|
|
""" |
|
|
2025.9.14 |
|
|
2025.9.11 |
|
|
4.56.2 |
|
|
0.23.0 |
|
|
__UNSLOTH_VERSIONING__ |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from torch import Tensor |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from torch.nn import functional as F |
|
|
from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable |
|
|
from trl.trainer.online_dpo_trainer import (Any, AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, BasePairwiseJudge, Callable, DPODataCollatorWithPadding, DataCollator, DataLoader, Dataset, EvalPrediction, F, FSDP, GenerationConfig, IterableDataset, MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES, OnlineDPOConfig, OnlineDPOTrainer, OptimizerNames, Optional, Path, PeftConfig, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, RewardFunc, SIMPLE_CHAT_TEMPLATE, Trainer, TrainerCallback, Union, VLLMClient, apply_chat_template, broadcast_object_list, create_reference_model, disable_dropout_in_model, empty_cache, gather_object, generate_model_card, get_comet_experiment_url, is_conversational, is_flash_attn_2_available, is_peft_model, is_vllm_available, is_wandb_available, jinja2, logger, logging, maybe_apply_chat_template, nn, nullcontext, os, pad, prepare_deepspeed, prepare_peft_model, profiling_context, re, seed_worker, textwrap, torch, truncate_right, unwrap_model_for_generation, version, wandb, warnings, wraps, F, apply_chat_template, is_conversational, re, F, FSDP, is_peft_model, nn, nullcontext, os, re, version, F, Optional, PreTrainedModel, Trainer, logger, os, re, torch, F, FSDP, nn, os, re, F, FSDP, nn, re, torch) |
|
|
|
|
|
|
|
|
import os |
|
|
from typing import * |
|
|
from dataclasses import dataclass, field |
|
|
from packaging.version import Version |
|
|
import torch |
|
|
import numpy as np |
|
|
from contextlib import nullcontext |
|
|
from torch.nn import functional as F |
|
|
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling |
|
|
from transformers.training_args import ParallelMode |
|
|
|
|
|
|
|
|
import functools |
|
|
from types import MethodType |
|
|
def prepare_for_training_mode(f): |
|
|
@functools.wraps(f) |
|
|
def wrapper(self, *args, **kwargs): |
|
|
|
|
|
if hasattr(self, 'model') and hasattr(self.model, "for_training"): |
|
|
self.model.for_training() |
|
|
output = f(self, *args, **kwargs) |
|
|
|
|
|
if hasattr(self, 'model') and hasattr(self.model, "for_inference"): |
|
|
self.model.for_inference() |
|
|
return output |
|
|
return wrapper |
|
|
pass |
|
|
|
|
|
torch_compile_options = { |
|
|
"epilogue_fusion" : True, |
|
|
"max_autotune" : False, |
|
|
"shape_padding" : True, |
|
|
"trace.enabled" : False, |
|
|
"triton.cudagraphs" : False, |
|
|
} |
|
|
|
|
|
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,) |
|
|
def chunked_selective_log_softmax(logits, index): |
|
|
|
|
|
chunked_logits = torch.chunk(logits.reshape(-1, logits.shape[-1]), chunks = 4, dim = 0) |
|
|
chunked_index = torch.chunk(index.reshape(-1), chunks = 4, dim = 0) |
|
|
all_per_token_logps = [] |
|
|
|
|
|
for chunk_logits, chunk_index in zip(chunked_logits, chunked_index): |
|
|
chunk_logits = chunk_logits.to(torch.float32) |
|
|
selected_logits = torch.gather(chunk_logits, dim = -1, index = chunk_index.unsqueeze(-1)).squeeze(-1) |
|
|
logsumexp_values = torch.logsumexp(chunk_logits, dim = -1) |
|
|
per_token_logps = selected_logits - logsumexp_values |
|
|
all_per_token_logps.append(per_token_logps) |
|
|
pass |
|
|
all_per_token_logps = torch.concat(all_per_token_logps) |
|
|
all_per_token_logps = all_per_token_logps.reshape((logits.shape[0], logits.shape[1])) |
|
|
return all_per_token_logps |
|
|
|
|
|
def calculate_pad_tokens_in_prompt( |
|
|
input_ids: torch.Tensor, |
|
|
logits_to_keep: int, |
|
|
pad_token_id: int |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Given prompt tensor, it returns all the left padded tokens in that sequence. so [pad, pad, pad, cat] = 3 tokens |
|
|
""" |
|
|
if logits_to_keep >= input_ids.shape[1]: |
|
|
raise ValueError("logits_to_keep must be smaller than the sequence length.") |
|
|
|
|
|
prompt_section = input_ids[:, :-logits_to_keep] |
|
|
|
|
|
padding_mask = (prompt_section == pad_token_id) |
|
|
|
|
|
pad_token_counts = padding_mask.sum(dim=1) |
|
|
|
|
|
return pad_token_counts |
|
|
|
|
|
def create_completion_attention_mask( |
|
|
completion_input_ids: torch.Tensor, |
|
|
left_pad_tokens_per_prompt: torch.Tensor, |
|
|
max_left_pad: int, |
|
|
pad_token_id: int |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Given that we have a sequence, [p,p,p,c,c,c,pad,pad,pad] |
|
|
|
|
|
Where p are extra prompt tokens we got from slicing the torch tensor, c is completion tokens |
|
|
and pad are pad tokens, this function would make a completion mask that would 0 out the pad |
|
|
and p tokens. so in this example [0,0,0,1,1,1,0,0,0] |
|
|
""" |
|
|
batch_size, completion_len = completion_input_ids.shape |
|
|
device = completion_input_ids.device |
|
|
|
|
|
num_tokens_to_mask = max_left_pad - left_pad_tokens_per_prompt |
|
|
|
|
|
indices = torch.arange(completion_len, device=device).unsqueeze(0) |
|
|
shift_mask = indices >= num_tokens_to_mask.unsqueeze(1) |
|
|
|
|
|
non_padding_mask = (completion_input_ids != pad_token_id) |
|
|
|
|
|
final_mask = shift_mask & non_padding_mask |
|
|
|
|
|
return final_mask |
|
|
|
|
|
def left_pack_padding(tensor: torch.Tensor, pad_id: int) -> torch.Tensor: |
|
|
""" |
|
|
Moves all padding tokens in each sequence of a batch to the right. |
|
|
""" |
|
|
mask = (tensor != pad_id) |
|
|
|
|
|
sorted_indices = torch.argsort(mask, dim=1, descending=True, stable=True) |
|
|
packed_tensor = torch.gather(tensor, 1, sorted_indices) |
|
|
return packed_tensor |
|
|
def vLLMSamplingParams(**kwargs): |
|
|
from vllm import SamplingParams |
|
|
sampling_params = SamplingParams(**kwargs) |
|
|
sampling_params._set_kwargs = kwargs |
|
|
return sampling_params |
|
|
@dataclass |
|
|
class UnslothOnlineDPOConfig(OnlineDPOConfig): |
|
|
""" |
|
|
|
|
|
Configuration class for the [`OnlineDPOTrainer`]. |
|
|
|
|
|
This class includes only the parameters that are specific to Online DPO training. For a full list of training |
|
|
arguments, please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this |
|
|
class may differ from those in [`~transformers.TrainingArguments`]. |
|
|
|
|
|
Using [`~transformers.HfArgumentParser`] we can turn this class into |
|
|
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the |
|
|
command line. |
|
|
|
|
|
Parameters: |
|
|
reward_model_path (`str` or `None`, *optional*, defaults to `None`): |
|
|
Path to the reward model. Either `judge` or `reward_model_path` must be set, but not both. |
|
|
judge (`str` or `None`, *optional*, defaults to `None`): |
|
|
Name of the judge to use. Either `judge` or `reward_model_path` must be set, but not both. |
|
|
max_new_tokens (`int`, *optional*, defaults to `64`): |
|
|
Maximum number of tokens to generate per completion. |
|
|
max_length (`int`, *optional*, defaults to `256`): |
|
|
Maximum total length of the sequence (prompt + completion) used to compute log probabilities. If the |
|
|
sequence exceeds this limit, the leftmost tokens will be truncated to preserve as much of the completion as |
|
|
possible. |
|
|
temperature (`float`, *optional*, defaults to `0.9`): |
|
|
Temperature for sampling. The higher the temperature, the more random the completions. |
|
|
missing_eos_penalty (`float` or `None`, *optional*, defaults to `None`): |
|
|
Penalty applied to the score when the model fails to generate an EOS token. This is useful to encourage to |
|
|
generate completions shorter than the maximum length (`max_new_tokens`). The penalty must be a positive |
|
|
value. This parameter only works when using `reward_funcs` and not when using `judge`. |
|
|
beta (`float` or `list[float]`, *optional*, defaults to `0.1`): |
|
|
Parameter controlling the deviation from the reference model. Higher β means less deviation from the |
|
|
reference model. For the IPO loss (`loss_type="ipo"`), β is the regularization parameter denoted by τ in |
|
|
the [paper](https://huggingface.co/papers/2310.12036). If a list of floats is provided then the β is |
|
|
selected for each new epoch and the last β is used for the rest of the epochs. |
|
|
loss_type (`str`, *optional*, defaults to `"sigmoid"`): |
|
|
Type of loss to use. Possible values are: |
|
|
|
|
|
- `"sigmoid"`: sigmoid loss from the original [DPO](https://huggingface.co/papers/2305.18290) paper. |
|
|
- `"ipo"`: IPO loss from the [IPO](https://huggingface.co/papers/2310.12036) paper. |
|
|
|
|
|
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): |
|
|
Number of processes to use for processing the dataset. |
|
|
disable_dropout (`bool`, *optional*, defaults to `True`): |
|
|
Whether to disable dropout in the model and reference model. |
|
|
|
|
|
> Parameters that control generation |
|
|
|
|
|
top_p (`float`, *optional*, defaults to `1.0`): |
|
|
Float that controls the cumulative probability of the top tokens to consider. Must be in (0, 1]. Set to |
|
|
`1.0` to consider all tokens. |
|
|
top_k (`int` or `None`, *optional*, defaults to `None`): |
|
|
Number of highest probability vocabulary tokens to keep for top-k-filtering. If `None`, top-k-filtering is |
|
|
disabled and all tokens are considered. |
|
|
min_p (`float` or `None`, *optional*, defaults to `None`): |
|
|
Minimum token probability, which will be scaled by the probability of the most likely token. It must be a |
|
|
value between `0.0` and `1.0`. Typical values are in the `0.01-0.2` range. |
|
|
repetition_penalty (`float`, *optional*, defaults to `1.0`): |
|
|
Float that penalizes new tokens based on whether they appear in the prompt and the generated text so far. |
|
|
Values > `1.0` encourage the model to use new tokens, while values < `1.0` encourage the model to repeat |
|
|
tokens. |
|
|
use_transformers_paged (`bool`, *optional*, defaults to `False`): |
|
|
Whether to use the `transformers` paged implementation for generation. If set to `True`, the `transformers` |
|
|
paged implementation will be used for generation instead of the default padded implementation. This |
|
|
parameter is only effective when `use_vllm` is set to `False`. |
|
|
cache_implementation (`str` or `None`, *optional*, defaults to `None`): |
|
|
Implementation of the cache method for faster generation when `use_vllm` is set to `False`. |
|
|
generation_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): |
|
|
Additional keyword arguments to pass to `GenerationConfig` (if using transformers) or `SamplingParams` (if |
|
|
using vLLM) when sampling completions. This can be used to further customize the generation behavior, such |
|
|
as setting `supress_tokens`, `num_beams`, etc. If it contains keys that conflict with the other generation |
|
|
parameters (like `min_p`, `top_p`, etc.), they will override them. |
|
|
|
|
|
> Parameters that control generation acceleration powered by vLLM |
|
|
|
|
|
use_vllm (`bool`, *optional*, defaults to `False`): |
|
|
Whether to use vLLM for generating completions. If set to `True`, the trainer will use vLLM for generation |
|
|
instead of the default model.generate(). Requires `vllm` to be installed. |
|
|
vllm_model_impl (`str`, *optional*, defaults to `"vllm"`): |
|
|
Model implementation to use for vLLM. Must be one of `"transformers"` or `"vllm"`. `"transformers"`: Use |
|
|
the `transformers` backend for model implementation. `"vllm"`: Use the `vllm` library for model |
|
|
implementation. |
|
|
vllm_mode (`str`, *optional*, defaults to `"server"`): |
