
739
+ {
740
+ "epoch": 1.1832797427652733,
741
+ "grad_norm": 17.397666931152344,
742
+ "learning_rate": 7.666666666666667e-07,
743
+ "loss": 0.1592,
744
+ "num_input_tokens_seen": 1513792,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 1.1961414790996785,
749
+ "grad_norm": 18.808683395385742,
750
+ "learning_rate": 7.750000000000001e-07,
751
+ "loss": 0.1744,
752
+ "num_input_tokens_seen": 1529696,
753
+ "step": 93
754
+ },
755
+ {
756
+ "epoch": 1.2090032154340835,
757
+ "grad_norm": 15.173974990844727,
758
+ "learning_rate": 7.833333333333335e-07,
759
+ "loss": 0.1615,
760
+ "num_input_tokens_seen": 1546400,
761
+ "step": 94
762
+ },
763
+ {
764
+ "epoch": 1.2218649517684887,
765
+ "grad_norm": 3.6459403038024902,
766
+ "learning_rate": 7.916666666666667e-07,
767
+ "loss": 0.1466,
768
+ "num_input_tokens_seen": 1564448,
769
+ "step": 95
770
+ },
771
+ {
772
+ "epoch": 1.234726688102894,
773
+ "grad_norm": 4.910373210906982,
774
+ "learning_rate": 8.000000000000001e-07,
775
+ "loss": 0.1333,
776
+ "num_input_tokens_seen": 1580736,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 1.247588424437299,
781
+ "grad_norm": 11.399758338928223,
782
+ "learning_rate": 8.083333333333334e-07,
783
+ "loss": 0.1475,
784
+ "num_input_tokens_seen": 1596928,
785
+ "step": 97
786
+ },
787
+ {
788
+ "epoch": 1.2604501607717042,
789
+ "grad_norm": 4.701439380645752,
790
+ "learning_rate": 8.166666666666668e-07,
791
+ "loss": 0.142,
792
+ "num_input_tokens_seen": 1613728,
793
+ "step": 98
794
+ },
795
+ {
796
+ "epoch": 1.2733118971061093,
797
+ "grad_norm": 7.250323295593262,
798
+ "learning_rate": 8.250000000000001e-07,
799
+ "loss": 0.148,
800
+ "num_input_tokens_seen": 1630112,
801
+ "step": 99
802
+ },
803
+ {
804
+ "epoch": 1.2861736334405145,
805
+ "grad_norm": 17.24268341064453,
806
+ "learning_rate": 8.333333333333333e-07,
807
+ "loss": 0.1539,
808
+ "num_input_tokens_seen": 1645248,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 1.2990353697749195,
813
+ "grad_norm": 4.017528057098389,
814
+ "learning_rate": 8.416666666666667e-07,
815
+ "loss": 0.1496,
816
+ "num_input_tokens_seen": 1662400,
817
+ "step": 101
818
+ },
819
+ {
820
+ "epoch": 1.3118971061093248,
821
+ "grad_norm": 10.226727485656738,
822
+ "learning_rate": 8.500000000000001e-07,
823
+ "loss": 0.1563,
824
+ "num_input_tokens_seen": 1678528,
825
+ "step": 102
826
+ },
827
+ {
828
+ "epoch": 1.32475884244373,
829
+ "grad_norm": 4.085242748260498,
830
+ "learning_rate": 8.583333333333334e-07,
831
+ "loss": 0.1295,
832
+ "num_input_tokens_seen": 1694432,
833
+ "step": 103
834
+ },
835
+ {
836
+ "epoch": 1.337620578778135,
837
+ "grad_norm": 9.983370780944824,
838
+ "learning_rate": 8.666666666666668e-07,
839
+ "loss": 0.1353,
840
+ "num_input_tokens_seen": 1710624,
841
+ "step": 104
842
+ },
843
+ {
844
+ "epoch": 1.3504823151125402,
845
+ "grad_norm": 6.53292179107666,
846
+ "learning_rate": 8.75e-07,
847
+ "loss": 0.1376,
848
+ "num_input_tokens_seen": 1726560,
849
+ "step": 105
850
+ },
851
+ {
852
+ "epoch": 1.3633440514469453,
853
+ "grad_norm": 4.412125587463379,
854
+ "learning_rate": 8.833333333333334e-07,
855
+ "loss": 0.1313,
856
+ "num_input_tokens_seen": 1742912,
857
+ "step": 106
858
+ },
859
+ {
860
+ "epoch": 1.3762057877813505,
861
+ "grad_norm": 13.620604515075684,
862
+ "learning_rate": 8.916666666666668e-07,
863
+ "loss": 0.1367,
864
+ "num_input_tokens_seen": 1758688,
865
+ "step": 107
866
+ },
867
+ {
868
+ "epoch": 1.3890675241157555,
869
+ "grad_norm": 6.362453937530518,
870
+ "learning_rate": 9.000000000000001e-07,
871
+ "loss": 0.135,
872
+ "num_input_tokens_seen": 1775264,
873
+ "step": 108
874
+ },
875
+ {
876
+ "epoch": 1.4019292604501608,
877
+ "grad_norm": 3.8915514945983887,
878
+ "learning_rate": 9.083333333333335e-07,
879
+ "loss": 0.1212,
880
+ "num_input_tokens_seen": 1791904,
881
+ "step": 109
882
+ },
883
+ {
884
+ "epoch": 1.414790996784566,
885
+ "grad_norm": 9.137332916259766,
886
+ "learning_rate": 9.166666666666666e-07,
887
+ "loss": 0.1355,
888
+ "num_input_tokens_seen": 1808736,
889
+ "step": 110
890
+ },
891
+ {
892
+ "epoch": 1.427652733118971,
893
+ "grad_norm": 4.745510578155518,
894
+ "learning_rate": 9.25e-07,
895
+ "loss": 0.1439,
896
+ "num_input_tokens_seen": 1825504,
897
+ "step": 111
898
+ },
899
+ {
900
+ "epoch": 1.4405144694533762,
901
+ "grad_norm": 10.531625747680664,
902
+ "learning_rate": 9.333333333333334e-07,
903
+ "loss": 0.1323,
904
+ "num_input_tokens_seen": 1842080,
905
+ "step": 112
906
+ },
907
+ {
908
+ "epoch": 1.4533762057877815,
909
+ "grad_norm": 11.189078330993652,
910
+ "learning_rate": 9.416666666666667e-07,
911
+ "loss": 0.1376,
912
+ "num_input_tokens_seen": 1858432,
913
+ "step": 113
914
+ },
915
+ {
916
+ "epoch": 1.4662379421221865,
917
+ "grad_norm": 5.619433879852295,
918
+ "learning_rate": 9.500000000000001e-07,
919
+ "loss": 0.1191,
920
+ "num_input_tokens_seen": 1874304,
921
+ "step": 114
922
+ },
923
+ {
924
+ "epoch": 1.4790996784565915,
925
+ "grad_norm": 4.590907096862793,
926
+ "learning_rate": 9.583333333333334e-07,
927
+ "loss": 0.1045,
928
+ "num_input_tokens_seen": 1890144,
929
+ "step": 115
930
+ },
931
+ {
932
+ "epoch": 1.4919614147909968,
933
+ "grad_norm": 4.900210380554199,
934
+ "learning_rate": 9.666666666666668e-07,
935
+ "loss": 0.1467,
936
+ "num_input_tokens_seen": 1905664,
937
+ "step": 116
938
+ },
939
+ {
940
+ "epoch": 1.504823151125402,
941
+ "grad_norm": 3.0244414806365967,
942
+ "learning_rate": 9.750000000000002e-07,
943
+ "loss": 0.1142,
944
+ "num_input_tokens_seen": 1922240,
945
+ "step": 117
946
+ },
947
+ {
948
+ "epoch": 1.517684887459807,
949
+ "grad_norm": 2.886939287185669,
950
+ "learning_rate": 9.833333333333334e-07,
951
+ "loss": 0.1107,
952
+ "num_input_tokens_seen": 1938240,
953
+ "step": 118
954
+ },
955
+ {
956
+ "epoch": 1.5305466237942122,
957
+ "grad_norm": 6.869494438171387,
958
+ "learning_rate": 9.916666666666668e-07,
959
+ "loss": 0.146,
960
+ "num_input_tokens_seen": 1955008,
961
+ "step": 119
962
+ },
963
+ {
964
+ "epoch": 1.5434083601286175,
965
+ "grad_norm": 16.34566879272461,
966
+ "learning_rate": 1.0000000000000002e-06,
967
+ "loss": 0.1533,
968
+ "num_input_tokens_seen": 1971456,
969
+ "step": 120
970
+ },
971
+ {
972
+ "epoch": 1.5562700964630225,
973
+ "grad_norm": 15.347967147827148,
974
+ "learning_rate": 1.0083333333333333e-06,
975
+ "loss": 0.1315,
976
+ "num_input_tokens_seen": 1987552,
977
+ "step": 121
978
+ },
979
+ {
980
+ "epoch": 1.5691318327974275,
981
+ "grad_norm": 4.213266372680664,
982
+ "learning_rate": 1.0166666666666667e-06,
983
+ "loss": 0.1197,
984
+ "num_input_tokens_seen": 2004192,
985
+ "step": 122
986
+ },
987
+ {
988
+ "epoch": 1.5819935691318328,
989
+ "grad_norm": 14.208905220031738,
990
+ "learning_rate": 1.025e-06,
991
+ "loss": 0.1228,
992
+ "num_input_tokens_seen": 2020832,
993
+ "step": 123
994
+ },
995
+ {
996
+ "epoch": 1.594855305466238,
997
+ "grad_norm": 17.388845443725586,
998
+ "learning_rate": 1.0333333333333333e-06,
999
+ "loss": 0.1273,
1000
+ "num_input_tokens_seen": 2037312,
1001
+ "step": 124
1002
+ },
1003
+ {
1004
+ "epoch": 1.607717041800643,
1005
+ "grad_norm": 14.383207321166992,
1006
+ "learning_rate": 1.0416666666666667e-06,
1007
+ "loss": 0.141,
1008
+ "num_input_tokens_seen": 2054304,
1009
+ "step": 125
1010
+ },
1011
+ {
1012
+ "epoch": 1.6205787781350482,
1013
+ "grad_norm": 6.2650370597839355,
1014
+ "learning_rate": 1.0500000000000001e-06,
1015
+ "loss": 0.1315,
1016
+ "num_input_tokens_seen": 2071136,
1017
+ "step": 126
1018
+ },
1019
+ {
1020
+ "epoch": 1.6334405144694535,
1021
+ "grad_norm": 8.396490097045898,
1022
+ "learning_rate": 1.0583333333333335e-06,
1023
+ "loss": 0.1136,
1024
+ "num_input_tokens_seen": 2088064,
1025
+ "step": 127
1026
+ },
1027
+ {
1028
+ "epoch": 1.6463022508038585,
1029
+ "grad_norm": 4.598783016204834,
1030
+ "learning_rate": 1.066666666666667e-06,
1031
+ "loss": 0.1013,
1032
+ "num_input_tokens_seen": 2105120,
1033
+ "step": 128
1034
+ },
1035
+ {
1036
+ "epoch": 1.6591639871382635,
1037
+ "grad_norm": 9.912994384765625,
1038
+ "learning_rate": 1.075e-06,
1039
+ "loss": 0.1056,
1040
+ "num_input_tokens_seen": 2120992,
1041
+ "step": 129
1042
+ },
1043
+ {
1044
+ "epoch": 1.6720257234726688,