|
|
Mode to use for vLLM integration when `use_vllm` is set to `True`. Must be one of `"server"` or |
|
|
`"colocate"`. |
|
|
|
|
|
- `"server"`: The trainer will send generation requests to a separate vLLM server. Make sure a TRL vLLM |
|
|
server is running (start with `trl vllm-serve`). |
|
|
- `"colocate"`: vLLM will run in the same process and share the training GPUs. This avoids the need for a |
|
|
separate server but may cause resource contention with training. |
|
|
vllm_guided_decoding_regex (`str` or `None`, *optional*, defaults to `None`): |
|
|
Regex for vLLM guided decoding. If `None` (default), guided decoding is disabled. |
|
|
|
|
|
> Parameters that control the vLLM server (only used when `vllm_mode` is `"server"`) |
|
|
|
|
|
vllm_server_base_url (`str` or `None`, *optional*, defaults to `None`): |
|
|
Base URL for the vLLM server (e.g., `"http://localhost:8000"`). If provided, `vllm_server_host` and |
|
|
`vllm_server_port` are ignored. |
|
|
vllm_server_host (`str`, *optional*, defaults to `"0.0.0.0"`): |
|
|
Host of the vLLM server to connect to. Ignored if `vllm_server_base_url` is provided. |
|
|
vllm_server_port (`int`, *optional*, defaults to `8000`): |
|
|
Port of the vLLM server to connect to. Ignored if `vllm_server_base_url` is provided. |
|
|
vllm_server_timeout (`float`, *optional*, defaults to `240.0`): |
|
|
Total timeout duration in seconds to wait for the vLLM server to be up. If the server is not up after the |
|
|
timeout, a `ConnectionError` is raised. |
|
|
|
|
|
> Parameters that control colocated vLLM execution (only used when `vllm_mode` is `"colocate"`) |
|
|
|
|
|
vllm_gpu_memory_utilization (`float`, *optional*, defaults to `0.55`): |
|
|
Control the GPU memory utilization for vLLM. This setting only applies when `vllm_mode` is set to |
|
|
`"colocate"`. If you are using `vllm_mode="server"`, this parameter must be passed separately when |
|
|
launching the vLLM server via the `--vllm_gpu_memory_utilization` flag. |
|
|
vllm_tensor_parallel_size (`int`, *optional*, defaults to `1`): |
|
|
Control the tensor parallel size for vLLM. This setting only applies when `vllm_mode` is set to |
|
|
`"colocate"`. If you are using `vllm_mode="server"`, this parameter must be passed separately when |
|
|
launching the vLLM server via the `--vllm_tensor_parallel_size` flag. |
|
|
|
|
|
> Other parameters |
|
|
|
|
|
ds3_gather_for_generation (`bool`, *optional*, defaults to `True`): |
|
|
This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation, |
|
|
improving generation speed. However, disabling this option allows training models that exceed the VRAM |
|
|
capacity of a single GPU, albeit at the cost of slower generation. Disabling this option is not compatible |
|
|
with vLLM generation. |
|
|
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): |
|
|
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model from a |
|
|
string. |
|
|
|
|
|
""" |
|
|
vllm_sampling_params: Optional[Any] = field( |
|
|
default = None, |
|
|
metadata = {'help': 'vLLM SamplingParams'}, |
|
|
) |
|
|
unsloth_num_chunks : Optional[int] = field( |
|
|
default = -1, |
|
|
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, |
|
|
) |
|
|
max_seq_length : Optional[int] = field( |
|
|
default = None, |
|
|
metadata = {'help': 'Maximum sequence length to truncate to.'}, |
|
|
) |
|
|
def __init__( |
|
|
self, |
|
|
output_dir = None, |
|
|
overwrite_output_dir = None, |
|
|
do_train = False, |
|
|
do_eval = False, |
|
|
do_predict = False, |
|
|
eval_strategy = 'no', |
|
|
prediction_loss_only = False, |
|
|
per_device_train_batch_size = 4, |
|
|
per_device_eval_batch_size = 4, |
|
|
per_gpu_train_batch_size = None, |
|
|
per_gpu_eval_batch_size = None, |
|
|
gradient_accumulation_steps = 2, |
|
|
eval_accumulation_steps = 2, |
|
|
eval_delay = 0, |
|
|
torch_empty_cache_steps = 250, |
|
|
learning_rate = 5e-05, |
|
|
weight_decay = 0.01, |
|
|
adam_beta1 = 0.9, |
|
|
adam_beta2 = 0.999, |
|
|
adam_epsilon = 1e-08, |
|
|
max_grad_norm = 1.0, |
|
|
num_train_epochs = 3.0, |
|
|
max_steps = -1, |
|
|
lr_scheduler_type = 'linear', |
|
|
warmup_ratio = 0.1, |
|
|
warmup_steps = 0, |
|
|
log_level = 'passive', |
|
|
log_level_replica = 'warning', |
|
|
log_on_each_node = True, |
|
|
logging_dir = None, |
|
|
logging_strategy = 'steps', |
|
|
logging_first_step = False, |
|
|
logging_steps = 1, |
|
|
logging_nan_inf_filter = False, |
|
|
save_strategy = 'steps', |
|
|
save_steps = 500, |
|
|
save_total_limit = None, |
|
|
save_safetensors = True, |
|
|
save_on_each_node = False, |
|
|
save_only_model = False, |
|
|
restore_callback_states_from_checkpoint = False, |
|
|
no_cuda = False, |
|
|
use_cpu = False, |
|
|
use_mps_device = False, |
|
|
seed = 3407, |
|
|
data_seed = 3407, |
|
|
jit_mode_eval = False, |
|
|
use_ipex = False, |
|
|
bf16 = False, |
|
|
fp16 = False, |
|
|
fp16_opt_level = 'O1', |
|
|
half_precision_backend = 'auto', |
|
|
bf16_full_eval = False, |
|
|
fp16_full_eval = False, |
|
|
tf32 = None, |
|
|
local_rank = -1, |
|
|
ddp_backend = None, |
|
|
tpu_num_cores = None, |
|
|
tpu_metrics_debug = False, |
|
|
debug = '', |
|
|
dataloader_drop_last = False, |
|
|
eval_steps = None, |
|
|
dataloader_num_workers = 0, |
|
|
dataloader_prefetch_factor = None, |
|
|
past_index = -1, |
|
|
run_name = None, |
|
|
disable_tqdm = None, |
|
|
remove_unused_columns = True, |
|
|
label_names = None, |
|
|
load_best_model_at_end = False, |
|
|
metric_for_best_model = None, |
|
|
greater_is_better = None, |
|
|
ignore_data_skip = False, |
|
|
fsdp = '', |
|
|
fsdp_min_num_params = 0, |
|
|
fsdp_config = None, |
|
|
fsdp_transformer_layer_cls_to_wrap = None, |
|
|
accelerator_config = None, |
|
|
parallelism_config = None, |
|
|
deepspeed = None, |
|
|
label_smoothing_factor = 0.0, |
|
|
optim = 'adamw_8bit', |
|
|
optim_args = None, |
|
|
adafactor = False, |
|
|
group_by_length = False, |
|
|
length_column_name = 'length', |
|
|
report_to = None, |
|
|
ddp_find_unused_parameters = None, |
|
|
ddp_bucket_cap_mb = None, |
|
|
ddp_broadcast_buffers = None, |
|
|
dataloader_pin_memory = True, |
|
|
dataloader_persistent_workers = False, |
|
|
skip_memory_metrics = True, |
|
|
use_legacy_prediction_loop = False, |
|
|
push_to_hub = False, |
|
|
resume_from_checkpoint = None, |
|
|
hub_model_id = None, |
|
|
hub_strategy = 'every_save', |
|
|
hub_token = None, |
|
|
hub_private_repo = None, |
|
|
hub_always_push = False, |
|
|
hub_revision = None, |
|
|
gradient_checkpointing = True, |
|
|
gradient_checkpointing_kwargs = None, |
|
|
include_inputs_for_metrics = False, |
|
|
eval_do_concat_batches = True, |
|
|
fp16_backend = 'auto', |
|
|
push_to_hub_model_id = None, |
|
|
push_to_hub_organization = None, |
|
|
push_to_hub_token = None, |
|
|
mp_parameters = '', |
|
|
auto_find_batch_size = False, |
|
|
full_determinism = False, |
|
|
torchdynamo = None, |
|
|
ray_scope = 'last', |
|
|
ddp_timeout = 1800, |
|
|
torch_compile = False, |
|
|
torch_compile_backend = None, |
|
|
torch_compile_mode = None, |
|
|
include_tokens_per_second = False, |
|
|
include_num_input_tokens_seen = False, |
|
|
neftune_noise_alpha = None, |
|
|
optim_target_modules = None, |
|
|
batch_eval_metrics = False, |
|
|
eval_on_start = False, |
|
|
use_liger_kernel = False, |
|
|
liger_kernel_config = None, |
|
|
eval_use_gather_object = False, |
|
|
average_tokens_across_devices = True, |
|
|
reward_model_path = None, |
|
|
judge = None, |
|
|
max_new_tokens = 64, |
|
|
max_length = 512, |
|
|
temperature = 0.9, |
|
|
top_p = 1.0, |
|
|
top_k = None, |
|
|
min_p = None, |
|
|
repetition_penalty = 1.0, |
|
|
generation_kwargs = {}, |
|
|
use_transformers_paged = False, |
|
|
cache_implementation = None, |
|
|
missing_eos_penalty = None, |
|
|
loss_type = 'sigmoid', |
|
|
disable_dropout = True, |
|
|
use_vllm = False, |
|
|
vllm_model_impl = 'vllm', |
|
|
vllm_guided_decoding_regex = None, |
|
|
vllm_gpu_memory_utilization = 0.55, |
|
|
vllm_mode = 'colocate', |
|
|
vllm_server_base_url = None, |
|
|
vllm_server_host = '0.0.0.0', |
|
|
vllm_server_port = 8000, |
|
|
vllm_server_timeout = 240.0, |
|
|
vllm_tensor_parallel_size = 1, |
|
|
ds3_gather_for_generation = True, |
|
|
model_init_kwargs = None, |
|
|
reward_weights = None, |
|
|
dataset_num_proc = None, |
|
|
gpu_memory_utilization = None, |
|
|
vllm_sampling_params = None, |
|
|
unsloth_num_chunks = -1, |
|
|
max_seq_length = None, |
|
|
**kwargs, |
|
|
): |
|
|
if learning_rate < 1e-7: print(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') |
|
|
if learning_rate > 1: print(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') |
|
|
if output_dir is None and save_strategy == 'steps' and save_steps == 500: |
|
|
output_dir = 'unsloth_training_checkpoints' |
|
|
save_strategy = 'no' |
|
|
if dataset_num_proc is None: |
|
|
from multiprocessing import cpu_count |
|
|
dataset_num_proc = max(cpu_count()+4, 2) |
|
|
if temperature <= 0: |
|
|
raise MathError('Unsloth: Please set a positive non-zero temperature since your results will be wrong.') |
|
|
elif temperature >= 10: |
|
|
raise MathError('Unsloth: Please set a positive non-zero temperature less than 10, since sampling will be quite erratic.') |
|
|
|
|
|
|
|
|
super().__init__( |
|
|
output_dir = output_dir, |
|
|
overwrite_output_dir = overwrite_output_dir, |
|
|
do_train = do_train, |
|
|
do_eval = do_eval, |
|
|
do_predict = do_predict, |
|
|
eval_strategy = eval_strategy, |
|
|
prediction_loss_only = prediction_loss_only, |
|
|
per_device_train_batch_size = per_device_train_batch_size, |
|
|
per_device_eval_batch_size = per_device_eval_batch_size, |
|
|
per_gpu_train_batch_size = per_gpu_train_batch_size, |
|
|
per_gpu_eval_batch_size = per_gpu_eval_batch_size, |
|
|
gradient_accumulation_steps = gradient_accumulation_steps, |
|
|
eval_accumulation_steps = eval_accumulation_steps, |
|
|
eval_delay = eval_delay, |
|
|
torch_empty_cache_steps = torch_empty_cache_steps, |
|
|
learning_rate = learning_rate, |
|
|
weight_decay = weight_decay, |
|
|
adam_beta1 = adam_beta1, |
|
|
adam_beta2 = adam_beta2, |
|
|
adam_epsilon = adam_epsilon, |
|
|
max_grad_norm = max_grad_norm, |
|
|
num_train_epochs = num_train_epochs, |
|
|
max_steps = max_steps, |
|
|
lr_scheduler_type = lr_scheduler_type, |
|
|
warmup_ratio = warmup_ratio, |
|
|
warmup_steps = warmup_steps, |
|
|
log_level = log_level, |
|
|
log_level_replica = log_level_replica, |
|
|
log_on_each_node = log_on_each_node, |
|
|
logging_dir = logging_dir, |
|
|
logging_strategy = logging_strategy, |
|
|
logging_first_step = logging_first_step, |
|
|
logging_steps = logging_steps, |
|
|
logging_nan_inf_filter = logging_nan_inf_filter, |
|
|
save_strategy = save_strategy, |
|
|
save_steps = save_steps, |
|
|
save_total_limit = save_total_limit, |
|
|
save_safetensors = save_safetensors, |
|
|
save_on_each_node = save_on_each_node, |
|
|
save_only_model = save_only_model, |
|
|
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, |
|
|
no_cuda = no_cuda, |
|
|
use_cpu = use_cpu, |
|
|
use_mps_device = use_mps_device, |
|
|
seed = seed, |
|
|
data_seed = data_seed, |
|
|
jit_mode_eval = jit_mode_eval, |
|
|
use_ipex = use_ipex, |
|
|
bf16 = bf16, |
|
|
fp16 = fp16, |
|
|
fp16_opt_level = fp16_opt_level, |
|
|
half_precision_backend = half_precision_backend, |
|
|
bf16_full_eval = bf16_full_eval, |
|
|
fp16_full_eval = fp16_full_eval, |
|
|
tf32 = tf32, |
|
|
local_rank = local_rank, |
|
|
ddp_backend = ddp_backend, |
|
|
tpu_num_cores = tpu_num_cores, |
|
|
tpu_metrics_debug = tpu_metrics_debug, |
|
|
debug = debug, |
|
|