1045
+ "grad_norm": 7.70595645904541,
1046
+ "learning_rate": 1.0833333333333335e-06,
1047
+ "loss": 0.1071,
1048
+ "num_input_tokens_seen": 2137984,
1049
+ "step": 130
1050
+ },
1051
+ {
1052
+ "epoch": 1.684887459807074,
1053
+ "grad_norm": 6.183793544769287,
1054
+ "learning_rate": 1.0916666666666667e-06,
1055
+ "loss": 0.1357,
1056
+ "num_input_tokens_seen": 2154240,
1057
+ "step": 131
1058
+ },
1059
+ {
1060
+ "epoch": 1.697749196141479,
1061
+ "grad_norm": 6.863802909851074,
1062
+ "learning_rate": 1.1e-06,
1063
+ "loss": 0.1181,
1064
+ "num_input_tokens_seen": 2170464,
1065
+ "step": 132
1066
+ },
1067
+ {
1068
+ "epoch": 1.7106109324758842,
1069
+ "grad_norm": 2.7540361881256104,
1070
+ "learning_rate": 1.1083333333333335e-06,
1071
+ "loss": 0.0826,
1072
+ "num_input_tokens_seen": 2187008,
1073
+ "step": 133
1074
+ },
1075
+ {
1076
+ "epoch": 1.7234726688102895,
1077
+ "grad_norm": 12.97872257232666,
1078
+ "learning_rate": 1.1166666666666666e-06,
1079
+ "loss": 0.1221,
1080
+ "num_input_tokens_seen": 2202880,
1081
+ "step": 134
1082
+ },
1083
+ {
1084
+ "epoch": 1.7363344051446945,
1085
+ "grad_norm": 4.774652004241943,
1086
+ "learning_rate": 1.125e-06,
1087
+ "loss": 0.1021,
1088
+ "num_input_tokens_seen": 2219744,
1089
+ "step": 135
1090
+ },
1091
+ {
1092
+ "epoch": 1.7491961414790995,
1093
+ "grad_norm": 3.889441967010498,
1094
+ "learning_rate": 1.1333333333333334e-06,
1095
+ "loss": 0.098,
1096
+ "num_input_tokens_seen": 2236064,
1097
+ "step": 136
1098
+ },
1099
+ {
1100
+ "epoch": 1.762057877813505,
1101
+ "grad_norm": 5.095253944396973,
1102
+ "learning_rate": 1.1416666666666668e-06,
1103
+ "loss": 0.1085,
1104
+ "num_input_tokens_seen": 2252832,
1105
+ "step": 137
1106
+ },
1107
+ {
1108
+ "epoch": 1.77491961414791,
1109
+ "grad_norm": 5.206950664520264,
1110
+ "learning_rate": 1.1500000000000002e-06,
1111
+ "loss": 0.1038,
1112
+ "num_input_tokens_seen": 2268704,
1113
+ "step": 138
1114
+ },
1115
+ {
1116
+ "epoch": 1.787781350482315,
1117
+ "grad_norm": 10.339069366455078,
1118
+ "learning_rate": 1.1583333333333334e-06,
1119
+ "loss": 0.1081,
1120
+ "num_input_tokens_seen": 2285280,
1121
+ "step": 139
1122
+ },
1123
+ {
1124
+ "epoch": 1.8006430868167203,
1125
+ "grad_norm": 8.227212905883789,
1126
+ "learning_rate": 1.1666666666666668e-06,
1127
+ "loss": 0.1287,
1128
+ "num_input_tokens_seen": 2301600,
1129
+ "step": 140
1130
+ },
1131
+ {
1132
+ "epoch": 1.8135048231511255,
1133
+ "grad_norm": 6.72472620010376,
1134
+ "learning_rate": 1.175e-06,
1135
+ "loss": 0.1068,
1136
+ "num_input_tokens_seen": 2318048,
1137
+ "step": 141
1138
+ },
1139
+ {
1140
+ "epoch": 1.8263665594855305,
1141
+ "grad_norm": 10.02261734008789,
1142
+ "learning_rate": 1.1833333333333334e-06,
1143
+ "loss": 0.1202,
1144
+ "num_input_tokens_seen": 2333728,
1145
+ "step": 142
1146
+ },
1147
+ {
1148
+ "epoch": 1.8392282958199357,
1149
+ "grad_norm": 10.770837783813477,
1150
+ "learning_rate": 1.1916666666666668e-06,
1151
+ "loss": 0.119,
1152
+ "num_input_tokens_seen": 2349760,
1153
+ "step": 143
1154
+ },
1155
+ {
1156
+ "epoch": 1.852090032154341,
1157
+ "grad_norm": 6.685535907745361,
1158
+ "learning_rate": 1.2000000000000002e-06,
1159
+ "loss": 0.1273,
1160
+ "num_input_tokens_seen": 2366336,
1161
+ "step": 144
1162
+ },
1163
+ {
1164
+ "epoch": 1.864951768488746,
1165
+ "grad_norm": 4.437434673309326,
1166
+ "learning_rate": 1.2083333333333333e-06,
1167
+ "loss": 0.1024,
1168
+ "num_input_tokens_seen": 2382016,
1169
+ "step": 145
1170
+ },
1171
+ {
1172
+ "epoch": 1.877813504823151,
1173
+ "grad_norm": 11.942359924316406,
1174
+ "learning_rate": 1.2166666666666667e-06,
1175
+ "loss": 0.1143,
1176
+ "num_input_tokens_seen": 2398176,
1177
+ "step": 146
1178
+ },
1179
+ {
1180
+ "epoch": 1.8906752411575563,
1181
+ "grad_norm": 6.428237438201904,
1182
+ "learning_rate": 1.2250000000000001e-06,
1183
+ "loss": 0.1229,
1184
+ "num_input_tokens_seen": 2414656,
1185
+ "step": 147
1186
+ },
1187
+ {
1188
+ "epoch": 1.9035369774919615,
1189
+ "grad_norm": 7.896732807159424,
1190
+ "learning_rate": 1.2333333333333335e-06,
1191
+ "loss": 0.0964,
1192
+ "num_input_tokens_seen": 2430400,
1193
+ "step": 148
1194
+ },
1195
+ {
1196
+ "epoch": 1.9163987138263665,
1197
+ "grad_norm": 12.14167594909668,
1198
+ "learning_rate": 1.2416666666666667e-06,
1199
+ "loss": 0.1132,
1200
+ "num_input_tokens_seen": 2447520,
1201
+ "step": 149
1202
+ },
1203
+ {
1204
+ "epoch": 1.9292604501607717,
1205
+ "grad_norm": 3.0627174377441406,
1206
+ "learning_rate": 1.25e-06,
1207
+ "loss": 0.0734,
1208
+ "num_input_tokens_seen": 2463872,
1209
+ "step": 150
1210
+ },
1211
+ {
1212
+ "epoch": 1.942122186495177,
1213
+ "grad_norm": 3.2333552837371826,
1214
+ "learning_rate": 1.2583333333333333e-06,
1215
+ "loss": 0.0939,
1216
+ "num_input_tokens_seen": 2481344,
1217
+ "step": 151
1218
+ },
1219
+ {
1220
+ "epoch": 1.954983922829582,
1221
+ "grad_norm": 14.160690307617188,
1222
+ "learning_rate": 1.2666666666666669e-06,
1223
+ "loss": 0.1143,
1224
+ "num_input_tokens_seen": 2497632,
1225
+ "step": 152
1226
+ },
1227
+ {
1228
+ "epoch": 1.967845659163987,
1229
+ "grad_norm": 5.38826322555542,
1230
+ "learning_rate": 1.275e-06,
1231
+ "loss": 0.1114,
1232
+ "num_input_tokens_seen": 2513024,
1233
+ "step": 153
1234
+ },
1235
+ {
1236
+ "epoch": 1.9807073954983923,
1237
+ "grad_norm": 3.4523892402648926,
1238
+ "learning_rate": 1.2833333333333335e-06,
1239
+ "loss": 0.0948,
1240
+ "num_input_tokens_seen": 2528800,
1241
+ "step": 154
1242
+ },
1243
+ {
1244
+ "epoch": 1.9935691318327975,
1245
+ "grad_norm": 6.9574127197265625,
1246
+ "learning_rate": 1.2916666666666669e-06,
1247
+ "loss": 0.0805,
1248
+ "num_input_tokens_seen": 2545696,
1249
+ "step": 155
1250
+ },
1251
+ {
1252
+ "epoch": 2.0064308681672025,
1253
+ "grad_norm": 7.220541954040527,
1254
+ "learning_rate": 1.3e-06,
1255
+ "loss": 0.1001,
1256
+ "num_input_tokens_seen": 2561728,
1257
+ "step": 156
1258
+ },
1259
+ {
1260
+ "epoch": 2.0192926045016075,
1261
+ "grad_norm": 6.95176887512207,
1262
+ "learning_rate": 1.3083333333333334e-06,
1263
+ "loss": 0.1002,
1264
+ "num_input_tokens_seen": 2577856,
1265
+ "step": 157
1266
+ },
1267
+ {
1268
+ "epoch": 2.032154340836013,
1269
+ "grad_norm": 10.752556800842285,
1270
+ "learning_rate": 1.3166666666666666e-06,
1271
+ "loss": 0.0847,
1272
+ "num_input_tokens_seen": 2593984,
1273
+ "step": 158
1274
+ },
1275
+ {
1276
+ "epoch": 2.045016077170418,
1277
+ "grad_norm": 6.510659217834473,
1278
+ "learning_rate": 1.3250000000000002e-06,
1279
+ "loss": 0.071,
1280
+ "num_input_tokens_seen": 2610720,
1281
+ "step": 159
1282
+ },
1283
+ {
1284
+ "epoch": 2.057877813504823,
1285
+ "grad_norm": 3.897312641143799,
1286
+ "learning_rate": 1.3333333333333334e-06,
1287
+ "loss": 0.0791,
1288
+ "num_input_tokens_seen": 2626400,
1289
+ "step": 160
1290
+ },
1291
+ {
1292
+ "epoch": 2.0707395498392285,
1293
+ "grad_norm": 2.8594729900360107,
1294
+ "learning_rate": 1.3416666666666666e-06,
1295
+ "loss": 0.0769,
1296
+ "num_input_tokens_seen": 2642496,
1297
+ "step": 161
1298
+ },
1299
+ {
1300
+ "epoch": 2.0836012861736335,
1301
+ "grad_norm": 8.970246315002441,
1302
+ "learning_rate": 1.3500000000000002e-06,
1303
+ "loss": 0.0916,
1304
+ "num_input_tokens_seen": 2658144,
1305
+ "step": 162
1306
+ },
1307
+ {
1308
+ "epoch": 2.0964630225080385,
1309
+ "grad_norm": 2.965878963470459,
1310
+ "learning_rate": 1.3583333333333334e-06,
1311
+ "loss": 0.0584,
1312
+ "num_input_tokens_seen": 2674560,
1313
+ "step": 163
1314
+ },
1315
+ {
1316
+ "epoch": 2.1093247588424435,
1317
+ "grad_norm": 6.79748010635376,
1318
+ "learning_rate": 1.3666666666666668e-06,
1319
+ "loss": 0.0811,
1320
+ "num_input_tokens_seen": 2690688,
1321
+ "step": 164
1322
+ },
1323
+ {
1324
+ "epoch": 2.122186495176849,
1325
+ "grad_norm": 10.366084098815918,
1326
+ "learning_rate": 1.3750000000000002e-06,
1327
+ "loss": 0.0663,
1328
+ "num_input_tokens_seen": 2706720,
1329
+ "step": 165
1330
+ },
1331
+ {
1332
+ "epoch": 2.135048231511254,
1333
+ "grad_norm": 8.038703918457031,
1334
+ "learning_rate": 1.3833333333333336e-06,
1335
+ "loss": 0.0802,
1336
+ "num_input_tokens_seen": 2723008,
1337
+ "step": 166
1338
+ },
1339
+ {
1340
+ "epoch": 2.147909967845659,
1341
+ "grad_norm": 6.01867151260376,