dataloader_drop_last = dataloader_drop_last, |
|
|
eval_steps = eval_steps, |
|
|
dataloader_num_workers = dataloader_num_workers, |
|
|
dataloader_prefetch_factor = dataloader_prefetch_factor, |
|
|
past_index = past_index, |
|
|
run_name = run_name, |
|
|
disable_tqdm = disable_tqdm, |
|
|
remove_unused_columns = remove_unused_columns, |
|
|
label_names = label_names, |
|
|
load_best_model_at_end = load_best_model_at_end, |
|
|
metric_for_best_model = metric_for_best_model, |
|
|
greater_is_better = greater_is_better, |
|
|
ignore_data_skip = ignore_data_skip, |
|
|
fsdp = fsdp, |
|
|
fsdp_min_num_params = fsdp_min_num_params, |
|
|
fsdp_config = fsdp_config, |
|
|
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, |
|
|
accelerator_config = accelerator_config, |
|
|
parallelism_config = parallelism_config, |
|
|
deepspeed = deepspeed, |
|
|
label_smoothing_factor = label_smoothing_factor, |
|
|
optim = optim, |
|
|
optim_args = optim_args, |
|
|
adafactor = adafactor, |
|
|
group_by_length = group_by_length, |
|
|
length_column_name = length_column_name, |
|
|
report_to = report_to, |
|
|
ddp_find_unused_parameters = ddp_find_unused_parameters, |
|
|
ddp_bucket_cap_mb = ddp_bucket_cap_mb, |
|
|
ddp_broadcast_buffers = ddp_broadcast_buffers, |
|
|
dataloader_pin_memory = dataloader_pin_memory, |
|
|
dataloader_persistent_workers = dataloader_persistent_workers, |
|
|
skip_memory_metrics = skip_memory_metrics, |
|
|
use_legacy_prediction_loop = use_legacy_prediction_loop, |
|
|
push_to_hub = push_to_hub, |
|
|
resume_from_checkpoint = resume_from_checkpoint, |
|
|
hub_model_id = hub_model_id, |
|
|
hub_strategy = hub_strategy, |
|
|
hub_token = hub_token, |
|
|
hub_private_repo = hub_private_repo, |
|
|
hub_always_push = hub_always_push, |
|
|
hub_revision = hub_revision, |
|
|
gradient_checkpointing = gradient_checkpointing, |
|
|
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, |
|
|
include_inputs_for_metrics = include_inputs_for_metrics, |
|
|
eval_do_concat_batches = eval_do_concat_batches, |
|
|
fp16_backend = fp16_backend, |
|
|
push_to_hub_model_id = push_to_hub_model_id, |
|
|
push_to_hub_organization = push_to_hub_organization, |
|
|
push_to_hub_token = push_to_hub_token, |
|
|
mp_parameters = mp_parameters, |
|
|
auto_find_batch_size = auto_find_batch_size, |
|
|
full_determinism = full_determinism, |
|
|
torchdynamo = torchdynamo, |
|
|
ray_scope = ray_scope, |
|
|
ddp_timeout = ddp_timeout, |
|
|
torch_compile = torch_compile, |
|
|
torch_compile_backend = torch_compile_backend, |
|
|
torch_compile_mode = torch_compile_mode, |
|
|
include_tokens_per_second = include_tokens_per_second, |
|
|
include_num_input_tokens_seen = include_num_input_tokens_seen, |
|
|
neftune_noise_alpha = neftune_noise_alpha, |
|
|
optim_target_modules = optim_target_modules, |
|
|
batch_eval_metrics = batch_eval_metrics, |
|
|
eval_on_start = eval_on_start, |
|
|
use_liger_kernel = use_liger_kernel, |
|
|
liger_kernel_config = liger_kernel_config, |
|
|
eval_use_gather_object = eval_use_gather_object, |
|
|
average_tokens_across_devices = average_tokens_across_devices, |
|
|
reward_model_path = reward_model_path, |
|
|
judge = judge, |
|
|
max_new_tokens = max_new_tokens, |
|
|
max_length = max_length, |
|
|
temperature = temperature, |
|
|
top_p = top_p, |
|
|
top_k = top_k, |
|
|
min_p = min_p, |
|
|
repetition_penalty = repetition_penalty, |
|
|
generation_kwargs = generation_kwargs, |
|
|
use_transformers_paged = use_transformers_paged, |
|
|
cache_implementation = cache_implementation, |
|
|
missing_eos_penalty = missing_eos_penalty, |
|
|
loss_type = loss_type, |
|
|
disable_dropout = disable_dropout, |
|
|
use_vllm = use_vllm, |
|
|
vllm_model_impl = vllm_model_impl, |
|
|
vllm_guided_decoding_regex = vllm_guided_decoding_regex, |
|
|
vllm_gpu_memory_utilization = vllm_gpu_memory_utilization, |
|
|
vllm_mode = vllm_mode, |
|
|
vllm_server_base_url = vllm_server_base_url, |
|
|
vllm_server_host = vllm_server_host, |
|
|
vllm_server_port = vllm_server_port, |
|
|
vllm_server_timeout = vllm_server_timeout, |
|
|
vllm_tensor_parallel_size = vllm_tensor_parallel_size, |
|
|
ds3_gather_for_generation = ds3_gather_for_generation, |
|
|
model_init_kwargs = model_init_kwargs, |
|
|
reward_weights = reward_weights, |
|
|
dataset_num_proc = dataset_num_proc, |
|
|
gpu_memory_utilization = gpu_memory_utilization,**kwargs) |
|
|
self.vllm_sampling_params = vllm_sampling_params |
|
|
self.unsloth_num_chunks = unsloth_num_chunks |
|
|
self.max_seq_length = max_seq_length |
|
|
pass |
|
|
|
|
|
class _UnslothOnlineDPOTrainer(Trainer): |
|
|
r"""""" |
|
|
|
|
|
_tag_names = ["trl", "online-dpo"] |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
model: Union[PreTrainedModel, nn.Module, str], |
|
|
ref_model: Union[PreTrainedModel, nn.Module, None] = None, |
|
|
reward_funcs: Optional[Union[RewardFunc, list[RewardFunc]]] = None, |
|
|
judge: Optional[BasePairwiseJudge] = None, |
|
|
args: Optional[OnlineDPOConfig] = None, |
|
|
data_collator: Optional[DataCollator] = None, |
|
|
train_dataset: Optional[Union[Dataset, IterableDataset]] = None, |
|
|
eval_dataset: Optional[Union[Dataset, IterableDataset, dict[str, Union[Dataset, IterableDataset]]]] = None, |
|
|
processing_class: Optional[Union[PreTrainedTokenizerBase, ProcessorMixin]] = None, |
|
|
reward_processing_classes: Optional[Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]] = None, |
|
|
peft_config: Optional["PeftConfig"] = None, |
|
|
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, |
|
|
callbacks: Optional[list[TrainerCallback]] = None, |
|
|
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), |
|
|
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, |
|
|
|
|
|
reward_model: Optional[Union[PreTrainedModel, nn.Module]] = None, |
|
|
reward_processing_class: Optional[PreTrainedTokenizerBase] = None, |
|
|
) -> None: |
|
|
|
|
|
if hasattr(model, 'vllm_engine') and hasattr(args, 'use_vllm'): |
|
|
if (getattr(args, 'use_vllm', False) == False): |
|
|
args.use_vllm = True |
|
|
if ref_model is model: |
|
|
raise ValueError( |
|
|
"`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the " |
|
|
"same as `model`, either omit the `ref_model` argument or pass `None`." |
|
|
) |
|
|
|
|
|
self.ref_model = ref_model |
|
|
|
|
|
|
|
|
if reward_model is not None: |
|
|
warnings.warn( |
|
|
"The `reward_model` parameter is deprecated and will be removed in version 0.25.0. " |
|
|
"Please use `reward_funcs` instead. For example, change `reward_model=model` to `reward_funcs=model`.", |
|
|
) |
|
|
|
|
|
if reward_funcs is None: |
|
|
reward_funcs = reward_model |
|
|
else: |
|
|
warnings.warn( |
|
|
"Both `reward_model` and `reward_funcs` are provided. Using `reward_funcs` and ignoring " |
|
|
"`reward_model`.", |
|
|
) |
|
|
|
|
|
if reward_processing_class is not None: |
|
|
warnings.warn( |
|
|
"The `reward_processing_class` parameter is deprecated and will be removed in version 0.25.0. " |
|
|
"Please use `reward_processing_classes` instead. For example, change " |
|
|
"`reward_processing_class=tokenizer` to `reward_processing_classes=tokenizer`.", |
|
|
) |
|
|
|
|
|
if reward_processing_classes is None: |
|
|
reward_processing_classes = reward_processing_class |
|
|
else: |
|
|
warnings.warn( |
|
|
"Both `reward_processing_class` and `reward_processing_classes` are provided. Using " |
|
|
"`reward_processing_classes` and ignoring `reward_processing_class`.", |
|
|
) |
|
|
|
|
|
|
|
|
reward_configs = sum(x is not None for x in [judge, reward_funcs]) |
|
|
if reward_configs == 0: |
|
|
raise ValueError("One of `judge` or `reward_funcs` must be provided.") |
|
|
elif reward_configs > 1: |
|
|
if judge is not None: |
|
|
logger.warning( |
|
|
"Both `judge` and `reward_funcs` are provided. Using `judge` and ignoring `reward_funcs`.", |
|
|
UserWarning, |
|
|
) |
|
|
reward_funcs = None |
|
|
self.judge = judge |
|
|
|
|
|
|
|
|
if reward_funcs is not None: |
|
|
if not isinstance(reward_funcs, list): |
|
|
reward_funcs = [reward_funcs] |
|
|
self.reward_func_names = [] |
|
|
|
|
|
|
|
|
model_init_kwargs = args.model_init_kwargs or {} |
|
|
for i, reward_func in enumerate(reward_funcs): |
|
|
if isinstance(reward_func, str): |
|
|
|
|
|
reward_funcs[i] = AutoModelForSequenceClassification.from_pretrained( |
|
|
reward_func, num_labels=1, **model_init_kwargs |
|
|
) |
|
|
if isinstance(reward_funcs[i], nn.Module): |
|
|
self.reward_func_names.append(reward_funcs[i].config._name_or_path.split("/")[-1]) |
|
|
else: |
|
|
self.reward_func_names.append(reward_funcs[i].__name__) |
|
|
self.reward_funcs = reward_funcs |
|
|
|
|
|
|
|
|
if reward_processing_classes is None: |
|
|
reward_processing_classes = [None] * len(reward_funcs) |
|
|
elif not isinstance(reward_processing_classes, list): |
|
|
reward_processing_classes = [reward_processing_classes] |
|
|
else: |
|
|
if len(reward_processing_classes) != len(reward_funcs): |
|
|
raise ValueError( |
|
|
"The number of reward processing classes must match the number of reward functions." |
|
|
) |
|
|
|
|
|
self.reward_processing_classes = [] |
|
|
for reward_processing_class_i, reward_func in zip(reward_processing_classes, reward_funcs): |
|
|
if isinstance(reward_func, PreTrainedModel): |
|
|
if reward_processing_class_i is None: |
|
|
reward_processing_class_i = AutoTokenizer.from_pretrained(reward_func.config._name_or_path) |
|
|
if reward_processing_class_i.pad_token_id is None: |
|
|
reward_processing_class_i.pad_token = reward_processing_class_i.eos_token |
|
|
|
|
|
reward_func.config.pad_token_id = reward_processing_class_i.pad_token_id |
|
|
self.reward_processing_classes.append(reward_processing_class_i) |
|
|
else: |
|
|
self.reward_funcs = None |
|
|
self.reward_func_names = [] |
|
|
self.reward_processing_classes = [] |
|
|
|
|
|
|
|
|
if reward_funcs is not None: |
|
|
if args.reward_weights is not None: |
|
|
if len(args.reward_weights) != len(self.reward_funcs): |
|
|
raise ValueError( |
|
|
f"Number of reward weights ({len(args.reward_weights)}) must match number of reward " |
|
|
f"functions ({len(self.reward_funcs)})" |
|
|
) |
|
|
self.reward_weights = torch.tensor(args.reward_weights, dtype=torch.float32) |
|
|
else: |
|
|
self.reward_weights = torch.ones(len(self.reward_funcs), dtype=torch.float32) |
|
|
else: |
|
|
self.reward_weights = None |
|
|
|
|
|
if args.missing_eos_penalty is not None and reward_funcs is None and judge is None: |
|
|
|
|
|
if reward_model is not None: |
|
|
logger.warning( |
|
|
"The `missing_eos_penalty` parameter is deprecated when used with the deprecated `reward_model` parameter. " |
|
|
"Please use `reward_funcs` instead of `reward_model` to continue using this feature.", |
|
|
DeprecationWarning, |
|
|
stacklevel=2, |
|
|
) |
|
|
else: |
|
|
raise ValueError("`missing_eos_penalty` is only supported when `reward_funcs` is provided.") |
|
|
|
|
|
if args is None: |
|
|
raise ValueError("`args` must be provided.") |
|
|
|
|
|
|
|
|
if processing_class is None: |
|
|
raise ValueError("`processing_class` must be provided.") |
|
|
|
|
|
model_init_kwargs = args.model_init_kwargs or {} |
|
|
if isinstance(model, str): |
|
|
model_id = model |
|
|
|
|
|
|
|
|
dtype = model_init_kwargs.get("dtype") |
|
|
if isinstance(dtype, torch.dtype) or dtype == "auto" or dtype is None: |
|
|
pass |
|
|
elif isinstance(dtype, str): |
|
|
dtype = getattr(torch, dtype) |
|
|
model_init_kwargs["dtype"] = dtype |
|
|
else: |
|
|
raise ValueError( |
|
|
"Invalid `dtype` passed to `OnlineDPOConfig`. Expected either 'auto' or a string " |
|
|
f"representing a `torch.dtype` (e.g., 'float32'), but got {dtype}." |
|
|
) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, **model_init_kwargs) |
|
|
else: |
|
|
if args.model_init_kwargs is not None: |
|
|
raise ValueError( |
|
|
"You passed `model_init_kwargs` to the `OnlineDPOConfig`, but your model is already instantiated. " |
|
|
"This argument can only be used when the `model` argument is a string." |
|
|
) |
|
|
self.is_encoder_decoder = model.config.is_encoder_decoder |
|
|
self.is_vision_model = model.config.model_type in MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES.keys() |
|
|
|
|
|
if False: |
|
|
model = prepare_peft_model(model, peft_config, args) |
|
|
|
|
|
|
|
|
if args.gradient_checkpointing: |
|
|
model = self._enable_gradient_checkpointing(model, args) |
|
|
|
|
|
|
|
|
if args.disable_dropout: |
|
|
disable_dropout_in_model(model) |
|
|
if self.ref_model is not None: |
|
|
disable_dropout_in_model(self.ref_model) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ref_model is None: |
|
|
if False: |
|
|
self.ref_model = create_reference_model(model) |
|
|
else: |
|
|
self.ref_model = None |
|
|
else: |
|
|
self.ref_model = ref_model |
|
|
self.ref_model.eval() |
|
|
|
|
|
|
|
|
if reward_funcs is not None: |
|
|
for reward_func in reward_funcs: |
|
|
if isinstance(reward_func, PreTrainedModel): |
|
|
reward_func.eval() |
|
|
|
|
|
self.max_length = args.max_length |
|
|
|
|
|
self.stats = { |
|
|
"objective/kl": [], |
|
|
"objective/entropy": [], |
|
|
"objective/non_score_reward": [], |
|
|
"rewards/chosen": [], |
|
|
"rewards/rejected": [], |
|
|
"rewards/accuracies": [], |
|
|
"rewards/margins": [], |
|
|
"logps/chosen": [], |
|
|
"logps/rejected": [], |
|
|
"val/contain_eos_token": [], |
|
|
"beta": [], |
|
|
} |
|
|
if self.reward_funcs is not None: |
|
|
self.stats["objective/rlhf_reward"] = [] |
|
|
self.stats["objective/scores_margin"] = [] |
|
|
self.stats["objective/scores"] = [] |
|
|
|
|
|
|
|
|
self.use_vllm = args.use_vllm |
|
|
self.num_generations = 2 |
|
|
self.temperature = args.temperature |
|
|
self.top_p = args.top_p |
|
|
self.top_k = args.top_k |
|
|
self.min_p = args.min_p |
|
|
self.repetition_penalty = args.repetition_penalty |
|
|
self.use_transformers_paged = args.use_transformers_paged |
|
|
self.vllm_mode = args.vllm_mode if args.use_vllm else None |
|
|
self.vllm_gpu_memory_utilization = args.vllm_gpu_memory_utilization |
|
|
self.vllm_tensor_parallel_size = args.vllm_tensor_parallel_size |
|
|
self.vllm_model_impl = args.vllm_model_impl |
|
|
|
|
|
|
|
|
if isinstance(processing_class, ProcessorMixin): |
|
|
tokenizer = processing_class.tokenizer |
|
|
elif isinstance(processing_class, PreTrainedTokenizerBase): |
|
|
tokenizer = processing_class |
|
|
else: |
|
|
raise TypeError("The `processing_class` must be either a `PreTrainedTokenizerBase` or a `ProcessorMixin`") |
|
|
|
|
|
if tokenizer.pad_token is None: |
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
self.pad_token = tokenizer.pad_token |
|
|
self.pad_token_id = tokenizer.pad_token_id |
|
|
self.eos_token_id = tokenizer.eos_token_id |
|
|
|
|
|
|
|
|
self.image_token_id = getattr(processing_class, "image_token_id", None) |
|
|
self.vision_start_token_id = getattr(processing_class, "vision_start_token_id", None) |
|
|
self.vision_end_token_id = getattr(processing_class, "vision_end_token_id", None) |
|
|
|
|
|
self.image_token = None |
|
|
if self.image_token_id is not None: |
|
|
self.image_token = tokenizer.decode([self.image_token_id]) |
|
|
|
|
|
|
|
|
if data_collator is None: |
|
|
data_collator = DPODataCollatorWithPadding(pad_token_id=self.pad_token_id) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.warnings_issued["estimate_tokens"] = True |
|
|
|
|
|
super().__init__( |
|
|
model=model, |
|
|
args=args, |
|
|
data_collator=data_collator, |
|
|
train_dataset=train_dataset, |
|
|
eval_dataset=eval_dataset, |
|
|
processing_class=processing_class, |
|
|
compute_metrics=compute_metrics, |
|
|
callbacks=callbacks, |
|
|
optimizers=optimizers, |
|
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics, |
|
|
) |
|
|
|
|
|
|
|
|
if hasattr(self.model, "add_model_tags"): |
|
|
self.model.add_model_tags(self._tag_names) |
|
|
|
|
|
self._beta = args.beta |
|
|
|
|
|
|
|
|
if self.use_vllm: |
|
|
if not is_vllm_available(): |
|
|
raise ImportError( |
|
|
"vLLM is not available and `use_vllm` is set to True. Please install vLLM with " |
|
|
"`pip install vllm` to use it." |
|
|
) |
|
|
|
|
|
if self.vllm_mode == "server": |
|
|
if self.accelerator.is_main_process: |
|
|
if args.vllm_server_base_url is not None: |
|
|
base_url = args.vllm_server_base_url |
|
|
else: |
|
|
base_url = f"http://{args.vllm_server_host}:{args.vllm_server_port}" |
|
|
self.vllm_client = VLLMClient(base_url=base_url, connection_timeout=args.vllm_server_timeout) |
|
|
self.vllm_client.init_communicator(device=torch.cuda.current_device()) |
|
|
else: |
|
|
self.vllm_client = None |
|
|
elif self.vllm_mode == "colocate": |
|
|
vllm_kwargs = { |
|
|
"model": model.name_or_path, |
|
|
"tensor_parallel_size": self.vllm_tensor_parallel_size, |
|
|
"gpu_memory_utilization": self.vllm_gpu_memory_utilization, |
|
|
"model_impl": self.vllm_model_impl, |
|
|
"max_num_seqs": self.args.per_device_train_batch_size * self.vllm_tensor_parallel_size, |
|
|
"max_model_len": args.max_length + args.max_new_tokens, |
|
|
"distributed_executor_backend": "external_launcher", |
|
|
"seed": self.accelerator.process_index // self.vllm_tensor_parallel_size, |
|
|
"max_num_batched_tokens": 4096, |
|
|
} |
|
|
os.environ["RANK"] = str(self.accelerator.process_index) |
|
|
os.environ["LOCAL_RANK"] = str(self.accelerator.local_process_index) |
|
|
os.environ["WORLD_SIZE"] = str(self.accelerator.num_processes) |
|
|
os.environ["MASTER_ADDR"] = os.environ.get("MASTER_ADDR", "localhost") |
|
|
os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "12345") |
|
|
|
|
|
self.llm = model.vllm_engine |
|
|
else: |
|
|
raise ValueError(f"vllm_mode must be either 'server' or 'colocate', got '{self.vllm_mode}'.") |
|
|
self.guided_decoding_regex = args.vllm_guided_decoding_regex |
|
|
self._last_loaded_step = -1 |
|
|
generation_params = { |
|
|
"n": 2, |
|
|
"repetition_penalty": self.repetition_penalty, |
|
|
"temperature": self.temperature, |
|
|
"top_p": self.top_p, |
|
|
"top_k": -1 if self.top_k is None else self.top_k, |
|
|
"min_p": 0.0 if self.min_p is None else self.min_p, |
|
|
"max_tokens": args.max_new_tokens, |
|
|
"detokenize": False, |
|
|
} |
|
|
if args.generation_kwargs is not None: |
|
|
generation_params.update(args.generation_kwargs) |
|
|
if self.guided_decoding_regex: |
|
|
generation_params["guided_decoding"] = GuidedDecodingParams(regex=self.guided_decoding_regex) |
|
|
self.generation_config = SamplingParams(**generation_params) |
|
|
self.accelerator.wait_for_everyone() |
|
|
else: |
|
|
|
|
|
generation_kwargs = { |
|
|
"max_new_tokens": args.max_new_tokens, |
|
|
"do_sample": True, |
|
|
"pad_token_id": self.pad_token_id, |
|
|
"bos_token_id": tokenizer.bos_token_id, |
|
|
"eos_token_id": self.eos_token_id, |
|
|
"temperature": self.temperature, |
|
|
"top_k": self.top_k, |
|
|
"top_p": self.top_p, |
|
|
"repetition_penalty": self.repetition_penalty, |
|
|
"use_cache": True if not self.args.gradient_checkpointing else False, |
|
|
} |
|
|
|
|
|
if self.min_p is not None: |
|
|
generation_kwargs["min_p"] = self.min_p |
|
|
if args.generation_kwargs is not None: |
|
|
generation_kwargs.update(args.generation_kwargs) |
|
|
if self.use_transformers_paged: |
|
|
generation_kwargs["max_batch_tokens"] = 512 |
|
|
generation_kwargs["num_blocks"] = 1024 |
|
|
generation_kwargs["block_size"] = 128 |
|
|
|
|
|
generation_kwargs = {k: v for k, v in generation_kwargs.items() if v is not None} |
|
|
self.generation_config = GenerationConfig(**generation_kwargs) |
|
|
|
|
|
if self.is_deepspeed_enabled: |
|
|
if self.ref_model is not None: |
|
|
self.ref_model = prepare_deepspeed( |
|
|
self.ref_model, args.per_device_train_batch_size, args.fp16, args.bf16 |
|
|
) |
|
|
|
|
|
if self.reward_funcs is not None: |
|
|
for i, reward_func in enumerate(self.reward_funcs): |
|
|
if isinstance(reward_func, PreTrainedModel): |
|
|
self.reward_funcs[i] = prepare_deepspeed(reward_func, self.accelerator) |
|
|
else: |
|
|
if self.ref_model is not None: |
|
|
self.ref_model = self.ref_model.to(self.accelerator.device) |
|
|
|
|
|
if self.reward_funcs is not None: |
|
|
for i, reward_func in enumerate(self.reward_funcs): |
|
|
if isinstance(reward_func, PreTrainedModel): |
|
|
|
|
|
self.reward_funcs[i] = self.accelerator.prepare_model( |
|
|
reward_func, evaluation_mode=True, device_placement=True |
|
|
) |
|
|
|
|
|
@property |
|
|
def beta(self): |
|
|
if isinstance(self._beta, list): |
|
|
epoch = self.state.epoch |
|
|
return self._beta[epoch] if epoch < len(self._beta) else self._beta[-1] |
|
|
else: |
|
|
return self._beta |
|
|
|
|
|
@staticmethod |
|
|
def tokenize_row(feature, is_encoder_decoder: bool, tokenizer: PreTrainedTokenizerBase) -> dict[str, Any]: |
|
|
"""Tokenize a single row from a DPO specific dataset.""" |
|
|
if not is_encoder_decoder: |
|
|
batch = tokenizer(feature["prompt"], add_special_tokens=False) |
|
|
|
|
|
if tokenizer.bos_token_id is not None: |
|
|
prompt_len_input_ids = len(batch["input_ids"]) |
|
|
if prompt_len_input_ids == 0 or tokenizer.bos_token_id != batch["input_ids"][0]: |
|
|
batch["input_ids"] = [tokenizer.bos_token_id] + batch["input_ids"] |
|
|
batch["attention_mask"] = [1] + batch["attention_mask"] |
|
|
else: |
|
|
batch = tokenizer(feature["prompt"], add_special_tokens=True) |
|
|
batch = {f"prompt_{key}": value for key, value in batch.items()} |
|
|
return batch |
|
|
|
|
|
|
|
|
@wraps(Trainer.get_train_dataloader) |
|
|
def get_train_dataloader(self) -> DataLoader: |
|
|
if self.train_dataset is None: |
|
|
raise ValueError("Trainer: training requires a train_dataset.") |
|
|
|
|
|
train_dataset = self.train_dataset |
|
|
data_collator = self.data_collator |
|
|
dataloader_params = { |
|
|
"batch_size": self._train_batch_size, |
|
|
"collate_fn": data_collator, |
|
|
"num_workers": self.args.dataloader_num_workers, |
|
|
"pin_memory": self.args.dataloader_pin_memory, |
|
|
"persistent_workers": self.args.dataloader_persistent_workers, |
|
|
} |
|
|
|
|
|
if not isinstance(train_dataset, torch.utils.data.IterableDataset): |
|
|
dataloader_params["sampler"] = self._get_train_sampler() |
|
|
dataloader_params["drop_last"] = self.args.dataloader_drop_last |
|
|
dataloader_params["worker_init_fn"] = seed_worker |
|
|
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor |
|
|
|
|
|
return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params)) |
|
|
|
|
|
|
|
|
@wraps(Trainer.get_eval_dataloader) |
|
|
def get_eval_dataloader(self, eval_dataset: Optional[Union[str, Dataset]] = None) -> DataLoader: |
|
|
if eval_dataset is None and self.eval_dataset is None: |
|
|
raise ValueError("Trainer: evaluation requires an eval_dataset.") |
|
|
|
|
|
|
|
|
|
|
|
dataloader_key = eval_dataset if isinstance(eval_dataset, str) else "eval" |
|
|
if ( |
|
|
hasattr(self, "_eval_dataloaders") |
|
|
and dataloader_key in self._eval_dataloaders |
|
|
and self.args.dataloader_persistent_workers |
|
|
): |
|
|
return self.accelerator.prepare(self._eval_dataloaders[dataloader_key]) |
|
|
|
|
|
eval_dataset = ( |
|
|
self.eval_dataset[eval_dataset] |
|
|
if isinstance(eval_dataset, str) |
|
|
else eval_dataset |
|
|
if eval_dataset is not None |
|
|
else self.eval_dataset |
|
|
) |
|
|