1342
+ "learning_rate": 1.3916666666666668e-06,
1343
+ "loss": 0.0587,
1344
+ "num_input_tokens_seen": 2738784,
1345
+ "step": 167
1346
+ },
1347
+ {
1348
+ "epoch": 2.1607717041800645,
1349
+ "grad_norm": 5.053437232971191,
1350
+ "learning_rate": 1.4000000000000001e-06,
1351
+ "loss": 0.0953,
1352
+ "num_input_tokens_seen": 2755072,
1353
+ "step": 168
1354
+ },
1355
+ {
1356
+ "epoch": 2.1736334405144695,
1357
+ "grad_norm": 7.119932174682617,
1358
+ "learning_rate": 1.4083333333333335e-06,
1359
+ "loss": 0.0795,
1360
+ "num_input_tokens_seen": 2771296,
1361
+ "step": 169
1362
+ },
1363
+ {
1364
+ "epoch": 2.1864951768488745,
1365
+ "grad_norm": 4.602327346801758,
1366
+ "learning_rate": 1.4166666666666667e-06,
1367
+ "loss": 0.1015,
1368
+ "num_input_tokens_seen": 2787712,
1369
+ "step": 170
1370
+ },
1371
+ {
1372
+ "epoch": 2.19935691318328,
1373
+ "grad_norm": 2.7282161712646484,
1374
+ "learning_rate": 1.425e-06,
1375
+ "loss": 0.0614,
1376
+ "num_input_tokens_seen": 2803552,
1377
+ "step": 171
1378
+ },
1379
+ {
1380
+ "epoch": 2.212218649517685,
1381
+ "grad_norm": 4.694391250610352,
1382
+ "learning_rate": 1.4333333333333335e-06,
1383
+ "loss": 0.0753,
1384
+ "num_input_tokens_seen": 2820352,
1385
+ "step": 172
1386
+ },
1387
+ {
1388
+ "epoch": 2.22508038585209,
1389
+ "grad_norm": 3.231022357940674,
1390
+ "learning_rate": 1.4416666666666667e-06,
1391
+ "loss": 0.08,
1392
+ "num_input_tokens_seen": 2837696,
1393
+ "step": 173
1394
+ },
1395
+ {
1396
+ "epoch": 2.237942122186495,
1397
+ "grad_norm": 4.522435188293457,
1398
+ "learning_rate": 1.45e-06,
1399
+ "loss": 0.0603,
1400
+ "num_input_tokens_seen": 2854272,
1401
+ "step": 174
1402
+ },
1403
+ {
1404
+ "epoch": 2.2508038585209005,
1405
+ "grad_norm": 8.292889595031738,
1406
+ "learning_rate": 1.4583333333333335e-06,
1407
+ "loss": 0.0874,
1408
+ "num_input_tokens_seen": 2870464,
1409
+ "step": 175
1410
+ },
1411
+ {
1412
+ "epoch": 2.2636655948553055,
1413
+ "grad_norm": 3.635068655014038,
1414
+ "learning_rate": 1.4666666666666669e-06,
1415
+ "loss": 0.0833,
1416
+ "num_input_tokens_seen": 2886880,
1417
+ "step": 176
1418
+ },
1419
+ {
1420
+ "epoch": 2.2765273311897105,
1421
+ "grad_norm": 3.8000781536102295,
1422
+ "learning_rate": 1.475e-06,
1423
+ "loss": 0.0676,
1424
+ "num_input_tokens_seen": 2902880,
1425
+ "step": 177
1426
+ },
1427
+ {
1428
+ "epoch": 2.289389067524116,
1429
+ "grad_norm": 9.920318603515625,
1430
+ "learning_rate": 1.4833333333333337e-06,
1431
+ "loss": 0.086,
1432
+ "num_input_tokens_seen": 2919584,
1433
+ "step": 178
1434
+ },
1435
+ {
1436
+ "epoch": 2.302250803858521,
1437
+ "grad_norm": 3.8999791145324707,
1438
+ "learning_rate": 1.4916666666666669e-06,
1439
+ "loss": 0.0662,
1440
+ "num_input_tokens_seen": 2935136,
1441
+ "step": 179
1442
+ },
1443
+ {
1444
+ "epoch": 2.315112540192926,
1445
+ "grad_norm": 6.011571407318115,
1446
+ "learning_rate": 1.5e-06,
1447
+ "loss": 0.1028,
1448
+ "num_input_tokens_seen": 2951680,
1449
+ "step": 180
1450
+ },
1451
+ {
1452
+ "epoch": 2.327974276527331,
1453
+ "grad_norm": 5.94368839263916,
1454
+ "learning_rate": 1.5083333333333336e-06,
1455
+ "loss": 0.0882,
1456
+ "num_input_tokens_seen": 2967712,
1457
+ "step": 181
1458
+ },
1459
+ {
1460
+ "epoch": 2.3408360128617365,
1461
+ "grad_norm": 3.9432876110076904,
1462
+ "learning_rate": 1.5166666666666668e-06,
1463
+ "loss": 0.0806,
1464
+ "num_input_tokens_seen": 2984224,
1465
+ "step": 182
1466
+ },
1467
+ {
1468
+ "epoch": 2.3536977491961415,
1469
+ "grad_norm": 18.06218147277832,
1470
+ "learning_rate": 1.525e-06,
1471
+ "loss": 0.1108,
1472
+ "num_input_tokens_seen": 2999904,
1473
+ "step": 183
1474
+ },
1475
+ {
1476
+ "epoch": 2.3665594855305465,
1477
+ "grad_norm": 5.799235820770264,
1478
+ "learning_rate": 1.5333333333333334e-06,
1479
+ "loss": 0.0687,
1480
+ "num_input_tokens_seen": 3017376,
1481
+ "step": 184
1482
+ },
1483
+ {
1484
+ "epoch": 2.379421221864952,
1485
+ "grad_norm": 4.252455711364746,
1486
+ "learning_rate": 1.5416666666666668e-06,
1487
+ "loss": 0.0736,
1488
+ "num_input_tokens_seen": 3033728,
1489
+ "step": 185
1490
+ },
1491
+ {
1492
+ "epoch": 2.392282958199357,
1493
+ "grad_norm": 6.050833702087402,
1494
+ "learning_rate": 1.5500000000000002e-06,
1495
+ "loss": 0.0779,
1496
+ "num_input_tokens_seen": 3050176,
1497
+ "step": 186
1498
+ },
1499
+ {
1500
+ "epoch": 2.405144694533762,
1501
+ "grad_norm": 8.076692581176758,
1502
+ "learning_rate": 1.5583333333333334e-06,
1503
+ "loss": 0.0709,
1504
+ "num_input_tokens_seen": 3066400,
1505
+ "step": 187
1506
+ },
1507
+ {
1508
+ "epoch": 2.418006430868167,
1509
+ "grad_norm": 7.372990608215332,
1510
+ "learning_rate": 1.566666666666667e-06,
1511
+ "loss": 0.0652,
1512
+ "num_input_tokens_seen": 3083104,
1513
+ "step": 188
1514
+ },
1515
+ {
1516
+ "epoch": 2.4308681672025725,
1517
+ "grad_norm": 14.172348022460938,
1518
+ "learning_rate": 1.5750000000000002e-06,
1519
+ "loss": 0.1095,
1520
+ "num_input_tokens_seen": 3100000,
1521
+ "step": 189
1522
+ },
1523
+ {
1524
+ "epoch": 2.4437299035369775,
1525
+ "grad_norm": 4.726587772369385,
1526
+ "learning_rate": 1.5833333333333333e-06,
1527
+ "loss": 0.0618,
1528
+ "num_input_tokens_seen": 3116800,
1529
+ "step": 190
1530
+ },
1531
+ {
1532
+ "epoch": 2.4565916398713825,
1533
+ "grad_norm": 10.408024787902832,
1534
+ "learning_rate": 1.591666666666667e-06,
1535
+ "loss": 0.0666,
1536
+ "num_input_tokens_seen": 3133568,
1537
+ "step": 191
1538
+ },
1539
+ {
1540
+ "epoch": 2.469453376205788,
1541
+ "grad_norm": 7.295907497406006,
1542
+ "learning_rate": 1.6000000000000001e-06,
1543
+ "loss": 0.0573,
1544
+ "num_input_tokens_seen": 3150048,
1545
+ "step": 192
1546
+ },
1547
+ {
1548
+ "epoch": 2.482315112540193,
1549
+ "grad_norm": 6.490230083465576,
1550
+ "learning_rate": 1.6083333333333333e-06,
1551
+ "loss": 0.0577,
1552
+ "num_input_tokens_seen": 3166688,
1553
+ "step": 193
1554
+ },
1555
+ {
1556
+ "epoch": 2.495176848874598,
1557
+ "grad_norm": 6.940796375274658,
1558
+ "learning_rate": 1.6166666666666667e-06,
1559
+ "loss": 0.0813,
1560
+ "num_input_tokens_seen": 3182752,
1561
+ "step": 194
1562
+ },
1563
+ {
1564
+ "epoch": 2.508038585209003,
1565
+ "grad_norm": 8.307454109191895,
1566
+ "learning_rate": 1.6250000000000001e-06,
1567
+ "loss": 0.066,
1568
+ "num_input_tokens_seen": 3198944,
1569
+ "step": 195
1570
+ },
1571
+ {
1572
+ "epoch": 2.5209003215434085,
1573
+ "grad_norm": 4.472862243652344,
1574
+ "learning_rate": 1.6333333333333335e-06,
1575
+ "loss": 0.0622,
1576
+ "num_input_tokens_seen": 3215552,
1577
+ "step": 196
1578
+ },
1579
+ {
1580
+ "epoch": 2.5337620578778135,
1581
+ "grad_norm": 3.5001590251922607,
1582
+ "learning_rate": 1.6416666666666667e-06,
1583
+ "loss": 0.0616,
1584
+ "num_input_tokens_seen": 3231488,
1585
+ "step": 197
1586
+ },
1587
+ {
1588
+ "epoch": 2.5466237942122185,
1589
+ "grad_norm": 13.425641059875488,
1590
+ "learning_rate": 1.6500000000000003e-06,
1591
+ "loss": 0.0993,
1592
+ "num_input_tokens_seen": 3247840,
1593
+ "step": 198
1594
+ },
1595
+ {
1596
+ "epoch": 2.559485530546624,
1597
+ "grad_norm": 12.016642570495605,
1598
+ "learning_rate": 1.6583333333333335e-06,
1599
+ "loss": 0.0702,
1600
+ "num_input_tokens_seen": 3264128,
1601
+ "step": 199
1602
+ },
1603
+ {
1604
+ "epoch": 2.572347266881029,
1605
+ "grad_norm": 10.653433799743652,
1606
+ "learning_rate": 1.6666666666666667e-06,
1607
+ "loss": 0.0743,
1608
+ "num_input_tokens_seen": 3280192,
1609
+ "step": 200
1610
+ },
1611
+ {
1612
+ "epoch": 2.585209003215434,
1613
+ "grad_norm": 3.59945011138916,
1614
+ "learning_rate": 1.6750000000000003e-06,
1615
+ "loss": 0.0647,
1616
+ "num_input_tokens_seen": 3296480,
1617
+ "step": 201
1618
+ },
1619
+ {
1620
+ "epoch": 2.598070739549839,
1621
+ "grad_norm": 11.130800247192383,
1622
+ "learning_rate": 1.6833333333333335e-06,
1623
+ "loss": 0.0814,
1624
+ "num_input_tokens_seen": 3313120,
1625
+ "step": 202
1626
+ },
1627
+ {
1628
+ "epoch": 2.6109324758842445,
1629
+ "grad_norm": 11.733818054199219,
1630
+ "learning_rate": 1.6916666666666666e-06,
1631
+ "loss": 0.0861,
1632
+ "num_input_tokens_seen": 3329184,
1633
+ "step": 203
1634
+ },
1635
+ {
1636
+ "epoch": 2.6237942122186495,
1637
+ "grad_norm": 6.696333885192871,
1638
+ "learning_rate": 1.7000000000000002e-06,
1639
+ "loss": 0.0769,
1640
+ "num_input_tokens_seen": 3346208,
1641
+ "step": 204
1642
+ },
1643
+ {
1644
+ "epoch": 2.6366559485530545,
1645
+ "grad_norm": 8.523835182189941,
1646
+ "learning_rate": 1.7083333333333334e-06,
1647
+ "loss": 0.0888,
1648
+ "num_input_tokens_seen": 3363008,
1649
+ "step": 205
1650
+ },
1651
+ {
1652
+ "epoch": 2.64951768488746,
1653
+ "grad_norm": 12.503429412841797,
1654
+ "learning_rate": 1.7166666666666668e-06,
1655
+ "loss": 0.1017,
1656
+ "num_input_tokens_seen": 3379488,
1657
+ "step": 206
1658
+ },
1659
+ {
1660
+ "epoch": 2.662379421221865,
1661
+ "grad_norm": 7.644631385803223,
1662
+ "learning_rate": 1.725e-06,
1663
+ "loss": 0.0677,
1664
+ "num_input_tokens_seen": 3395648,
1665
+ "step": 207
1666
+ },
1667
+ {
1668
+ "epoch": 2.67524115755627,
1669
+ "grad_norm": 7.251969814300537,
1670
+ "learning_rate": 1.7333333333333336e-06,
1671
+ "loss": 0.0861,
1672
+ "num_input_tokens_seen": 3412736,
1673
+ "step": 208
1674
+ },
1675
+ {
1676
+ "epoch": 2.688102893890675,
1677
+ "grad_norm": 3.763118267059326,
1678
+ "learning_rate": 1.7416666666666668e-06,
1679
+ "loss": 0.0562,
1680
+ "num_input_tokens_seen": 3429472,
1681
+ "step": 209
1682
+ },
1683
+ {
1684
+ "epoch": 2.7009646302250805,
1685
+ "grad_norm": 8.583102226257324,
1686
+ "learning_rate": 1.75e-06,
1687
+ "loss": 0.0641,
1688
+ "num_input_tokens_seen": 3445632,
1689
+ "step": 210
1690
+ },
1691
+ {
1692
+ "epoch": 2.7138263665594855,
1693
+ "grad_norm": 9.621906280517578,
1694
+ "learning_rate": 1.7583333333333336e-06,
1695
+ "loss": 0.0829,
1696
+ "num_input_tokens_seen": 3462720,
1697
+ "step": 211
1698
+ },
1699
+ {
1700
+ "epoch": 2.7266881028938905,
1701
+ "grad_norm": 6.067561626434326,
1702
+ "learning_rate": 1.7666666666666668e-06,
1703
+ "loss": 0.0632,
1704
+ "num_input_tokens_seen": 3478720,
1705
+ "step": 212
1706
+ },
1707
+ {
1708
+ "epoch": 2.739549839228296,
1709
+ "grad_norm": 4.912470817565918,
1710
+ "learning_rate": 1.7750000000000002e-06,
1711
+ "loss": 0.062,
1712
+ "num_input_tokens_seen": 3494304,
1713
+ "step": 213
1714
+ },
1715
+ {
1716
+ "epoch": 2.752411575562701,
1717
+ "grad_norm": 8.044519424438477,
1718
+ "learning_rate": 1.7833333333333336e-06,
1719
+ "loss": 0.0816,
1720
+ "num_input_tokens_seen": 3510176,
1721
+ "step": 214
1722
+ },
1723
+ {
1724
+ "epoch": 2.765273311897106,
1725
+ "grad_norm": 8.589887619018555,
1726
+ "learning_rate": 1.7916666666666667e-06,
1727
+ "loss": 0.096,
1728
+ "num_input_tokens_seen": 3526848,
1729
+ "step": 215
1730
+ },
1731
+ {
1732
+ "epoch": 2.778135048231511,
1733
+ "grad_norm": 3.3357672691345215,
1734
+ "learning_rate": 1.8000000000000001e-06,
1735
+ "loss": 0.0639,
1736
+ "num_input_tokens_seen": 3543136,
1737
+ "step": 216
1738
+ },
1739
+ {
1740
+ "epoch": 2.7909967845659165,
1741
+ "grad_norm": 5.992812156677246,
1742
+ "learning_rate": 1.8083333333333335e-06,
1743
+ "loss": 0.0915,
1744
+ "num_input_tokens_seen": 3558240,
1745
+ "step": 217
1746
+ },
1747
+ {
1748
+ "epoch": 2.8038585209003215,
1749
+ "grad_norm": 4.8690924644470215,
1750
+ "learning_rate": 1.816666666666667e-06,
1751
+ "loss": 0.061,
1752
+ "num_input_tokens_seen": 3574240,
1753
+ "step": 218
1754
+ },
1755
+ {
1756
+ "epoch": 2.816720257234727,
1757
+ "grad_norm": 2.928898811340332,
1758
+ "learning_rate": 1.825e-06,
1759
+ "loss": 0.0572,
1760
+ "num_input_tokens_seen": 3590240,
1761
+ "step": 219
1762
+ },
1763
+ {
1764
+ "epoch": 2.829581993569132,
1765
+ "grad_norm": 2.8405849933624268,
1766
+ "learning_rate": 1.8333333333333333e-06,
1767
+ "loss": 0.0497,
1768
+ "num_input_tokens_seen": 3606912,
1769
+ "step": 220
1770
+ },
1771
+ {
1772
+ "epoch": 2.842443729903537,
1773
+ "grad_norm": 5.940427303314209,
1774
+ "learning_rate": 1.8416666666666669e-06,
1775
+ "loss": 0.0672,
1776
+ "num_input_tokens_seen": 3623008,
1777
+ "step": 221
1778
+ },
1779
+ {
1780
+ "epoch": 2.855305466237942,
1781
+ "grad_norm": 4.370597839355469,
1782
+ "learning_rate": 1.85e-06,
1783
+ "loss": 0.0563,
1784
+ "num_input_tokens_seen": 3639456,
1785
+ "step": 222
1786
+ },
1787
+ {
1788
+ "epoch": 2.868167202572347,
1789
+ "grad_norm": 3.9959638118743896,
1790
+ "learning_rate": 1.8583333333333335e-06,
1791
+ "loss": 0.069,
1792
+ "num_input_tokens_seen": 3656288,
1793
+ "step": 223
1794
+ },
1795
+ {
1796
+ "epoch": 2.8810289389067525,
1797
+ "grad_norm": 4.756357192993164,
1798
+ "learning_rate": 1.8666666666666669e-06,
1799
+ "loss": 0.0824,
1800
+ "num_input_tokens_seen": 3672896,
1801
+ "step": 224
1802
+ },
1803
+ {
1804
+ "epoch": 2.8938906752411575,
1805
+ "grad_norm": 3.312553644180298,
1806
+ "learning_rate": 1.8750000000000003e-06,
1807
+ "loss": 0.057,
1808
+ "num_input_tokens_seen": 3689632,
1809
+ "step": 225
1810
+ },
1811
+ {
1812
+ "epoch": 2.906752411575563,
1813
+ "grad_norm": 3.71880841255188,
1814
+ "learning_rate": 1.8833333333333334e-06,
1815
+ "loss": 0.0549,
1816
+ "num_input_tokens_seen": 3706944,
1817
+ "step": 226
1818
+ },
1819
+ {
1820
+ "epoch": 2.919614147909968,
1821
+ "grad_norm": 4.111685276031494,
1822
+ "learning_rate": 1.8916666666666668e-06,
1823
+ "loss": 0.0652,
1824
+ "num_input_tokens_seen": 3723072,
1825
+ "step": 227
1826
+ },
1827
+ {
1828
+ "epoch": 2.932475884244373,
1829
+ "grad_norm": 4.362407684326172,
1830
+ "learning_rate": 1.9000000000000002e-06,
1831
+ "loss": 0.0743,
1832
+ "num_input_tokens_seen": 3740064,
1833
+ "step": 228
1834
+ },
1835
+ {
1836
+ "epoch": 2.945337620578778,
1837
+ "grad_norm": 2.441969156265259,
1838
+ "learning_rate": 1.9083333333333334e-06,
1839
+ "loss": 0.0416,
1840
+ "num_input_tokens_seen": 3756864,
1841
+ "step": 229
1842
+ },
1843
+ {
1844
+ "epoch": 2.958199356913183,
1845
+ "grad_norm": 3.4988579750061035,
1846
+ "learning_rate": 1.916666666666667e-06,
1847
+ "loss": 0.0668,
1848
+ "num_input_tokens_seen": 3774336,
1849
+ "step": 230
1850
+ },
1851
+ {
1852
+ "epoch": 2.9710610932475885,
1853
+ "grad_norm": 3.7807693481445312,
1854
+ "learning_rate": 1.925e-06,
1855
+ "loss": 0.0603,
1856
+ "num_input_tokens_seen": 3790336,
1857
+ "step": 231
1858
+ },
1859
+ {
1860
+ "epoch": 2.9839228295819935,
1861
+ "grad_norm": 3.471942901611328,
1862
+ "learning_rate": 1.9333333333333336e-06,
1863
+ "loss": 0.066,
1864
+ "num_input_tokens_seen": 3807520,
1865
+ "step": 232
1866
+ },
1867
+ {
1868
+ "epoch": 2.996784565916399,
1869
+ "grad_norm": 3.4720284938812256,
1870
+ "learning_rate": 1.9416666666666666e-06,
1871
+ "loss": 0.0692,
1872
+ "num_input_tokens_seen": 3823872,
1873
+ "step": 233
1874
+ },
1875
+ {
1876
+ "epoch": 3.009646302250804,
1877
+ "grad_norm": 1.9317958354949951,
1878
+ "learning_rate": 1.9500000000000004e-06,
1879
+ "loss": 0.0323,
1880
+ "num_input_tokens_seen": 3840320,
1881
+ "step": 234
1882
+ },
1883
+ {
1884
+ "epoch": 3.022508038585209,
1885
+ "grad_norm": 4.849405288696289,
1886
+ "learning_rate": 1.9583333333333334e-06,
1887
+ "loss": 0.0403,
1888
+ "num_input_tokens_seen": 3856256,
1889
+ "step": 235
1890
+ },
1891
+ {
1892
+ "epoch": 3.035369774919614,
1893
+ "grad_norm": 2.371988296508789,
1894
+ "learning_rate": 1.9666666666666668e-06,
1895
+ "loss": 0.0477,
1896
+ "num_input_tokens_seen": 3872512,
1897
+ "step": 236
1898
+ },
1899
+ {
1900
+ "epoch": 3.0482315112540195,
1901
+ "grad_norm": 3.362964153289795,
1902
+ "learning_rate": 1.975e-06,
1903
+ "loss": 0.0356,
1904
+ "num_input_tokens_seen": 3888256,
1905
+ "step": 237
1906
+ },
1907
+ {
1908
+ "epoch": 3.0610932475884245,
1909
+ "grad_norm": 2.618176221847534,
1910
+ "learning_rate": 1.9833333333333335e-06,
1911
+ "loss": 0.0324,
1912
+ "num_input_tokens_seen": 3905024,
1913
+ "step": 238
1914
+ },
1915
+ {
1916
+ "epoch": 3.0739549839228295,
1917
+ "grad_norm": 2.5595703125,
1918
+ "learning_rate": 1.991666666666667e-06,
1919
+ "loss": 0.0428,
1920
+ "num_input_tokens_seen": 3922016,
1921
+ "step": 239
1922
+ },
1923
+ {
1924
+ "epoch": 3.0868167202572345,
1925
+ "grad_norm": 2.788818597793579,
1926
+ "learning_rate": 2.0000000000000003e-06,
1927
+ "loss": 0.0315,
1928
+ "num_input_tokens_seen": 3938400,
1929
+ "step": 240
1930
+ },
1931
+ {
1932
+ "epoch": 3.09967845659164,
1933
+ "grad_norm": 3.9531607627868652,
1934
+ "learning_rate": 2.0083333333333337e-06,