data_collator = self.data_collator |
|
|
|
|
|
dataloader_params = { |
|
|
"batch_size": self.args.eval_batch_size, |
|
|
"collate_fn": data_collator, |
|
|
"num_workers": self.args.dataloader_num_workers, |
|
|
"pin_memory": self.args.dataloader_pin_memory, |
|
|
"persistent_workers": self.args.dataloader_persistent_workers, |
|
|
} |
|
|
|
|
|
if not isinstance(eval_dataset, torch.utils.data.IterableDataset): |
|
|
dataloader_params["sampler"] = self._get_eval_sampler(eval_dataset) |
|
|
dataloader_params["drop_last"] = self.args.dataloader_drop_last |
|
|
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor |
|
|
|
|
|
|
|
|
|
|
|
eval_dataloader = DataLoader(eval_dataset, **dataloader_params) |
|
|
if self.args.dataloader_persistent_workers: |
|
|
if hasattr(self, "_eval_dataloaders"): |
|
|
self._eval_dataloaders[dataloader_key] = eval_dataloader |
|
|
else: |
|
|
self._eval_dataloaders = {dataloader_key: eval_dataloader} |
|
|
|
|
|
return self.accelerator.prepare(eval_dataloader) |
|
|
|
|
|
def _enable_gradient_checkpointing(self, model: PreTrainedModel, args: OnlineDPOConfig) -> PreTrainedModel: |
|
|
"""Enables gradient checkpointing for the model.""" |
|
|
|
|
|
model.config.use_cache = False |
|
|
|
|
|
|
|
|
if is_peft_model(model): |
|
|
model.base_model.gradient_checkpointing_enable() |
|
|
|
|
|
else: |
|
|
model.gradient_checkpointing_enable() |
|
|
|
|
|
gradient_checkpointing_kwargs = args.gradient_checkpointing_kwargs or {} |
|
|
use_reentrant = ( |
|
|
"use_reentrant" not in gradient_checkpointing_kwargs or gradient_checkpointing_kwargs["use_reentrant"] |
|
|
) |
|
|
|
|
|
if use_reentrant: |
|
|
model.enable_input_require_grads() |
|
|
|
|
|
return model |
|
|
|
|
|
def _generate_vllm(self, prompts, images=None): |
|
|
eos_token_id = self.eos_token_id |
|
|
pad_token_id = self.pad_token_id |
|
|
|
|
|
|
|
|
if self.vllm_mode == "server": |
|
|
completion_ids, prompt_ids = self._generate_vllm_server(prompts, images) |
|
|
elif self.vllm_mode == "colocate": |
|
|
completion_ids, prompt_ids = self._generate_vllm_colocate(prompts, images) |
|
|
|
|
|
|
|
|
max_prompt_length = max(len(ids) for ids in prompt_ids) |
|
|
prompt_mask = [[0] * (max_prompt_length - len(ids)) + [1] * len(ids) for ids in prompt_ids] |
|
|
prompt_ids = [[pad_token_id] * (max_prompt_length - len(ids)) + ids for ids in prompt_ids] |
|
|
max_tokens = self.generation_config.max_tokens |
|
|
completion_mask = [[1] * len(ids) + [0] * (max_tokens - len(ids)) for ids in completion_ids] |
|
|
completion_ids = [ |
|
|
ids + [eos_token_id] if ids[-1] != eos_token_id and len(ids) < max_tokens else ids |
|
|
for ids in completion_ids |
|
|
] |
|
|
completion_ids = [ids + [pad_token_id] * (max_tokens - len(ids)) for ids in completion_ids] |
|
|
|
|
|
|
|
|
prompt_ids = torch.tensor(prompt_ids, device=self.accelerator.device) |
|
|
prompt_mask = torch.tensor(prompt_mask, device=self.accelerator.device) |
|
|
completion_ids = torch.tensor(completion_ids, device=self.accelerator.device) |
|
|
completion_mask = torch.tensor(completion_mask, device=self.accelerator.device) |
|
|
|
|
|
return prompt_ids, prompt_mask, completion_ids, completion_mask |
|
|
|
|
|
def _generate_vllm_server(self, prompts, images=None): |
|
|
"""Generate completions using vLLM server mode""" |
|
|
has_images = images is not None |
|
|
|
|
|
|
|
|
if hasattr(self, "_last_loaded_step") and self.state.global_step != self._last_loaded_step: |
|
|
self._move_model_to_vllm() |
|
|
self._last_loaded_step = self.state.global_step |
|
|
elif not hasattr(self, "_last_loaded_step"): |
|
|
self._move_model_to_vllm() |
|
|
self._last_loaded_step = self.state.global_step |
|
|
|
|
|
|
|
|
if is_conversational({"prompt": prompts[0]}): |
|
|
prompts_text = [apply_chat_template({"prompt": p}, self.processing_class)["prompt"] for p in prompts] |
|
|
else: |
|
|
prompts_text = prompts |
|
|
|
|
|
all_prompts = gather_object(prompts_text) |
|
|
if has_images: |
|
|
all_images = gather_object(images) |
|
|
|
|
|
if self.accelerator.is_main_process: |
|
|
|
|
|
|
|
|
|
|
|
ordered_set_of_prompts = all_prompts[:: self.num_generations] |
|
|
if has_images: |
|
|
ordered_set_of_images = all_images[:: self.num_generations] |
|
|
else: |
|
|
ordered_set_of_images = None |
|
|
completion_ids = self.vllm_client.generate( |
|
|
prompts=ordered_set_of_prompts, |
|
|
images=ordered_set_of_images, |
|
|
n=self.num_generations, |
|
|
repetition_penalty=self.repetition_penalty, |
|
|
temperature=self.temperature, |
|
|
top_p=self.top_p, |
|
|
top_k=-1 if self.top_k is None else self.top_k, |
|
|
min_p=0.0 if self.min_p is None else self.min_p, |
|
|
max_tokens=self.generation_config.max_tokens, |
|
|
guided_decoding_regex=self.guided_decoding_regex if hasattr(self, "guided_decoding_regex") else None, |
|
|
generation_kwargs=self.args.generation_kwargs, |
|
|
) |
|
|
|
|
|
completion_ids = [[comp_id] for prompt_completions in completion_ids for comp_id in prompt_completions] |
|
|
else: |
|
|
completion_ids = [None] * (len(all_prompts) * 2) |
|
|
|
|
|
|
|
|
completion_ids = broadcast_object_list(completion_ids, from_process=0) |
|
|
|
|
|
|
|
|
process_slice = slice( |
|
|
self.accelerator.process_index * len(prompts) * 2, |
|
|
(self.accelerator.process_index + 1) * len(prompts) * 2, |
|
|
) |
|
|
completion_ids = completion_ids[process_slice] |
|
|
|
|
|
|
|
|
prompt_inputs = self.processing_class( |
|
|
text=prompts_text, |
|
|
return_tensors="pt", |
|
|
padding=True, |
|
|
padding_side="left", |
|
|
add_special_tokens=False, |
|
|
) |
|
|
prompt_ids = [] |
|
|
for prompt_tokens in prompt_inputs["input_ids"]: |
|
|
prompt_ids.extend([prompt_tokens.tolist(), prompt_tokens.tolist()]) |
|
|
return completion_ids, prompt_ids |
|
|
|
|
|
def _generate_vllm_colocate(self, prompts, images=None): |
|
|
"""Generate completions using vLLM colocate mode""" |
|
|
|
|
|
self._move_model_to_vllm() |
|
|
|
|
|
|
|
|
if is_conversational({"prompt": prompts[0]}): |
|
|
prompts_text = [apply_chat_template({"prompt": p}, self.processing_class)["prompt"] for p in prompts] |
|
|
else: |
|
|
prompts_text = prompts |
|
|
|
|
|
|
|
|
if images is not None: |
|
|
vllm_inputs = [] |
|
|
for prompt, image in zip(prompts_text, images): |
|
|
if image is not None: |
|
|
vllm_inputs.append({"prompt": prompt, "multi_modal_data": {"image": image}}) |
|
|
else: |
|
|
vllm_inputs.append(prompt) |
|
|
else: |
|
|
vllm_inputs = prompts_text |
|
|
|
|
|
outputs = self.llm.generate(vllm_inputs, self.generation_config, use_tqdm=False, lora_request = self.model.load_lora('online_dpo_trainer_lora_model', load_tensors = True)) |
|
|
|
|
|
completion_ids = [list(output.outputs[i].token_ids) for i in range(2) for output in outputs] |
|
|
prompt_ids = [list(output.prompt_token_ids) for _ in range(2) for output in outputs] |
|
|
|
|
|
return completion_ids, prompt_ids |
|
|
|
|
|
def _move_model_to_vllm(self): |
|
|
"""Synchronize model weights to vLLM server with support for PEFT, DeepSpeed, and FSDP""" |
|
|
|
|
|
deepspeed_plugin = self.accelerator.state.deepspeed_plugin |
|
|
zero_stage_3 = deepspeed_plugin is not None and deepspeed_plugin.zero_stage == 3 |
|
|
if zero_stage_3: |
|
|
import deepspeed |
|
|
|
|
|
gather_if_zero3 = deepspeed.zero.GatheredParameters |
|
|
else: |
|
|
gather_if_zero3 = nullcontext |
|
|
|
|
|
if is_peft_model(self.model): |
|
|
|
|
|
|
|
|
|
|
|
with gather_if_zero3(list(self.model.parameters())): |
|
|
self.model.merge_adapter() |
|
|
|
|
|
|
|
|
if self.is_fsdp_enabled: |
|
|
|
|
|
|
|
|
fsdp_plugin = getattr(self.accelerator.state, "fsdp_plugin", None) |
|
|
fsdp_version = getattr(fsdp_plugin, "fsdp_version", 1) if fsdp_plugin else 1 |
|
|
if fsdp_version == 1: |
|
|
|
|
|
self._sync_fsdp1_params_to_vllm(self.model) |
|
|
elif fsdp_version == 2: |
|
|
self._sync_fsdp2_params_to_vllm(self.model) |
|
|
else: |
|
|
|
|
|
for name, param in self.model.named_parameters(): |
|
|
|
|
|
name = name.removeprefix("base_model.model.").replace(".base_layer", "") |
|
|
if self.model.prefix in name: |
|
|
continue |
|
|
|
|
|
if "original_module" in name: |
|
|
continue |
|
|
name = self._fix_param_name_to_vllm(name, extra_prefixes=["modules_to_save.default."]) |
|
|
|
|
|
if self.vllm_mode == "server" and self.accelerator.is_main_process: |
|
|
self.vllm_client.update_named_param(name, param.data) |
|
|
elif self.vllm_mode == "colocate": |
|
|
|
|
|
pass |
|
|
|
|
|
pass |
|
|
|
|
|
self.model.unmerge_adapter() |
|
|
|
|
|
else: |
|
|
|
|
|
if self.is_fsdp_enabled: |
|
|
fsdp_plugin = getattr(self.accelerator.state, "fsdp_plugin", None) |
|
|
fsdp_version = getattr(fsdp_plugin, "fsdp_version", 1) if fsdp_plugin else 1 |
|
|
if fsdp_version == 1: |
|
|
self._sync_fsdp1_params_to_vllm(self.model) |
|
|
elif fsdp_version == 2: |
|
|
self._sync_fsdp2_params_to_vllm(self.model) |
|
|
else: |
|
|
for name, param in self.model.named_parameters(): |
|
|
name = self._fix_param_name_to_vllm(name) |
|
|
with gather_if_zero3([param]): |
|
|
if self.vllm_mode == "server" and self.accelerator.is_main_process: |
|
|
self.vllm_client.update_named_param(name, param.data) |
|
|
elif self.vllm_mode == "colocate": |
|
|
|
|
|
pass |
|
|
|
|
|
pass |
|
|
|
|
|
|
|
|
if self.vllm_mode == "server" and self.accelerator.is_main_process: |
|
|
self.vllm_client.reset_prefix_cache() |
|
|
elif self.vllm_mode == "colocate": |
|
|
self.llm.reset_prefix_cache() |
|
|
|
|
|
def _sync_fsdp1_params_to_vllm(self, module: nn.Module, prefix: str = "", visited=None): |
|
|
"""Memory-efficient post-order traversal of FSDP modules to extract full parameters and sync with vLLM.""" |
|
|
|
|
|
if visited is None: |
|
|
visited = set() |
|
|
for child_name, child_module in module.named_children(): |
|
|
child_prefix = f"{prefix}.{child_name}" if prefix else child_name |
|
|
self._sync_fsdp1_params_to_vllm( |
|
|
child_module, prefix=child_prefix, visited=visited |
|
|
) |
|
|
|
|
|
if isinstance(module, FSDP): |
|
|
with FSDP.summon_full_params(module, recurse=False, writeback=False): |
|
|
for param_name, param in module.named_parameters(): |
|
|
full_name = f"{prefix}.{param_name}" if prefix else param_name |
|
|
full_name = self._fix_param_name_to_vllm(full_name, extra_prefixes=["_fsdp_wrapped_module."]) |
|
|
|
|
|
if full_name in visited: |
|
|
continue |
|
|
visited.add(full_name) |
|
|
|
|
|
if self.vllm_mode == "server" and self.accelerator.is_main_process: |
|
|
self.vllm_client.update_named_param(full_name, param.data) |
|
|
elif self.vllm_mode == "colocate": |
|
|
|
|
|
pass |
|
|
|
|
|
pass |
|
|
|
|
|
def _sync_fsdp2_params_to_vllm(self, module: nn.Module): |
|
|
|
|
|
for name, param in module.items(): |
|
|
if param.is_cpu: |
|
|
param = param.to(torch.device("cuda")) |
|
|
param = param.full_tensor() |
|
|
|
|
|
if self.vllm_mode == "server" and self.accelerator.is_main_process: |
|
|
self.vllm_client.update_named_param(name, param) |
|
|
elif self.vllm_mode == "colocate": |
|
|
|
|
|
pass |
|
|
|
|
|
pass |
|
|
|
|
|
def _fix_param_name_to_vllm(self, name, extra_prefixes: Optional[list[str]] = None): |
|
|
"""Clean parameter names for vLLM compatibility""" |
|
|
extra_prefixes = extra_prefixes or [] |
|
|
prefixes = ["_checkpoint_wrapped_module."] + extra_prefixes |
|
|
for prefix in prefixes: |
|
|
name = name.replace(prefix, "") |
|
|
return name |
|
|
|
|
|
def process_vision_row( |
|
|
self, features: dict[str, Union[list, torch.Tensor]], processing_class=None |
|
|
) -> dict[str, list[int]]: |
|
|
""" |
|
|
Process a vision row for VLM models (adapted from DPO trainer) |
|
|
""" |
|
|
processor = processing_class or self.processing_class |