1935
+ "loss": 0.0366,
1936
+ "num_input_tokens_seen": 3954912,
1937
+ "step": 241
1938
+ },
1939
+ {
1940
+ "epoch": 3.112540192926045,
1941
+ "grad_norm": 3.2901012897491455,
1942
+ "learning_rate": 2.0166666666666667e-06,
1943
+ "loss": 0.0307,
1944
+ "num_input_tokens_seen": 3970400,
1945
+ "step": 242
1946
+ },
1947
+ {
1948
+ "epoch": 3.12540192926045,
1949
+ "grad_norm": 4.283529281616211,
1950
+ "learning_rate": 2.025e-06,
1951
+ "loss": 0.0338,
1952
+ "num_input_tokens_seen": 3986944,
1953
+ "step": 243
1954
+ },
1955
+ {
1956
+ "epoch": 3.1382636655948555,
1957
+ "grad_norm": 4.467242240905762,
1958
+ "learning_rate": 2.0333333333333335e-06,
1959
+ "loss": 0.0348,
1960
+ "num_input_tokens_seen": 4003648,
1961
+ "step": 244
1962
+ },
1963
+ {
1964
+ "epoch": 3.1511254019292605,
1965
+ "grad_norm": 3.3191885948181152,
1966
+ "learning_rate": 2.041666666666667e-06,
1967
+ "loss": 0.0355,
1968
+ "num_input_tokens_seen": 4020384,
1969
+ "step": 245
1970
+ },
1971
+ {
1972
+ "epoch": 3.1639871382636655,
1973
+ "grad_norm": 4.061459064483643,
1974
+ "learning_rate": 2.05e-06,
1975
+ "loss": 0.0272,
1976
+ "num_input_tokens_seen": 4037088,
1977
+ "step": 246
1978
+ },
1979
+ {
1980
+ "epoch": 3.176848874598071,
1981
+ "grad_norm": 3.0776522159576416,
1982
+ "learning_rate": 2.0583333333333337e-06,
1983
+ "loss": 0.0464,
1984
+ "num_input_tokens_seen": 4053472,
1985
+ "step": 247
1986
+ },
1987
+ {
1988
+ "epoch": 3.189710610932476,
1989
+ "grad_norm": 2.13104510307312,
1990
+ "learning_rate": 2.0666666666666666e-06,
1991
+ "loss": 0.0268,
1992
+ "num_input_tokens_seen": 4069248,
1993
+ "step": 248
1994
+ },
1995
+ {
1996
+ "epoch": 3.202572347266881,
1997
+ "grad_norm": 2.1540310382843018,
1998
+ "learning_rate": 2.075e-06,
1999
+ "loss": 0.0229,
2000
+ "num_input_tokens_seen": 4085024,
2001
+ "step": 249
2002
+ },
2003
+ {
2004
+ "epoch": 3.215434083601286,
2005
+ "grad_norm": 3.068967342376709,
2006
+ "learning_rate": 2.0833333333333334e-06,
2007
+ "loss": 0.0373,
2008
+ "num_input_tokens_seen": 4102432,
2009
+ "step": 250
2010
+ },
2011
+ {
2012
+ "epoch": 3.2282958199356915,
2013
+ "grad_norm": 2.7403666973114014,
2014
+ "learning_rate": 2.091666666666667e-06,
2015
+ "loss": 0.0361,
2016
+ "num_input_tokens_seen": 4118368,
2017
+ "step": 251
2018
+ },
2019
+ {
2020
+ "epoch": 3.2411575562700965,
2021
+ "grad_norm": 4.994419574737549,
2022
+ "learning_rate": 2.1000000000000002e-06,
2023
+ "loss": 0.0401,
2024
+ "num_input_tokens_seen": 4134784,
2025
+ "step": 252
2026
+ },
2027
+ {
2028
+ "epoch": 3.2540192926045015,
2029
+ "grad_norm": 2.287346839904785,
2030
+ "learning_rate": 2.1083333333333336e-06,
2031
+ "loss": 0.0262,
2032
+ "num_input_tokens_seen": 4150528,
2033
+ "step": 253
2034
+ },
2035
+ {
2036
+ "epoch": 3.266881028938907,
2037
+ "grad_norm": 3.649418354034424,
2038
+ "learning_rate": 2.116666666666667e-06,
2039
+ "loss": 0.0481,
2040
+ "num_input_tokens_seen": 4166816,
2041
+ "step": 254
2042
+ },
2043
+ {
2044
+ "epoch": 3.279742765273312,
2045
+ "grad_norm": 2.9041836261749268,
2046
+ "learning_rate": 2.125e-06,
2047
+ "loss": 0.0417,
2048
+ "num_input_tokens_seen": 4182880,
2049
+ "step": 255
2050
+ },
2051
+ {
2052
+ "epoch": 3.292604501607717,
2053
+ "grad_norm": 3.602240800857544,
2054
+ "learning_rate": 2.133333333333334e-06,
2055
+ "loss": 0.0457,
2056
+ "num_input_tokens_seen": 4200128,
2057
+ "step": 256
2058
+ },
2059
+ {
2060
+ "epoch": 3.305466237942122,
2061
+ "grad_norm": 1.6382755041122437,
2062
+ "learning_rate": 2.1416666666666668e-06,
2063
+ "loss": 0.0175,
2064
+ "num_input_tokens_seen": 4215680,
2065
+ "step": 257
2066
+ },
2067
+ {
2068
+ "epoch": 3.3183279742765275,
2069
+ "grad_norm": 2.4267561435699463,
2070
+ "learning_rate": 2.15e-06,
2071
+ "loss": 0.0371,
2072
+ "num_input_tokens_seen": 4232736,
2073
+ "step": 258
2074
+ },
2075
+ {
2076
+ "epoch": 3.3311897106109325,
2077
+ "grad_norm": 2.553440570831299,
2078
+ "learning_rate": 2.1583333333333336e-06,
2079
+ "loss": 0.0268,
2080
+ "num_input_tokens_seen": 4249664,
2081
+ "step": 259
2082
+ },
2083
+ {
2084
+ "epoch": 3.3440514469453375,
2085
+ "grad_norm": 2.951179027557373,
2086
+ "learning_rate": 2.166666666666667e-06,
2087
+ "loss": 0.0417,
2088
+ "num_input_tokens_seen": 4266016,
2089
+ "step": 260
2090
+ },
2091
+ {
2092
+ "epoch": 3.356913183279743,
2093
+ "grad_norm": 2.710747003555298,
2094
+ "learning_rate": 2.1750000000000004e-06,
2095
+ "loss": 0.0264,
2096
+ "num_input_tokens_seen": 4281664,
2097
+ "step": 261
2098
+ },
2099
+ {
2100
+ "epoch": 3.369774919614148,
2101
+ "grad_norm": 3.465902090072632,
2102
+ "learning_rate": 2.1833333333333333e-06,
2103
+ "loss": 0.0336,
2104
+ "num_input_tokens_seen": 4298368,
2105
+ "step": 262
2106
+ },
2107
+ {
2108
+ "epoch": 3.382636655948553,
2109
+ "grad_norm": 4.009627819061279,
2110
+ "learning_rate": 2.191666666666667e-06,
2111
+ "loss": 0.0434,
2112
+ "num_input_tokens_seen": 4314336,
2113
+ "step": 263
2114
+ },
2115
+ {
2116
+ "epoch": 3.395498392282958,
2117
+ "grad_norm": 4.071226596832275,
2118
+ "learning_rate": 2.2e-06,
2119
+ "loss": 0.0389,
2120
+ "num_input_tokens_seen": 4330144,
2121
+ "step": 264
2122
+ },
2123
+ {
2124
+ "epoch": 3.4083601286173635,
2125
+ "grad_norm": 4.341132164001465,
2126
+ "learning_rate": 2.2083333333333335e-06,
2127
+ "loss": 0.045,
2128
+ "num_input_tokens_seen": 4345856,
2129
+ "step": 265
2130
+ },
2131
+ {
2132
+ "epoch": 3.4212218649517685,
2133
+ "grad_norm": 4.663236141204834,
2134
+ "learning_rate": 2.216666666666667e-06,
2135
+ "loss": 0.0331,
2136
+ "num_input_tokens_seen": 4361696,
2137
+ "step": 266
2138
+ },
2139
+ {
2140
+ "epoch": 3.4340836012861735,
2141
+ "grad_norm": 2.17475962638855,
2142
+ "learning_rate": 2.2250000000000003e-06,
2143
+ "loss": 0.0228,
2144
+ "num_input_tokens_seen": 4378304,
2145
+ "step": 267
2146
+ },
2147
+ {
2148
+ "epoch": 3.446945337620579,
2149
+ "grad_norm": 5.099360942840576,
2150
+ "learning_rate": 2.2333333333333333e-06,
2151
+ "loss": 0.0307,
2152
+ "num_input_tokens_seen": 4395232,
2153
+ "step": 268
2154
+ },
2155
+ {
2156
+ "epoch": 3.459807073954984,
2157
+ "grad_norm": 4.4752020835876465,
2158
+ "learning_rate": 2.2416666666666667e-06,
2159
+ "loss": 0.0332,
2160
+ "num_input_tokens_seen": 4411232,
2161
+ "step": 269
2162
+ },
2163
+ {
2164
+ "epoch": 3.472668810289389,
2165
+ "grad_norm": 4.047648906707764,
2166
+ "learning_rate": 2.25e-06,
2167
+ "loss": 0.0662,
2168
+ "num_input_tokens_seen": 4427520,
2169
+ "step": 270
2170
+ },
2171
+ {
2172
+ "epoch": 3.485530546623794,
2173
+ "grad_norm": 5.564074516296387,
2174
+ "learning_rate": 2.2583333333333335e-06,
2175
+ "loss": 0.0431,
2176
+ "num_input_tokens_seen": 4443904,
2177
+ "step": 271
2178
+ },
2179
+ {
2180
+ "epoch": 3.4983922829581995,
2181
+ "grad_norm": 3.9845523834228516,
2182
+ "learning_rate": 2.266666666666667e-06,
2183
+ "loss": 0.0423,
2184
+ "num_input_tokens_seen": 4460608,
2185
+ "step": 272
2186
+ },
2187
+ {
2188
+ "epoch": 3.5112540192926045,
2189
+ "grad_norm": 3.6314871311187744,
2190
+ "learning_rate": 2.2750000000000002e-06,
2191
+ "loss": 0.0447,
2192
+ "num_input_tokens_seen": 4477120,
2193
+ "step": 273
2194
+ },
2195
+ {
2196
+ "epoch": 3.5241157556270095,
2197
+ "grad_norm": 3.1981313228607178,
2198
+ "learning_rate": 2.2833333333333336e-06,
2199
+ "loss": 0.0337,
2200
+ "num_input_tokens_seen": 4493152,
2201
+ "step": 274
2202
+ },
2203
+ {
2204
+ "epoch": 3.536977491961415,
2205
+ "grad_norm": 2.1383423805236816,
2206
+ "learning_rate": 2.2916666666666666e-06,
2207
+ "loss": 0.0319,
2208
+ "num_input_tokens_seen": 4509120,
2209
+ "step": 275
2210
+ },
2211
+ {
2212
+ "epoch": 3.54983922829582,
2213
+ "grad_norm": 2.778956890106201,
2214
+ "learning_rate": 2.3000000000000004e-06,
2215
+ "loss": 0.027,
2216
+ "num_input_tokens_seen": 4525984,
2217
+ "step": 276
2218
+ },
2219
+ {
2220
+ "epoch": 3.562700964630225,
2221
+ "grad_norm": 2.518002510070801,
2222
+ "learning_rate": 2.3083333333333334e-06,
2223
+ "loss": 0.0244,
2224
+ "num_input_tokens_seen": 4542816,
2225
+ "step": 277
2226
+ },
2227
+ {
2228
+ "epoch": 3.57556270096463,
2229
+ "grad_norm": 3.8519890308380127,
2230
+ "learning_rate": 2.316666666666667e-06,
2231
+ "loss": 0.0377,
2232
+ "num_input_tokens_seen": 4559872,