|
|
processed_features = processor(images=[features["image"]], text=features["prompt"], add_special_tokens=False) |
|
|
|
|
|
prompt_input_ids = processed_features["input_ids"][0] |
|
|
|
|
|
|
|
|
output = { |
|
|
"prompt_input_ids": prompt_input_ids, |
|
|
"prompt_attention_mask": processed_features["attention_mask"][0], |
|
|
} |
|
|
|
|
|
|
|
|
if "pixel_values" in processed_features: |
|
|
output["pixel_values"] = processed_features["pixel_values"][0] |
|
|
if "pixel_attention_mask" in processed_features: |
|
|
output["pixel_attention_mask"] = processed_features["pixel_attention_mask"][0] |
|
|
if "image_sizes" in processed_features: |
|
|
output["image_sizes"] = processed_features["image_sizes"][0] |
|
|
|
|
|
return output |
|
|
|
|
|
def _generate(self, model, prompts, images=None): |
|
|
"""Generate completions using the model""" |
|
|
device = next(model.parameters()).device |
|
|
eos_token_id = self.eos_token_id |
|
|
pad_token_id = self.pad_token_id |
|
|
|
|
|
|
|
|
inputs = [{"prompt": prompt} for prompt in prompts] |
|
|
|
|
|
|
|
|
if images is not None: |
|
|
for i, image in enumerate(images): |
|
|
inputs[i]["image"] = image |
|
|
|
|
|
|
|
|
prompts_text = [maybe_apply_chat_template(x, self.processing_class)["prompt"] for x in inputs] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.image_token is not None and images is not None: |
|
|
escaped_img_token = re.escape(self.image_token) |
|
|
|
|
|
if hasattr(self.processing_class, "chat_template") and self.processing_class.chat_template: |
|
|
if re.search(escaped_img_token, self.processing_class.chat_template): |
|
|
|
|
|
prompts_text = [ |
|
|
re.sub(rf"({escaped_img_token})+", self.image_token, text) for text in prompts_text |
|
|
] |
|
|
else: |
|
|
|
|
|
if self.vision_end_token_id is not None: |
|
|
escaped_eoi_token = re.escape( |
|
|
self.processing_class.tokenizer.decode([self.vision_end_token_id]) |
|
|
) |
|
|
prompts_text = [ |
|
|
re.sub(rf"({escaped_img_token})+{escaped_eoi_token}", "", text) for text in prompts_text |
|
|
] |
|
|
else: |
|
|
|
|
|
prompts_text = [re.sub(rf"({escaped_img_token})+", "", text) for text in prompts_text] |
|
|
|
|
|
|
|
|
kwargs = {} |
|
|
if images is not None: |
|
|
kwargs = {"images": [[img] for img in images]} |
|
|
|
|
|
|
|
|
prompt_inputs = self.processing_class( |
|
|
text=prompts_text, |
|
|
return_tensors="pt", |
|
|
padding=True, |
|
|
padding_side="left", |
|
|
add_special_tokens=False, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
prompt_inputs = {k: v.to(device) for k, v in prompt_inputs.items()} |
|
|
|
|
|
if "pixel_values" in prompt_inputs: |
|
|
|
|
|
model_dtype = getattr(model, "dtype", None) |
|
|
if model_dtype is None and hasattr(model, "module"): |
|
|
model_dtype = model.module.dtype |
|
|
if model_dtype is not None: |
|
|
prompt_inputs["pixel_values"] = prompt_inputs["pixel_values"].to(model_dtype) |
|
|
|
|
|
|
|
|
prompt_ids = prompt_inputs["input_ids"].repeat(2, 1) |
|
|
prompt_mask = prompt_inputs["attention_mask"].repeat(2, 1) |
|
|
|
|
|
|
|
|
vision_generation_kwargs = {} |
|
|
if self.is_vision_model and images is not None: |
|
|
if "pixel_values" in prompt_inputs: |
|
|
vision_generation_kwargs["pixel_values"] = prompt_inputs["pixel_values"].repeat(2, 1, 1, 1) |
|
|
if "pixel_attention_mask" in prompt_inputs: |
|
|
vision_generation_kwargs["pixel_attention_mask"] = prompt_inputs["pixel_attention_mask"].repeat(2, 1) |
|
|
if "image_sizes" in prompt_inputs: |
|
|
vision_generation_kwargs["image_sizes"] = prompt_inputs["image_sizes"].repeat(2, 1) |
|
|
if "image_grid_thw" in prompt_inputs: |
|
|
vision_generation_kwargs["image_grid_thw"] = prompt_inputs["image_grid_thw"].repeat(2, 1) |
|
|
|
|
|
if self.use_transformers_paged: |
|
|
previous_attn = self.model_wrapped.config._attn_implementation |
|
|
|
|
|
if is_flash_attn_2_available(): |
|
|
self.model_wrapped.config._attn_implementation = "paged_attention" |
|
|
else: |
|
|
self.model_wrapped.config._attn_implementation = "sdpa_paged" |
|
|
with ( |
|
|
profiling_context(self, "transformers.generate_batch"), |
|
|
unwrap_model_for_generation( |
|
|
model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation |
|
|
) as unwrapped_model, |
|
|
torch.no_grad(), |
|
|
FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext(), |
|
|
): |
|
|
|
|
|
if self.args.bf16: |
|
|
unwrapped_model.to(torch.bfloat16) |
|
|
elif self.args.fp16: |
|
|
unwrapped_model.to(torch.float16) |
|
|
with torch.inference_mode(): |
|
|
all_outputs = unwrapped_model.generate_batch( |
|
|
prompt_ids.tolist(), |
|
|
generation_config=self.generation_config, |
|
|
progress_bar=False, |
|
|
) |
|
|
completion_ids = [output.generated_tokens for output in all_outputs.values()] |
|
|
completion_ids = [torch.tensor(ids, device=device) for ids in completion_ids] |
|
|
completion_ids = pad(completion_ids, padding_value=self.pad_token_id, padding_side="right") |
|
|
prompt_completion_ids = torch.cat([prompt_ids, completion_ids], dim=1) |
|
|
|
|
|
self.model_wrapped.config._attn_implementation = previous_attn |
|
|
|
|
|
|
|
|
prompt_length = prompt_ids.size(1) |
|
|
completion_ids = prompt_completion_ids[:, prompt_length:] |
|
|
completion_ids, completion_mask = truncate_right(completion_ids, eos_token_id, pad_token_id) |
|
|
|
|
|
return prompt_ids, prompt_mask, completion_ids, completion_mask |
|
|
else: |
|
|
|
|
|
with ( |
|
|
profiling_context(self, "transformers.generate"), |
|
|
unwrap_model_for_generation( |
|
|
model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation |
|
|
) as unwrapped_model, |
|
|
torch.no_grad(), |
|
|
FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext(), |
|
|
): |
|
|
|
|
|
if self.args.cache_implementation is not None: |
|
|
unwrapped_model.generation_config.cache_implementation = self.args.cache_implementation |
|
|
|
|
|
|
|
|
output = unwrapped_model.generate( |
|
|
input_ids=prompt_ids, |
|
|
attention_mask=prompt_mask, |
|
|
generation_config=self.generation_config, |
|
|
**vision_generation_kwargs, |
|
|
) |
|
|
|
|
|
completion_ids = output[:, prompt_ids.size(1) :] |
|
|
completion_ids, completion_mask = truncate_right(completion_ids, eos_token_id, pad_token_id) |
|
|
|
|
|
return prompt_ids, prompt_mask, completion_ids, completion_mask |
|
|
|
|
|
def _calculate_rewards_from_functions(self, prompts, completions, completion_ids_list, **reward_kwargs): |
|
|
""" |
|
|
Calculate rewards using reward functions |
|
|
""" |
|
|
device = self.accelerator.device |
|
|
rewards_per_func = torch.zeros(len(prompts), len(self.reward_funcs), device=device) |
|
|
|
|
|
|
|
|
reward_kwargs["trainer_state"] = self.state |
|
|
|
|
|
for i, (reward_func, reward_processing_class) in enumerate( |
|
|
zip(self.reward_funcs, self.reward_processing_classes) |
|
|
): |
|
|
if isinstance(reward_func, nn.Module): |
|
|
|
|
|
if is_conversational({"prompt": prompts[0]}): |
|
|
messages = [{"messages": p + c} for p, c in zip(prompts, completions)] |
|
|
texts = [apply_chat_template(x, reward_processing_class)["text"] for x in messages] |
|
|
else: |
|
|
texts = [p + c for p, c in zip(prompts, completions)] |
|
|
|
|
|
|
|
|
reward_inputs = reward_processing_class( |
|
|
text=texts, return_tensors="pt", padding=True, padding_side="right", add_special_tokens=False |
|
|
) |
|
|
reward_inputs = {k: v.to(device) for k, v in reward_inputs.items()} |
|
|
|
|
|
with torch.inference_mode(): |
|
|
rewards_per_func[:, i] = reward_func(**reward_inputs).logits[:, 0] |
|
|
else: |
|
|
|
|
|
output_reward_func = reward_func( |
|
|
prompts=prompts, completions=completions, completion_ids=completion_ids_list, **reward_kwargs |
|
|
) |
|
|
|
|
|
output_reward_func = [reward if reward is not None else torch.nan for reward in output_reward_func] |
|
|
rewards_per_func[:, i] = torch.tensor(output_reward_func, dtype=torch.float32, device=device) |
|
|
|
|
|
|
|
|
if self.reward_weights is not None: |
|
|
total_rewards = (rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).nansum(dim=1) |
|
|
else: |
|
|
total_rewards = rewards_per_func.nansum(dim=1) |
|
|
|
|
|
return total_rewards |
|
|
|
|
|
def _forward(self, model, prompt_ids, prompt_mask, completion_ids, completion_mask, vision_inputs=None): |
|
|
|
|
|
num_tokens_to_truncate = max(prompt_ids.size(1) + completion_ids.size(1) - self.max_length, 0) |
|
|
|
|
|
|
|
|
prompt_ids = prompt_ids[:, num_tokens_to_truncate:] |
|
|
prompt_mask = prompt_mask[:, num_tokens_to_truncate:] |
|
|
|
|
|
|
|
|
prompt_completion_ids = torch.cat((prompt_ids, completion_ids), dim=1) |
|
|
prompt_completion_mask = torch.cat((prompt_mask, completion_mask), dim=1) |
|
|
|
|
|
|
|
|
model_kwargs = {"attention_mask": prompt_completion_mask} |
|
|
if vision_inputs is not None: |
|
|
if "pixel_values" in vision_inputs: |
|
|
model_kwargs["pixel_values"] = vision_inputs["pixel_values"] |
|
|
if "pixel_attention_mask" in vision_inputs: |
|
|
model_kwargs["pixel_attention_mask"] = vision_inputs["pixel_attention_mask"] |
|
|
if "image_sizes" in vision_inputs: |
|
|
model_kwargs["image_sizes"] = vision_inputs["image_sizes"] |
|
|
if "image_grid_thw" in vision_inputs: |
|
|
model_kwargs["image_grid_thw"] = vision_inputs["image_grid_thw"] |
|
|
|
|
|
|
|
|
output = model(prompt_completion_ids, **model_kwargs) |
|
|
|
|
|
|
|
|
prompt_len = prompt_ids.size(1) |
|
|
start_idx = prompt_len - 1 if prompt_len > 0 else 0 |
|
|
logits = output.logits[:, start_idx:-1] |
|
|
|
|
|
|
|
|
logprobs = torch.take_along_dim(logits.log_softmax(dim=-1), completion_ids.unsqueeze(-1), dim=2).squeeze(-1) |
|
|
return logprobs |
|
|
|
|
|
def training_step( |
|
|
self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None |
|
|
) -> torch.Tensor: |
|
|
model.train() |
|
|
|
|
|
prompts = inputs["prompt"] |
|
|
batch_size = len(prompts) |
|
|
|
|
|
|
|
|
has_images = "image" in inputs |
|
|
images = None |
|
|
if has_images: |
|
|
images = inputs["image"] |
|
|
|
|
|
for prompt in prompts: |
|
|
if isinstance(prompt, list): |
|
|
for message in prompt: |
|
|
if not isinstance(message, dict): |
|
|
continue |
|
|
content = message.get("content") |
|
|
role = message.get("role") |
|
|
if isinstance(content, str): |
|
|
if role == "user": |
|
|
message["content"] = [{"type": "image"}, {"type": "text", "text": content}] |
|
|
elif role == "system": |
|
|
message["content"] = [{"type": "text", "text": content}] |
|
|
|
|
|
if self.args.use_vllm: |
|
|
prompt_ids, prompt_mask, completion_ids, completion_mask = self._generate_vllm(prompts, images) |
|
|
else: |
|
|
prompt_ids, prompt_mask, completion_ids, completion_mask = self._generate(model, prompts, images) |
|
|
|
|
|
contain_eos_token = torch.any(completion_ids == self.eos_token_id, dim=-1) |
|
|
|
|
|
|
|
|
vision_inputs = None |
|
|
if has_images and self.is_vision_model and not self.args.use_vllm: |
|
|
|
|
|
|
|
|
vision_inputs = {} |
|
|
kwargs = {"images": [[img] for img in images]} |
|
|
processed = self.processing_class( |
|
|
text=[""] * len(images), |
|
|
return_tensors="pt", |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
model_device = getattr(model, "device", None) |
|
|
model_dtype = getattr(model, "dtype", None) |
|
|
if model_device is None and hasattr(model, "module"): |
|
|
model_device = model.module.device |
|
|
model_dtype = model.module.dtype |
|
|
|
|
|
|
|
|
if "pixel_values" in processed: |
|
|
vision_inputs["pixel_values"] = ( |
|
|
processed["pixel_values"].to(model_device, dtype=model_dtype).repeat(2, 1, 1, 1) |
|
|
) |
|
|
if "pixel_attention_mask" in processed: |
|
|