2233
+ "step": 278
2234
+ },
2235
+ {
2236
+ "epoch": 3.5884244372990355,
2237
+ "grad_norm": 5.541743278503418,
2238
+ "learning_rate": 2.325e-06,
2239
+ "loss": 0.0477,
2240
+ "num_input_tokens_seen": 4576288,
2241
+ "step": 279
2242
+ },
2243
+ {
2244
+ "epoch": 3.6012861736334405,
2245
+ "grad_norm": 4.099382400512695,
2246
+ "learning_rate": 2.3333333333333336e-06,
2247
+ "loss": 0.0332,
2248
+ "num_input_tokens_seen": 4591456,
2249
+ "step": 280
2250
+ },
2251
+ {
2252
+ "epoch": 3.6141479099678455,
2253
+ "grad_norm": 2.509037733078003,
2254
+ "learning_rate": 2.341666666666667e-06,
2255
+ "loss": 0.0285,
2256
+ "num_input_tokens_seen": 4608608,
2257
+ "step": 281
2258
+ },
2259
+ {
2260
+ "epoch": 3.627009646302251,
2261
+ "grad_norm": 6.764764308929443,
2262
+ "learning_rate": 2.35e-06,
2263
+ "loss": 0.0468,
2264
+ "num_input_tokens_seen": 4625120,
2265
+ "step": 282
2266
+ },
2267
+ {
2268
+ "epoch": 3.639871382636656,
2269
+ "grad_norm": 6.219926834106445,
2270
+ "learning_rate": 2.3583333333333338e-06,
2271
+ "loss": 0.037,
2272
+ "num_input_tokens_seen": 4641952,
2273
+ "step": 283
2274
+ },
2275
+ {
2276
+ "epoch": 3.652733118971061,
2277
+ "grad_norm": 3.869555950164795,
2278
+ "learning_rate": 2.3666666666666667e-06,
2279
+ "loss": 0.041,
2280
+ "num_input_tokens_seen": 4657920,
2281
+ "step": 284
2282
+ },
2283
+ {
2284
+ "epoch": 3.665594855305466,
2285
+ "grad_norm": 4.1329264640808105,
2286
+ "learning_rate": 2.375e-06,
2287
+ "loss": 0.0461,
2288
+ "num_input_tokens_seen": 4674688,
2289
+ "step": 285
2290
+ },
2291
+ {
2292
+ "epoch": 3.6784565916398715,
2293
+ "grad_norm": 6.7732648849487305,
2294
+ "learning_rate": 2.3833333333333335e-06,
2295
+ "loss": 0.0594,
2296
+ "num_input_tokens_seen": 4690592,
2297
+ "step": 286
2298
+ },
2299
+ {
2300
+ "epoch": 3.6913183279742765,
2301
+ "grad_norm": 8.550586700439453,
2302
+ "learning_rate": 2.391666666666667e-06,
2303
+ "loss": 0.0728,
2304
+ "num_input_tokens_seen": 4707360,
2305
+ "step": 287
2306
+ },
2307
+ {
2308
+ "epoch": 3.7041800643086815,
2309
+ "grad_norm": 4.587222099304199,
2310
+ "learning_rate": 2.4000000000000003e-06,
2311
+ "loss": 0.029,
2312
+ "num_input_tokens_seen": 4724192,
2313
+ "step": 288
2314
+ },
2315
+ {
2316
+ "epoch": 3.717041800643087,
2317
+ "grad_norm": 3.3474302291870117,
2318
+ "learning_rate": 2.4083333333333337e-06,
2319
+ "loss": 0.0412,
2320
+ "num_input_tokens_seen": 4741344,
2321
+ "step": 289
2322
+ },
2323
+ {
2324
+ "epoch": 3.729903536977492,
2325
+ "grad_norm": 4.359026908874512,
2326
+ "learning_rate": 2.4166666666666667e-06,
2327
+ "loss": 0.0262,
2328
+ "num_input_tokens_seen": 4756768,
2329
+ "step": 290
2330
+ },
2331
+ {
2332
+ "epoch": 3.742765273311897,
2333
+ "grad_norm": 8.029643058776855,
2334
+ "learning_rate": 2.425e-06,
2335
+ "loss": 0.0796,
2336
+ "num_input_tokens_seen": 4772608,
2337
+ "step": 291
2338
+ },
2339
+ {
2340
+ "epoch": 3.755627009646302,
2341
+ "grad_norm": 3.9188246726989746,
2342
+ "learning_rate": 2.4333333333333335e-06,
2343
+ "loss": 0.0447,
2344
+ "num_input_tokens_seen": 4788928,
2345
+ "step": 292
2346
+ },
2347
+ {
2348
+ "epoch": 3.7684887459807075,
2349
+ "grad_norm": 2.2623226642608643,
2350
+ "learning_rate": 2.441666666666667e-06,
2351
+ "loss": 0.0252,
2352
+ "num_input_tokens_seen": 4805408,
2353
+ "step": 293
2354
+ },
2355
+ {
2356
+ "epoch": 3.7813504823151125,
2357
+ "grad_norm": 5.41758394241333,
2358
+ "learning_rate": 2.4500000000000003e-06,
2359
+ "loss": 0.0458,
2360
+ "num_input_tokens_seen": 4821248,
2361
+ "step": 294
2362
+ },
2363
+ {
2364
+ "epoch": 3.7942122186495175,
2365
+ "grad_norm": 3.402024984359741,
2366
+ "learning_rate": 2.4583333333333332e-06,
2367
+ "loss": 0.0431,
2368
+ "num_input_tokens_seen": 4837024,
2369
+ "step": 295
2370
+ },
2371
+ {
2372
+ "epoch": 3.807073954983923,
2373
+ "grad_norm": 2.2912893295288086,
2374
+ "learning_rate": 2.466666666666667e-06,
2375
+ "loss": 0.0422,
2376
+ "num_input_tokens_seen": 4853760,
2377
+ "step": 296
2378
+ },
2379
+ {
2380
+ "epoch": 3.819935691318328,
2381
+ "grad_norm": 2.5446107387542725,
2382
+ "learning_rate": 2.475e-06,
2383
+ "loss": 0.0428,
2384
+ "num_input_tokens_seen": 4870560,
2385
+ "step": 297
2386
+ },
2387
+ {
2388
+ "epoch": 3.832797427652733,
2389
+ "grad_norm": 4.001276969909668,
2390
+ "learning_rate": 2.4833333333333334e-06,
2391
+ "loss": 0.0473,
2392
+ "num_input_tokens_seen": 4887040,
2393
+ "step": 298
2394
+ },
2395
+ {
2396
+ "epoch": 3.845659163987138,
2397
+ "grad_norm": 2.1214165687561035,
2398
+ "learning_rate": 2.491666666666667e-06,
2399
+ "loss": 0.0223,
2400
+ "num_input_tokens_seen": 4903232,
2401
+ "step": 299
2402
+ },
2403
+ {
2404
+ "epoch": 3.8585209003215435,
2405
+ "grad_norm": 2.0410876274108887,
2406
+ "learning_rate": 2.5e-06,
2407
+ "loss": 0.0274,
2408
+ "num_input_tokens_seen": 4919392,
2409
+ "step": 300
2410
+ },
2411
+ {
2412
+ "epoch": 3.8713826366559485,
2413
+ "grad_norm": 4.287325382232666,
2414
+ "learning_rate": 2.5083333333333336e-06,
2415
+ "loss": 0.0454,
2416
+ "num_input_tokens_seen": 4935648,
2417
+ "step": 301
2418
+ },
2419
+ {
2420
+ "epoch": 3.884244372990354,
2421
+ "grad_norm": 4.437230110168457,
2422
+ "learning_rate": 2.5166666666666666e-06,
2423
+ "loss": 0.022,
2424
+ "num_input_tokens_seen": 4952768,
2425
+ "step": 302
2426
+ },
2427
+ {
2428
+ "epoch": 3.897106109324759,
2429
+ "grad_norm": 3.8610730171203613,
2430
+ "learning_rate": 2.5250000000000004e-06,
2431
+ "loss": 0.0357,
2432
+ "num_input_tokens_seen": 4969408,
2433
+ "step": 303
2434
+ },
2435
+ {
2436
+ "epoch": 3.909967845659164,
2437
+ "grad_norm": 2.636066436767578,
2438
+ "learning_rate": 2.5333333333333338e-06,
2439
+ "loss": 0.0458,
2440
+ "num_input_tokens_seen": 4986592,
2441
+ "step": 304
2442
+ },
2443
+ {
2444
+ "epoch": 3.922829581993569,
2445
+ "grad_norm": 4.873857021331787,
2446
+ "learning_rate": 2.5416666666666668e-06,
2447
+ "loss": 0.0454,
2448
+ "num_input_tokens_seen": 5002720,
2449
+ "step": 305
2450
+ },
2451
+ {
2452
+ "epoch": 3.935691318327974,
2453
+ "grad_norm": 2.460498571395874,
2454
+ "learning_rate": 2.55e-06,
2455
+ "loss": 0.0262,
2456
+ "num_input_tokens_seen": 5018848,
2457
+ "step": 306
2458
+ },
2459
+ {
2460
+ "epoch": 3.9485530546623795,
2461
+ "grad_norm": 1.9787613153457642,
2462
+ "learning_rate": 2.558333333333334e-06,
2463
+ "loss": 0.0234,
2464
+ "num_input_tokens_seen": 5034528,
2465
+ "step": 307
2466
+ },
2467
+ {
2468
+ "epoch": 3.9614147909967845,
2469
+ "grad_norm": 2.9524741172790527,
2470
+ "learning_rate": 2.566666666666667e-06,
2471
+ "loss": 0.0366,
2472
+ "num_input_tokens_seen": 5051328,
2473
+ "step": 308
2474
+ },
2475
+ {
2476
+ "epoch": 3.97427652733119,
2477
+ "grad_norm": 2.858250379562378,
2478
+ "learning_rate": 2.5750000000000003e-06,
2479
+ "loss": 0.0236,
2480
+ "num_input_tokens_seen": 5067712,
2481
+ "step": 309
2482
+ },
2483
+ {
2484
+ "epoch": 3.987138263665595,
2485
+ "grad_norm": 2.985665798187256,
2486
+ "learning_rate": 2.5833333333333337e-06,
2487
+ "loss": 0.0403,
2488
+ "num_input_tokens_seen": 5085088,
2489
+ "step": 310
2490
+ },
2491
+ {
2492
+ "epoch": 4.0,
2493
+ "grad_norm": 2.72078013420105,
2494
+ "learning_rate": 2.5916666666666667e-06,
2495
+ "loss": 0.0395,
2496
+ "num_input_tokens_seen": 5101536,
2497
+ "step": 311
2498
+ },
2499
+ {
2500
+ "epoch": 4.012861736334405,
2501
+ "grad_norm": 1.2907602787017822,
2502
+ "learning_rate": 2.6e-06,
2503
+ "loss": 0.0163,
2504
+ "num_input_tokens_seen": 5117696,
2505
+ "step": 312
2506
+ },
2507
+ {
2508
+ "epoch": 4.02572347266881,
2509
+ "grad_norm": 1.910504937171936,
2510
+ "learning_rate": 2.608333333333333e-06,
2511
+ "loss": 0.0181,
2512
+ "num_input_tokens_seen": 5133408,
2513
+ "step": 313
2514
+ },
2515
+ {
2516
+ "epoch": 4.038585209003215,
2517
+ "grad_norm": 1.1473162174224854,
2518
+ "learning_rate": 2.616666666666667e-06,
2519
+ "loss": 0.013,
2520
+ "num_input_tokens_seen": 5149664,
2521
+ "step": 314
2522
+ },
2523
+ {
2524
+ "epoch": 4.051446945337621,
2525
+ "grad_norm": 2.9885878562927246,
2526
+ "learning_rate": 2.6250000000000003e-06,
2527
+ "loss": 0.0178,
2528
+ "num_input_tokens_seen": 5165344,
2529
+ "step": 315
2530
+ },
2531
+ {
2532
+ "epoch": 4.064308681672026,