vision_inputs["pixel_attention_mask"] = processed["pixel_attention_mask"].to(model_device).repeat(2, 1) |
|
|
if "image_sizes" in processed: |
|
|
vision_inputs["image_sizes"] = processed["image_sizes"].to(model_device).repeat(2, 1) |
|
|
if "image_grid_thw" in processed: |
|
|
vision_inputs["image_grid_thw"] = processed["image_grid_thw"].to(model_device).repeat(2, 1) |
|
|
|
|
|
logprobs = self._forward(model, prompt_ids, prompt_mask, completion_ids, completion_mask, vision_inputs) |
|
|
with torch.no_grad(): |
|
|
if self.ref_model is not None: |
|
|
ref_logprobs = self._forward( |
|
|
self.ref_model, prompt_ids, prompt_mask, completion_ids, completion_mask, vision_inputs |
|
|
) |
|
|
else: |
|
|
with self.model.disable_adapter(): |
|
|
ref_logprobs = self._forward( |
|
|
self.model, prompt_ids, prompt_mask, completion_ids, completion_mask, vision_inputs |
|
|
) |
|
|
|
|
|
|
|
|
device = logprobs.device |
|
|
completions = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True) |
|
|
if is_conversational({"prompt": prompts[0]}): |
|
|
completions = [[{"role": "assistant", "content": completion}] for completion in completions] |
|
|
|
|
|
|
|
|
if self.reward_funcs is not None: |
|
|
|
|
|
completion_ids_list = [completion_ids[i].tolist() for i in range(completion_ids.shape[0])] |
|
|
|
|
|
|
|
|
reward_kwargs = {} |
|
|
keys = [key for key in inputs if key not in ["prompt"]] |
|
|
for key in keys: |
|
|
if isinstance(inputs[key], (list, tuple)): |
|
|
|
|
|
reward_kwargs[key] = inputs[key] * 2 |
|
|
else: |
|
|
reward_kwargs[key] = inputs[key] |
|
|
|
|
|
|
|
|
rewards = self._calculate_rewards_from_functions( |
|
|
prompts=2 * prompts, completions=completions, completion_ids_list=completion_ids_list, **reward_kwargs |
|
|
) |
|
|
|
|
|
|
|
|
if self.args.missing_eos_penalty is not None: |
|
|
rewards[~contain_eos_token] -= self.args.missing_eos_penalty |
|
|
|
|
|
|
|
|
first_half, second_half = rewards.split(batch_size) |
|
|
mask = first_half >= second_half |
|
|
elif self.judge is not None: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if is_conversational({"prompt": prompts[0]}): |
|
|
environment = jinja2.Environment() |
|
|
template = environment.from_string(SIMPLE_CHAT_TEMPLATE) |
|
|
prompts = [template.render(messages=prompt) for prompt in prompts] |
|
|
completions = [template.render(messages=completion) for completion in completions] |
|
|
|
|
|
ranks_of_first_completion = self.judge.judge( |
|
|
prompts, list(zip(completions[:batch_size], completions[batch_size:])) |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mask = torch.tensor([rank == 0 for rank in ranks_of_first_completion], device=device) |
|
|
|
|
|
batch_range = torch.arange(batch_size, device=device) |
|
|
chosen_indices = batch_range + (~mask * batch_size) |
|
|
rejected_indices = batch_range + (mask * batch_size) |
|
|
|
|
|
|
|
|
cr_indices = torch.cat((chosen_indices, rejected_indices), dim=0) |
|
|
cr_logprobs = logprobs[cr_indices] |
|
|
cr_ref_logprobs = ref_logprobs[cr_indices] |
|
|
|
|
|
|
|
|
padding_mask = ~completion_mask.bool() |
|
|
cr_padding_mask = padding_mask[cr_indices] |
|
|
|
|
|
cr_logprobs_sum = (cr_logprobs * ~cr_padding_mask).sum(1) |
|
|
cr_ref_logprobs_sum = (cr_ref_logprobs * ~cr_padding_mask).sum(1) |
|
|
|
|
|
|
|
|
chosen_logprobs_sum, rejected_logprobs_sum = torch.split(cr_logprobs_sum, batch_size) |
|
|
chosen_ref_logprobs_sum, rejected_ref_logprobs_sum = torch.split(cr_ref_logprobs_sum, batch_size) |
|
|
pi_logratios = chosen_logprobs_sum - rejected_logprobs_sum |
|
|
ref_logratios = chosen_ref_logprobs_sum - rejected_ref_logprobs_sum |
|
|
|
|
|
logits = pi_logratios - ref_logratios |
|
|
|
|
|
if self.args.loss_type == "sigmoid": |
|
|
losses = -F.logsigmoid(self.beta * logits) |
|
|
elif self.args.loss_type == "ipo": |
|
|
losses = (logits - 1 / (2 * self.beta)) ** 2 |
|
|
else: |
|
|
raise NotImplementedError(f"invalid loss type {self.loss_type}") |
|
|
|
|
|
loss = losses.mean() |
|
|
|
|
|
|
|
|
if self.reward_funcs is not None: |
|
|
|
|
|
scores_margin = rewards[chosen_indices] - rewards[rejected_indices] |
|
|
self.stats["objective/scores_margin"].append( |
|
|
self.accelerator.gather_for_metrics(scores_margin.mean()).mean().item() |
|
|
) |
|
|
self.stats["objective/scores"].append(self.accelerator.gather_for_metrics(rewards.mean()).mean().item()) |
|
|
self.stats["val/contain_eos_token"].append(contain_eos_token.float().mean().item()) |
|
|
self.stats["logps/chosen"].append(self.accelerator.gather_for_metrics(chosen_logprobs_sum).mean().item()) |
|
|
self.stats["logps/rejected"].append(self.accelerator.gather_for_metrics(rejected_logprobs_sum).mean().item()) |
|
|
|
|
|
kl = logprobs - ref_logprobs |
|
|
mean_kl = kl.sum(1).mean() |
|
|
self.stats["objective/kl"].append(self.accelerator.gather_for_metrics(mean_kl).mean().item()) |
|
|
non_score_reward = (-self.beta * kl).sum(1) |
|
|
mean_non_score_reward = non_score_reward.mean() |
|
|
self.stats["objective/non_score_reward"].append( |
|
|
self.accelerator.gather_for_metrics(mean_non_score_reward).mean().item() |
|
|
) |
|
|
if self.reward_funcs is not None: |
|
|
|
|
|
rlhf_reward = rewards + non_score_reward |
|
|
self.stats["objective/rlhf_reward"].append(self.accelerator.gather_for_metrics(rlhf_reward).mean().item()) |
|
|
|
|
|
mean_entropy = -logprobs.sum(1).mean() |
|
|
self.stats["objective/entropy"].append(self.accelerator.gather_for_metrics(mean_entropy).mean().item()) |
|
|
chosen_rewards = self.beta * (chosen_logprobs_sum - chosen_ref_logprobs_sum) |
|
|
gathered_chosen_rewards = self.accelerator.gather_for_metrics(chosen_rewards) |
|
|
self.stats["rewards/chosen"].append(gathered_chosen_rewards.mean().item()) |
|
|
rejected_rewards = self.beta * (rejected_logprobs_sum - rejected_ref_logprobs_sum) |
|
|
gathered_rejected_rewards = self.accelerator.gather_for_metrics(rejected_rewards) |
|
|
self.stats["rewards/rejected"].append(gathered_rejected_rewards.mean().item()) |
|
|
margin = gathered_chosen_rewards - gathered_rejected_rewards |
|
|
self.stats["rewards/margins"].append(margin.mean().item()) |
|
|
accuracy = margin > 0 |
|
|
self.stats["rewards/accuracies"].append(accuracy.float().mean().item()) |
|
|
self.stats["beta"].append(self.beta) |
|
|
|
|
|
if ( |
|
|
self.args.torch_empty_cache_steps is not None |
|
|
and self.state.global_step % self.args.torch_empty_cache_steps == 0 |
|
|
): |
|
|
empty_cache() |
|
|
|
|
|
kwargs = {} |
|
|
|
|
|
|
|
|
if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]: |
|
|
kwargs["learning_rate"] = self._get_learning_rate() |
|
|
|
|
|
if self.args.n_gpu > 1: |
|
|
loss = loss.mean() |
|
|
|
|
|
if self.use_apex: |
|
|
with amp.scale_loss(loss, self.optimizer) as scaled_loss: |
|
|
scaled_loss.backward() |
|
|
else: |
|
|
self.accelerator.backward(loss, **kwargs) |
|
|
|
|
|
return loss.detach() / self.args.gradient_accumulation_steps |
|
|
|
|
|
|
|
|
def _maybe_log_save_evaluate( |
|
|
self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time, learning_rate=None |
|
|
): |
|
|
if self.control.should_log and self.state.global_step > self._globalstep_last_logged: |
|
|
logs: dict[str, float] = {} |
|
|
|
|
|
|
|
|
tr_loss_scalar = self._nested_gather(tr_loss).mean().item() |
|
|
|
|
|
|
|
|
tr_loss -= tr_loss |
|
|
|
|
|
logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4) |
|
|
if grad_norm is not None: |
|
|
logs["grad_norm"] = grad_norm.detach().item() if isinstance(grad_norm, torch.Tensor) else grad_norm |
|
|
if learning_rate is not None: |
|
|
logs["learning_rate"] = learning_rate |
|
|
else: |
|
|
logs["learning_rate"] = self._get_learning_rate() |
|
|
|
|
|
|
|
|
for key, val in self.stats.items(): |
|
|
logs[key] = sum(val) / len(val) |
|
|
self.stats = {key: [] for key in self.stats} |
|
|
|
|
|
self._total_loss_scalar += tr_loss_scalar |
|
|
self._globalstep_last_logged = self.state.global_step |
|
|
self.store_flos() |
|
|
self.log(logs, start_time) |
|
|
|
|
|
metrics = None |
|
|
if self.control.should_evaluate: |
|
|
metrics = self._evaluate(trial, ignore_keys_for_eval) |
|
|
is_new_best_metric = self._determine_best_metric(metrics=metrics, trial=trial) |
|
|
|
|
|
if self.args.save_strategy == "best": |
|
|
self.control.should_save = is_new_best_metric |
|
|
|
|
|
if self.control.should_save: |
|
|
self._save_checkpoint(model, trial) |
|
|
self.control = self.callback_handler.on_save(self.args, self.state, self.control) |
|
|
|
|
|
|
|
|
def _save_checkpoint(self, model, trial): |
|
|
if self.args.hub_model_id is None: |
|
|
model_name = Path(self.args.output_dir).name |
|
|
else: |
|
|
model_name = self.args.hub_model_id.split("/")[-1] |
|
|
self.create_model_card(model_name=model_name) |
|
|
super()._save_checkpoint(model, trial) |
|
|
|
|
|
def create_model_card( |
|
|
self, |
|
|
model_name: Optional[str] = None, |
|
|
dataset_name: Optional[str] = None, |
|
|
tags: Union[str, list[str], None] = None, |
|
|
): |
|
|
""" |
|
|
Creates a draft of a model card using the information available to the `Trainer`. |
|
|
|
|
|
Args: |
|
|
model_name (`str` or `None`, *optional*, defaults to `None`): |
|
|
Name of the model. |
|
|
dataset_name (`str` or `None`, *optional*, defaults to `None`): |
|
|
Name of the dataset used for training. |
|
|
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): |
|
|
Tags to be associated with the model card. |
|
|
""" |
|
|
if not self.is_world_process_zero(): |
|
|
return |
|
|
|
|
|
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): |
|
|
base_model = self.model.config._name_or_path |
|
|
else: |
|
|
base_model = None |
|
|
|
|
|
|
|
|
if tags is None: |
|
|
tags = set() |
|
|
elif isinstance(tags, str): |
|
|
tags = {tags} |
|
|
else: |
|
|
tags = set(tags) |
|
|
|
|
|
if hasattr(self.model.config, "unsloth_version"): |
|
|
tags.add("unsloth") |
|
|
|
|
|
if "JOB_ID" in os.environ: |
|
|
tags.add("hf_jobs") |
|
|
|
|
|
tags.update(self._tag_names) |
|
|
|
|
|
|
|
|
citation = textwrap.dedent("""\ |
|
|
@article{guo2024direct, |
|
|
title = {{Direct Language Model Alignment from Online AI Feedback}}, |
|
|
author = {Shangmin Guo and Biao Zhang and Tianlin Liu and Tianqi Liu and Misha Khalman and Felipe Llinares and Alexandre Ram{\'{e}} and Thomas Mesnard and Yao Zhao and Bilal Piot and Johan Ferret and Mathieu Blondel}, |
|
|
year = 2024, |
|
|
eprint = {arXiv:2402.04792} |
|
|
}""") |
|
|
|
|
|
model_card = generate_model_card( |
|
|
base_model=base_model, |
|
|
model_name=model_name, |
|
|
hub_model_id=self.hub_model_id, |
|
|
dataset_name=dataset_name, |
|
|
tags=tags, |
|
|
wandb_url=wandb.run.url if is_wandb_available() and wandb.run is not None else None, |
|
|
comet_url=get_comet_experiment_url(), |
|
|
trainer_name="Online DPO", |
|
|
trainer_citation=citation, |
|
|
paper_title="Direct Language Model Alignment from Online AI Feedback", |
|
|
paper_id="2402.04792", |
|
|
) |
|
|
model_card.save(os.path.join(self.args.output_dir, "README.md")) |
|
|
class UnslothOnlineDPOTrainer(_UnslothOnlineDPOTrainer): |
|
|
""" |
|
|
|
|
|
Initialize OnlineDPOTrainer. |
|
|
|
|
|
Args: |
|
|
model (`Union[str, nn.Module, PreTrainedModel]`): |
|
|
Model to be trained. Can be either: |
|
|
|
|
|
- A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or a |
|
|
path to a *directory* containing model weights saved using |
|
|
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded |
|
|
using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keyword arguments in |
|
|
`args.model_init_kwargs`. |
|
|
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported. |
|
|
ref_model (`transformers.PreTrainedModel` or `torch.nn.Module` or `None`): |
|
|
The reference model to use for training. If None is specified, the reference model will be created from the |
|
|
model. |
|
|
judge (`BasePairwiseJudge`): |
|
|
The judge to use for pairwise comparison of model completions. |
|
|
reward_funcs (`Union[RewardFunc, list[RewardFunc]]`, *optional*, defaults to `None`): |
|
|
Reward functions to be used for computing the rewards. To compute the rewards, we call all the reward |
|
|
functions with the prompts and completions and sum the rewards. Can be either: |
|
|
|
|
|
- A single reward function: Can be a string (path to model), a [`~transformers.PreTrainedModel`], or a |
|
|
custom callable function. |
|
|
- A list of reward functions: Must all be of compatible types. |
|
|
|
|
|
Note: Only one of `judge`, or `reward_funcs` should be provided. |
|
|
args (`OnlineDPOConfig`): |
|
|
The online DPO config arguments to use for training. |
|
|
data_collator (`transformers.DataCollator`): |
|
|
The data collator to use for training. If None is specified, the default data collator |
|
|
(`DPODataCollatorWithPadding`) will be used which will pad the sequences to the maximum length of the |
|
|
sequences in the batch, given a dataset of paired sequences. |
|
|
train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]): |
|
|
The dataset to use for training. |
|
|
eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`): |
|
|
The dataset to use for evaluation. |
|
|
processing_class ([`~transformers.PreTrainedTokenizerBase`] or [`~transformers.ProcessorMixin`], *optional*, defaults to `None`): |
|
|
Processing class used to process the data. If provided, will be used to automatically process the inputs |
|
|
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or |
|
|
reuse the fine-tuned model. |
|
|
reward_processing_classes (`Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]`, *optional*, defaults to `None`): |
|
|
Processing classes corresponding to the reward functions specified in `reward_funcs`. Can be either: |
|
|
|
|
|
- A single processing class: Used when `reward_funcs` contains only one reward function. |
|
|
- A list of processing classes: Must match the order and length of the reward functions in `reward_funcs`. |
|
|
|
|
|
If set to `None`, the tokenizer for each model-based reward function is automatically loaded using |
|
|
[`~transformers.AutoTokenizer.from_pretrained`]. |
|
|
peft_config ([`~peft.PeftConfig`], *optional*, defaults to `None`): |
|
|
PEFT configuration used to wrap the model. If `None`, the model is not wrapped. |
|
|
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): |
|
|
The function to use to compute the metrics. Must take a `EvalPrediction` and return a dictionary string to |
|
|
metric values. |
|
|
callbacks (`list[transformers.TrainerCallback]`): |
|
|
The callbacks to use for training. |
|
|
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): |
|
|
The optimizer and scheduler to use for training. |
|
|
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): |
|
|
The function to use to preprocess the logits before computing the metrics. |
|
|
|
|
|
.. deprecated:: 0.22.0 |
|
|
The following parameters are deprecated and will be removed in a future version: |
|
|
|
|
|
* `reward_model`: Use `reward_funcs` instead. For example, change `reward_model=model` to `reward_funcs=model`. |
|
|
* `reward_processing_class`: Use `reward_processing_classes` instead. For example, change |
|
|
`reward_processing_class=tokenizer` to `reward_processing_classes=tokenizer`. |
|
|
|
|
|
""" |
|
|
def __init__( |
|
|
self, |
|
|
model, |
|
|
ref_model = None, |
|
|
reward_funcs = None, |
|
|
judge = None, |
|
|
args = None, |
|
|
data_collator = None, |
|
|
train_dataset = None, |
|
|
eval_dataset = None, |
|
|
processing_class = None, |
|
|
reward_processing_classes = None, |
|
|
peft_config = None, |
|
|
compute_metrics = None, |
|
|
callbacks = None, |
|
|
preprocess_logits_for_metrics = None, |
|
|
reward_model = None, |
|
|
reward_processing_class = None, |
|
|
**kwargs |
|
|
): |
|
|
if args is None: args = UnslothOnlineDPOConfig() |
|
|
use_bf16 = getattr(args, 'bf16', False) |
|
|
if type(use_bf16) is not bool: use_bf16 = False |
|
|
use_fp16 = getattr(args, 'fp16', False) |
|
|
if type(use_fp16) is not bool: use_fp16 = False |
|
|
force_float32 = False |
|
|
full_finetuning = os.environ.get('UNSLOTH_ENABLE_FULL_FINETUNING', '0') == '1' |
|
|
if not full_finetuning and (os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1'): |
|
|
print('Unsloth: Switching to float32 training since model cannot work with float16') |
|
|
force_float32 = True |
|
|
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') |
|
|
dtype = getattr(model.config, 'dtype', None) or getattr(model.config, 'torch_dtype', None) |
|
|
if dtype is None: dtype = model.get_input_embeddings().dtype |
|
|
from unsloth_zoo.utils import _get_dtype |
|
|
dtype = _get_dtype(dtype) |
|
|
float16 = dtype == torch.float16 |
|
|
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') |
|
|
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') |
|
|
if force_float32: |
|
|
|
|
|
args.fp16 = False |
|
|
args.bf16 = False |
|
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' |
|
|
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': |
|
|
|
|
|
args.fp16 = float16 |
|
|
args.bf16 = not float16 |
|
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' |
|
|
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': |
|
|
args.eval_strategy = 'steps' |
|
|
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 |
|
|
ga_steps = getattr(args, 'gradient_accumulation_steps', None) |
|
|
if ga_steps is not None and ga_steps > 1: |
|
|
from transformers import __version__ as transformers_version |
|
|
if Version(transformers_version) <= Version('4.45.2'): |
|
|
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' |
|
|
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') |
|
|
if getattr(args, 'eval_strategy', 'no') != 'no': |
|
|
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) |
|
|
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size |
|
|
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps |
|
|
fp16_full_eval = getattr(args, 'fp16_full_eval', False) |
|
|
if type(fp16_full_eval) is not bool: fp16_full_eval = False |
|
|
bf16_full_eval = getattr(args, 'bf16_full_eval', False) |
|
|
if type(bf16_full_eval) is not bool: bf16_full_eval = False |
|
|
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True |
|
|
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False |
|
|
if force_float32: |
|
|
args.bf16_full_eval = False |
|
|
args.fp16_full_eval = False |
|
|
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': |
|
|
args.bf16_full_eval = True |
|
|
args.fp16_full_eval = False |
|
|
elif not bf16_full_eval and not fp16_full_eval: |
|
|
args.bf16_full_eval = args.bf16 |
|
|
args.fp16_full_eval = args.fp16 |
|
|
_output_logits = False |
|
|
if locals().get('compute_metrics', None) is not None: _output_logits = True |
|
|
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True |
|
|
if _output_logits: |
|
|
os.environ['UNSLOTH_RETURN_LOGITS'] = '1' |
|
|
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): |
|
|
pass |
|
|
else: |
|
|
model_max_seq_length = getattr(model, 'max_seq_length', None) |
|
|
args_max_seq_length = getattr(args, 'max_seq_length', None) |
|
|
if args_max_seq_length is None and model_max_seq_length is not None: |
|
|
max_seq_length = model.max_seq_length |
|
|
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length |
|
|
if model is not None and hasattr(model, 'for_training'): |
|
|
model.for_training() |
|
|
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' |
|
|
if 'processing_class' in locals(): |
|
|
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' |
|
|
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' |
|
|
__tokenizer = processing_class if 'processing_class' in locals() else tokenizer |
|
|
from unsloth_zoo.vision_utils import UnslothVisionDataCollator |
|
|
if not isinstance(data_collator, UnslothVisionDataCollator): |
|
|
if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: |
|
|
data_collator = TransformersDataCollatorForLanguageModeling( |
|
|
__tokenizer, |
|
|
mlm = False, |
|
|
mlm_probability = 0.0, |
|
|
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), |
|
|
) |
|
|
elif isinstance(data_collator, TransformersDataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: |
|
|
data_collator = DataCollatorForSeq2Seq( |
|
|
__tokenizer, |
|
|
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), |
|
|
) |
|
|
else: |
|
|
if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False |
|
|
if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' |
|
|
if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} |
|
|
if not isinstance(data_collator, UnslothVisionDataCollator): |
|
|
if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): |
|
|
if isinstance(data_collator, DataCollatorForSeq2Seq): |
|
|
data_collator = DataCollatorForSeq2Seq( |
|
|
__tokenizer.tokenizer, |
|
|
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), |
|
|
) |
|
|
else: |
|
|
data_collator = TransformersDataCollatorForLanguageModeling( |
|
|
__tokenizer.tokenizer, |
|
|
mlm = False, |
|
|
mlm_probability = 0.0, |
|
|
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), |
|
|
) |
|
|
other_metrics = [] |
|
|
|
|
|
from unsloth_zoo.logging_utils import PatchRLStatistics |
|
|
PatchRLStatistics('online_dpo_trainer', other_metrics) |
|
|
|
|
|
|
|
|
|
|
|
if getattr(args, "parallel_mode", None) == ParallelMode.NOT_DISTRIBUTED and args.n_gpu > 1: |
|
|
if getattr(args, "_n_gpu", 1) != 1: |
|
|
args._n_gpu = 1 |
|
|
if "model" in locals() and hasattr(model, "for_training"): |
|
|
model.for_training() |
|
|
super().__init__( |
|
|
model = model, |
|
|
ref_model = ref_model, |
|
|
reward_funcs = reward_funcs, |
|
|
judge = judge, |
|
|
args = args, |
|
|
data_collator = data_collator, |
|
|
train_dataset = train_dataset, |
|
|
eval_dataset = eval_dataset, |
|
|
processing_class = processing_class, |
|
|
reward_processing_classes = reward_processing_classes, |
|
|
peft_config = peft_config, |
|
|
compute_metrics = compute_metrics, |
|
|
callbacks = callbacks, |
|
|
preprocess_logits_for_metrics = preprocess_logits_for_metrics, |
|
|
reward_model = reward_model, |
|
|
reward_processing_class = reward_processing_class,**kwargs) |
|
|
if "model" in locals() and hasattr(model, "for_inference"): |
|
|
model.for_inference() |
|
|
if hasattr(self, 'neftune_hook_handle'): |
|
|
self.neftune_hook_handle.remove() |
|
|
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle |
|
|
if getattr(args, 'neftune_noise_alpha', None) is not None: |
|
|
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha |
|
|
pass |
|
|
if hasattr(self, 'accelerator'): |
|
|
scaler = self.accelerator.scaler |
|
|
current_model = model |
|
|
while hasattr(current_model, 'model'): |
|
|
current_model.accelerator_scaler = scaler |
|
|
current_model = current_model.model |
|
|
current_model.accelerator_scaler = scaler |
|
|
pass |
|
|
if hasattr(self, 'train'): |
|
|
self.train = MethodType(prepare_for_training_mode(self.__class__.train), self) |
|
|
pass |
|
|
|
|
|
pass |
|
|
|
|
|
|
|
|
if hasattr(logger, "addFilter"): |
|
|
import logging |
|
|
class HideLoggingMessage(logging.Filter): |
|
|
def __init__(self, text): self.text = text |
|
|
def filter(self, x): return not (self.text in x.getMessage()) |
|
|
pass |
|
|
logger.addFilter(HideLoggingMessage("`use_cache=True`")) |
|
|
|
|
|
|