2533
+ "grad_norm": 2.308147430419922,
2534
+ "learning_rate": 2.6333333333333332e-06,
2535
+ "loss": 0.0153,
2536
+ "num_input_tokens_seen": 5183264,
2537
+ "step": 316
2538
+ },
2539
+ {
2540
+ "epoch": 4.077170418006431,
2541
+ "grad_norm": 3.1830930709838867,
2542
+ "learning_rate": 2.6416666666666666e-06,
2543
+ "loss": 0.0205,
2544
+ "num_input_tokens_seen": 5199296,
2545
+ "step": 317
2546
+ },
2547
+ {
2548
+ "epoch": 4.090032154340836,
2549
+ "grad_norm": 0.674608051776886,
2550
+ "learning_rate": 2.6500000000000005e-06,
2551
+ "loss": 0.0021,
2552
+ "num_input_tokens_seen": 5216032,
2553
+ "step": 318
2554
+ },
2555
+ {
2556
+ "epoch": 4.102893890675241,
2557
+ "grad_norm": 3.075059175491333,
2558
+ "learning_rate": 2.6583333333333334e-06,
2559
+ "loss": 0.022,
2560
+ "num_input_tokens_seen": 5232544,
2561
+ "step": 319
2562
+ },
2563
+ {
2564
+ "epoch": 4.115755627009646,
2565
+ "grad_norm": 1.1589558124542236,
2566
+ "learning_rate": 2.666666666666667e-06,
2567
+ "loss": 0.0134,
2568
+ "num_input_tokens_seen": 5248704,
2569
+ "step": 320
2570
+ },
2571
+ {
2572
+ "epoch": 4.128617363344051,
2573
+ "grad_norm": 4.190515518188477,
2574
+ "learning_rate": 2.6750000000000002e-06,
2575
+ "loss": 0.0175,
2576
+ "num_input_tokens_seen": 5264384,
2577
+ "step": 321
2578
+ },
2579
+ {
2580
+ "epoch": 4.141479099678457,
2581
+ "grad_norm": 3.435070276260376,
2582
+ "learning_rate": 2.683333333333333e-06,
2583
+ "loss": 0.023,
2584
+ "num_input_tokens_seen": 5280928,
2585
+ "step": 322
2586
+ },
2587
+ {
2588
+ "epoch": 4.154340836012862,
2589
+ "grad_norm": 3.3521199226379395,
2590
+ "learning_rate": 2.691666666666667e-06,
2591
+ "loss": 0.0303,
2592
+ "num_input_tokens_seen": 5296512,
2593
+ "step": 323
2594
+ },
2595
+ {
2596
+ "epoch": 4.167202572347267,
2597
+ "grad_norm": 2.0815391540527344,
2598
+ "learning_rate": 2.7000000000000004e-06,
2599
+ "loss": 0.0187,
2600
+ "num_input_tokens_seen": 5313440,
2601
+ "step": 324
2602
+ },
2603
+ {
2604
+ "epoch": 4.180064308681672,
2605
+ "grad_norm": 1.968308687210083,
2606
+ "learning_rate": 2.7083333333333334e-06,
2607
+ "loss": 0.0126,
2608
+ "num_input_tokens_seen": 5329088,
2609
+ "step": 325
2610
+ },
2611
+ {
2612
+ "epoch": 4.192926045016077,
2613
+ "grad_norm": 2.134216070175171,
2614
+ "learning_rate": 2.7166666666666668e-06,
2615
+ "loss": 0.0203,
2616
+ "num_input_tokens_seen": 5345376,
2617
+ "step": 326
2618
+ },
2619
+ {
2620
+ "epoch": 4.205787781350482,
2621
+ "grad_norm": 1.2245476245880127,
2622
+ "learning_rate": 2.7250000000000006e-06,
2623
+ "loss": 0.0078,
2624
+ "num_input_tokens_seen": 5361568,
2625
+ "step": 327
2626
+ },
2627
+ {
2628
+ "epoch": 4.218649517684887,
2629
+ "grad_norm": 1.908057451248169,
2630
+ "learning_rate": 2.7333333333333336e-06,
2631
+ "loss": 0.0165,
2632
+ "num_input_tokens_seen": 5377536,
2633
+ "step": 328
2634
+ },
2635
+ {
2636
+ "epoch": 4.231511254019293,
2637
+ "grad_norm": 1.6413862705230713,
2638
+ "learning_rate": 2.741666666666667e-06,
2639
+ "loss": 0.0113,
2640
+ "num_input_tokens_seen": 5395040,
2641
+ "step": 329
2642
+ },
2643
+ {
2644
+ "epoch": 4.244372990353698,
2645
+ "grad_norm": 1.442226529121399,
2646
+ "learning_rate": 2.7500000000000004e-06,
2647
+ "loss": 0.0058,
2648
+ "num_input_tokens_seen": 5411488,
2649
+ "step": 330
2650
+ },
2651
+ {
2652
+ "epoch": 4.257234726688103,
2653
+ "grad_norm": 0.9877079129219055,
2654
+ "learning_rate": 2.7583333333333333e-06,
2655
+ "loss": 0.007,
2656
+ "num_input_tokens_seen": 5427328,
2657
+ "step": 331
2658
+ },
2659
+ {
2660
+ "epoch": 4.270096463022508,
2661
+ "grad_norm": 2.9424357414245605,
2662
+ "learning_rate": 2.766666666666667e-06,
2663
+ "loss": 0.027,
2664
+ "num_input_tokens_seen": 5444352,
2665
+ "step": 332
2666
+ },
2667
+ {
2668
+ "epoch": 4.282958199356913,
2669
+ "grad_norm": 3.5407063961029053,
2670
+ "learning_rate": 2.7750000000000005e-06,
2671
+ "loss": 0.0276,
2672
+ "num_input_tokens_seen": 5459840,
2673
+ "step": 333
2674
+ },
2675
+ {
2676
+ "epoch": 4.295819935691318,
2677
+ "grad_norm": 4.147865295410156,
2678
+ "learning_rate": 2.7833333333333335e-06,
2679
+ "loss": 0.0367,
2680
+ "num_input_tokens_seen": 5476000,
2681
+ "step": 334
2682
+ },
2683
+ {
2684
+ "epoch": 4.308681672025724,
2685
+ "grad_norm": 2.4164767265319824,
2686
+ "learning_rate": 2.791666666666667e-06,
2687
+ "loss": 0.0161,
2688
+ "num_input_tokens_seen": 5491968,
2689
+ "step": 335
2690
+ },
2691
+ {
2692
+ "epoch": 4.321543408360129,
2693
+ "grad_norm": 2.553860902786255,
2694
+ "learning_rate": 2.8000000000000003e-06,
2695
+ "loss": 0.018,
2696
+ "num_input_tokens_seen": 5508864,
2697
+ "step": 336
2698
+ },
2699
+ {
2700
+ "epoch": 4.334405144694534,
2701
+ "grad_norm": 1.050309419631958,
2702
+ "learning_rate": 2.8083333333333333e-06,
2703
+ "loss": 0.0044,
2704
+ "num_input_tokens_seen": 5525536,
2705
+ "step": 337
2706
+ },
2707
+ {
2708
+ "epoch": 4.347266881028939,
2709
+ "grad_norm": 2.375540018081665,
2710
+ "learning_rate": 2.816666666666667e-06,
2711
+ "loss": 0.0109,
2712
+ "num_input_tokens_seen": 5542368,
2713
+ "step": 338
2714
+ },
2715
+ {
2716
+ "epoch": 4.360128617363344,
2717
+ "grad_norm": 3.041912794113159,
2718
+ "learning_rate": 2.825e-06,
2719
+ "loss": 0.0173,
2720
+ "num_input_tokens_seen": 5558400,
2721
+ "step": 339
2722
+ },
2723
+ {
2724
+ "epoch": 4.372990353697749,
2725
+ "grad_norm": 2.464390754699707,
2726
+ "learning_rate": 2.8333333333333335e-06,
2727
+ "loss": 0.0107,
2728
+ "num_input_tokens_seen": 5575008,
2729
+ "step": 340
2730
+ },
2731
+ {
2732
+ "epoch": 4.385852090032154,
2733
+ "grad_norm": 1.3086371421813965,
2734
+ "learning_rate": 2.841666666666667e-06,
2735
+ "loss": 0.0116,
2736
+ "num_input_tokens_seen": 5590784,
2737
+ "step": 341
2738
+ },
2739
+ {
2740
+ "epoch": 4.39871382636656,
2741
+ "grad_norm": 3.057859420776367,
2742
+ "learning_rate": 2.85e-06,
2743
+ "loss": 0.0281,
2744
+ "num_input_tokens_seen": 5608032,
2745
+ "step": 342
2746
+ },
2747
+ {
2748
+ "epoch": 4.411575562700965,
2749
+ "grad_norm": 2.7371633052825928,
2750
+ "learning_rate": 2.8583333333333336e-06,
2751
+ "loss": 0.0246,
2752
+ "num_input_tokens_seen": 5624704,
2753
+ "step": 343
2754
+ },
2755
+ {
2756
+ "epoch": 4.42443729903537,
2757
+ "grad_norm": 1.7932931184768677,
2758
+ "learning_rate": 2.866666666666667e-06,
2759
+ "loss": 0.0146,
2760
+ "num_input_tokens_seen": 5641056,
2761
+ "step": 344
2762
+ },
2763
+ {
2764
+ "epoch": 4.437299035369775,
2765
+ "grad_norm": 3.9446775913238525,
2766
+ "learning_rate": 2.875e-06,
2767
+ "loss": 0.0439,
2768
+ "num_input_tokens_seen": 5656608,
2769
+ "step": 345
2770
+ },
2771
+ {
2772
+ "epoch": 4.45016077170418,
2773
+ "grad_norm": 3.7706024646759033,
2774
+ "learning_rate": 2.8833333333333334e-06,
2775
+ "loss": 0.0279,
2776
+ "num_input_tokens_seen": 5672928,
2777
+ "step": 346
2778
+ },
2779
+ {
2780
+ "epoch": 4.463022508038585,
2781
+ "grad_norm": 2.38531756401062,
2782
+ "learning_rate": 2.8916666666666672e-06,
2783
+ "loss": 0.0276,
2784
+ "num_input_tokens_seen": 5689728,
2785
+ "step": 347
2786
+ },
2787
+ {
2788
+ "epoch": 4.47588424437299,
2789
+ "grad_norm": 2.534675121307373,
2790
+ "learning_rate": 2.9e-06,
2791
+ "loss": 0.0167,
2792
+ "num_input_tokens_seen": 5705824,
2793
+ "step": 348
2794
+ },
2795
+ {
2796
+ "epoch": 4.488745980707396,
2797
+ "grad_norm": 3.28116774559021,
2798
+ "learning_rate": 2.9083333333333336e-06,
2799
+ "loss": 0.0258,
2800
+ "num_input_tokens_seen": 5723008,
2801
+ "step": 349
2802
+ },
2803
+ {
2804
+ "epoch": 4.501607717041801,
2805
+ "grad_norm": 3.5873191356658936,
2806
+ "learning_rate": 2.916666666666667e-06,
2807
+ "loss": 0.0306,
2808
+ "num_input_tokens_seen": 5739680,
2809
+ "step": 350
2810
+ },
2811
+ {
2812
+ "epoch": 4.514469453376206,
2813
+ "grad_norm": 4.889535427093506,
2814
+ "learning_rate": 2.925e-06,
2815
+ "loss": 0.0395,
2816
+ "num_input_tokens_seen": 5756480,
2817
+ "step": 351
2818
+ },
2819
+ {
2820
+ "epoch": 4.527331189710611,
2821
+ "grad_norm": 1.8129762411117554,
2822
+ "learning_rate": 2.9333333333333338e-06,
2823
+ "loss": 0.0203,
2824
+ "num_input_tokens_seen": 5773088,
2825
+ "step": 352
2826
+ },
2827
+ {
2828
+ "epoch": 4.540192926045016,
2829
+ "grad_norm": 1.5045830011367798,
2830
+ "learning_rate": 2.941666666666667e-06,
2831
+ "loss": 0.0241,
2832
+ "num_input_tokens_seen": 5789312,
2833
+ "step": 353
2834
+ },
2835
+ {
2836
+ "epoch": 4.553054662379421,
2837
+ "grad_norm": 1.4582304954528809,
2838
+ "learning_rate": 2.95e-06,
2839
+ "loss": 0.0151,
2840
+ "num_input_tokens_seen": 5804352,
2841
+ "step": 354
2842
+ },
2843
+ {
2844
+ "epoch": 4.565916398713826,
2845
+ "grad_norm": 1.6875511407852173,
2846
+ "learning_rate": 2.9583333333333335e-06,
2847
+ "loss": 0.0355,
2848
+ "num_input_tokens_seen": 5820384,
2849
+ "step": 355
2850
+ },
2851
+ {
2852
+ "epoch": 4.578778135048232,
2853
+ "grad_norm": 1.0483993291854858,
2854
+ "learning_rate": 2.9666666666666673e-06,
2855
+ "loss": 0.0093,
2856
+ "num_input_tokens_seen": 5837280,
2857
+ "step": 356
2858
+ },
2859
+ {
2860
+ "epoch": 4.591639871382637,
2861
+ "grad_norm": 2.731086254119873,
2862
+ "learning_rate": 2.9750000000000003e-06,
2863
+ "loss": 0.0314,
2864
+ "num_input_tokens_seen": 5853760,
2865
+ "step": 357
2866
+ },
2867
+ {
2868
+ "epoch": 4.604501607717042,
2869
+ "grad_norm": 1.5985758304595947,
2870
+ "learning_rate": 2.9833333333333337e-06,
2871
+ "loss": 0.0155,
2872
+ "num_input_tokens_seen": 5870240,
2873
+ "step": 358
2874
+ },
2875
+ {
2876
+ "epoch": 4.617363344051447,
2877
+ "grad_norm": 1.3119585514068604,
2878
+ "learning_rate": 2.991666666666667e-06,
2879
+ "loss": 0.0138,
2880
+ "num_input_tokens_seen": 5887296,
2881
+ "step": 359
2882
+ },
2883
+ {
2884
+ "epoch": 4.630225080385852,
2885
+ "grad_norm": 2.3107335567474365,
2886
+ "learning_rate": 3e-06,
2887
+ "loss": 0.0212,
2888
+ "num_input_tokens_seen": 5904384,
2889
+ "step": 360
2890
+ },
2891
+ {
2892
+ "epoch": 4.643086816720257,
2893
+ "grad_norm": 1.8473104238510132,
2894
+ "learning_rate": 3.0083333333333335e-06,
2895
+ "loss": 0.0255,
2896
+ "num_input_tokens_seen": 5920832,
2897
+ "step": 361
2898
+ },
2899
+ {
2900
+ "epoch": 4.655948553054662,
2901
+ "grad_norm": 1.6255360841751099,
2902
+ "learning_rate": 3.0166666666666673e-06,
2903
+ "loss": 0.0231,
2904
+ "num_input_tokens_seen": 5936736,
2905
+ "step": 362
2906
+ },
2907
+ {
2908
+ "epoch": 4.668810289389068,
2909
+ "grad_norm": 1.843116044998169,
2910
+ "learning_rate": 3.0250000000000003e-06,
2911
+ "loss": 0.0083,
2912
+ "num_input_tokens_seen": 5953120,
2913
+ "step": 363
2914
+ },
2915
+ {
2916
+ "epoch": 4.681672025723473,
2917
+ "grad_norm": 1.7974934577941895,
2918
+ "learning_rate": 3.0333333333333337e-06,
2919
+ "loss": 0.0122,
2920
+ "num_input_tokens_seen": 5970336,
2921
+ "step": 364
2922
+ },
2923
+ {
2924
+ "epoch": 4.694533762057878,
2925
+ "grad_norm": 1.799026370048523,
2926
+ "learning_rate": 3.0416666666666666e-06,
2927
+ "loss": 0.0142,
2928
+ "num_input_tokens_seen": 5987488,
2929
+ "step": 365
2930
+ },
2931
+ {
2932
+ "epoch": 4.707395498392283,
2933
+ "grad_norm": 2.38661789894104,
2934
+ "learning_rate": 3.05e-06,
2935
+ "loss": 0.0293,
2936
+ "num_input_tokens_seen": 6003296,
2937
+ "step": 366
2938
+ },
2939
+ {
2940
+ "epoch": 4.720257234726688,
2941
+ "grad_norm": 2.2720234394073486,
2942
+ "learning_rate": 3.058333333333334e-06,
2943
+ "loss": 0.0292,
2944
+ "num_input_tokens_seen": 6020768,
2945
+ "step": 367
2946
+ },
2947
+ {
2948
+ "epoch": 4.733118971061093,
2949
+ "grad_norm": 3.6864068508148193,
2950
+ "learning_rate": 3.066666666666667e-06,
2951
+ "loss": 0.032,
2952
+ "num_input_tokens_seen": 6036992,
2953
+ "step": 368
2954
+ },
2955
+ {
2956
+ "epoch": 4.745980707395498,
2957
+ "grad_norm": 2.1829123497009277,
2958
+ "learning_rate": 3.075e-06,
2959
+ "loss": 0.0189,
2960
+ "num_input_tokens_seen": 6053568,
2961
+ "step": 369
2962
+ },
2963
+ {
2964
+ "epoch": 4.758842443729904,
2965
+ "grad_norm": 2.033625602722168,
2966
+ "learning_rate": 3.0833333333333336e-06,
2967
+ "loss": 0.022,
2968
+ "num_input_tokens_seen": 6070336,
2969
+ "step": 370
2970
+ },
2971
+ {
2972
+ "epoch": 4.771704180064309,
2973
+ "grad_norm": 2.665611982345581,
2974
+ "learning_rate": 3.0916666666666666e-06,
2975
+ "loss": 0.0242,
2976
+ "num_input_tokens_seen": 6087200,
2977
+ "step": 371
2978
+ },
2979
+ {
2980
+ "epoch": 4.784565916398714,
2981
+ "grad_norm": 1.981733798980713,
2982
+ "learning_rate": 3.1000000000000004e-06,
2983
+ "loss": 0.015,
2984
+ "num_input_tokens_seen": 6104224,
2985
+ "step": 372
2986
+ },
2987
+ {
2988
+ "epoch": 4.797427652733119,
2989
+ "grad_norm": 1.30072820186615,
2990
+ "learning_rate": 3.1083333333333338e-06,
2991
+ "loss": 0.0154,
2992
+ "num_input_tokens_seen": 6120576,
2993
+ "step": 373
2994
+ },
2995
+ {
2996
+ "epoch": 4.810289389067524,
2997
+ "grad_norm": 2.196270704269409,
2998
+ "learning_rate": 3.1166666666666668e-06,
2999
+ "loss": 0.0195,
3000
+ "num_input_tokens_seen": 6137440,
3001
+ "step": 374
3002
+ },
3003
+ {
3004
+ "epoch": 4.823151125401929,
3005
+ "grad_norm": 2.597658157348633,
3006
+ "learning_rate": 3.125e-06,
3007
+ "loss": 0.031,
3008
+ "num_input_tokens_seen": 6154976,
3009
+ "step": 375
3010
+ },
3011
+ {
3012
+ "epoch": 4.836012861736334,
3013
+ "grad_norm": 3.6647465229034424,
3014
+ "learning_rate": 3.133333333333334e-06,
3015
+ "loss": 0.0376,
3016
+ "num_input_tokens_seen": 6170912,
3017
+ "step": 376
3018
+ },
3019
+ {
3020
+ "epoch": 4.84887459807074,
3021
+ "grad_norm": 1.159162998199463,
3022
+ "learning_rate": 3.141666666666667e-06,
3023
+ "loss": 0.0093,
3024
+ "num_input_tokens_seen": 6187968,
3025
+ "step": 377
3026
+ },
3027
+ {
3028
+ "epoch": 4.861736334405145,
3029
+ "grad_norm": 1.5810602903366089,
3030
+ "learning_rate": 3.1500000000000003e-06,
3031
+ "loss": 0.027,
3032
+ "num_input_tokens_seen": 6204320,
3033
+ "step": 378
3034
+ },
3035
+ {
3036
+ "epoch": 4.87459807073955,
3037
+ "grad_norm": 2.0108237266540527,
3038
+ "learning_rate": 3.1583333333333337e-06,
3039
+ "loss": 0.0191,
3040
+ "num_input_tokens_seen": 6220512,
3041
+ "step": 379
3042
+ },
3043
+ {
3044
+ "epoch": 4.887459807073955,
3045
+ "grad_norm": 1.5167394876480103,
3046
+ "learning_rate": 3.1666666666666667e-06,
3047
+ "loss": 0.0132,
3048
+ "num_input_tokens_seen": 6236512,
3049
+ "step": 380
3050
+ },
3051
+ {
3052
+ "epoch": 4.90032154340836,
3053
+ "grad_norm": 2.1819732189178467,
3054
+ "learning_rate": 3.175e-06,
3055
+ "loss": 0.0111,
3056
+ "num_input_tokens_seen": 6252416,
3057
+ "step": 381
3058
+ },
3059
+ {
3060
+ "epoch": 4.913183279742765,
3061
+ "grad_norm": 1.414007306098938,
3062
+ "learning_rate": 3.183333333333334e-06,
3063
+ "loss": 0.0145,
3064
+ "num_input_tokens_seen": 6268992,
3065
+ "step": 382
3066
+ },
3067
+ {
3068
+ "epoch": 4.92604501607717,
3069
+ "grad_norm": 1.6091843843460083,
3070
+ "learning_rate": 3.191666666666667e-06,
3071
+ "loss": 0.0082,
3072
+ "num_input_tokens_seen": 6285312,
3073
+ "step": 383
3074
+ },
3075
+ {
3076
+ "epoch": 4.938906752411576,
3077
+ "grad_norm": 1.0037862062454224,
3078
+ "learning_rate": 3.2000000000000003e-06,
3079
+ "loss": 0.0165,
3080
+ "num_input_tokens_seen": 6300992,
3081
+ "step": 384
3082
+ },
3083
+ {
3084
+ "epoch": 4.951768488745981,
3085
+ "grad_norm": 2.4763152599334717,
3086
+ "learning_rate": 3.2083333333333337e-06,
3087
+ "loss": 0.0243,
3088
+ "num_input_tokens_seen": 6318560,
3089
+ "step": 385
3090
+ },
3091
+ {
3092
+ "epoch": 4.951768488745981,
3093
+ "num_input_tokens_seen": 6318560,
3094
+ "step": 385,
3095
+ "total_flos": 2.5049338265940787e+17,
3096
+ "train_loss": 0.9364173337708336,
3097
+ "train_runtime": 4331.1035,
3098
+ "train_samples_per_second": 22.95,
3099
+ "train_steps_per_second": 0.089
3100
+ }
3101
+ ],
3102
+ "logging_steps": 1,
3103
+ "max_steps": 385,
3104
+ "num_input_tokens_seen": 6318560,
3105
+ "num_train_epochs": 5,
3106
+ "save_steps": 980,
3107
+ "stateful_callbacks": {
3108
+ "TrainerControl": {
3109
+ "args": {
3110
+ "should_epoch_stop": false,
3111
+ "should_evaluate": false,
3112
+ "should_log": false,
3113
+ "should_save": true,
3114
+ "should_training_stop": true
3115
+ },
3116
+ "attributes": {}
3117
+ }
3118
+ },
3119
+ "total_flos": 2.5049338265940787e+17,
3120
+ "train_batch_size": 4,
3121
+ "trial_name": null,
3122
+ "trial_params": null
3123
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76f84697cc5f35a19aa098445f2ef3e5650b3d161fb9f59aeb9c53bd327abfd6
3
+ size 6584