|
|
""" |
|
|
2025.9.14 |
|
|
2025.9.11 |
|
|
4.56.2 |
|
|
0.23.0 |
|
|
__UNSLOTH_VERSIONING__ |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from torch import Tensor |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from torch.nn import functional as F |
|
|
from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable |
|
|
from trl.trainer.gkd_trainer import (Any, AutoModelForCausalLM, BaseImageProcessor, Callable, DataCollator, DataCollatorForChatML, Dataset, EvalPrediction, F, FeatureExtractionMixin, GKDConfig, GKDTrainer, GenerationConfig, Optional, PeftConfig, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SFTTrainer, TrainerCallback, Union, disable_dropout_in_model, empty_cache, generate_model_card, get_comet_experiment_url, is_wandb_available, nn, os, prepare_deepspeed, random, textwrap, torch, unwrap_model_for_generation, wandb) |
|
|
|
|
|
|
|
|
import os |
|
|
from typing import * |
|
|
from dataclasses import dataclass, field |
|
|
from packaging.version import Version |
|
|
import torch |
|
|
import numpy as np |
|
|
from contextlib import nullcontext |
|
|
from torch.nn import functional as F |
|
|
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling |
|
|
from transformers.training_args import ParallelMode |
|
|
|
|
|
|
|
|
import functools |
|
|
from types import MethodType |
|
|
def prepare_for_training_mode(f): |
|
|
@functools.wraps(f) |
|
|
def wrapper(self, *args, **kwargs): |
|
|
|
|
|
if hasattr(self, 'model') and hasattr(self.model, "for_training"): |
|
|
self.model.for_training() |
|
|
output = f(self, *args, **kwargs) |
|
|
|
|
|
if hasattr(self, 'model') and hasattr(self.model, "for_inference"): |
|
|
self.model.for_inference() |
|
|
return output |
|
|
return wrapper |
|
|
pass |
|
|
|
|
|
torch_compile_options = { |
|
|
"epilogue_fusion" : True, |
|
|
"max_autotune" : False, |
|
|
"shape_padding" : True, |
|
|
"trace.enabled" : False, |
|
|
"triton.cudagraphs" : False, |
|
|
} |
|
|
|
|
|
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,) |
|
|
def chunked_selective_log_softmax(logits, index): |
|
|
|
|
|
chunked_logits = torch.chunk(logits.reshape(-1, logits.shape[-1]), chunks = 4, dim = 0) |
|
|
chunked_index = torch.chunk(index.reshape(-1), chunks = 4, dim = 0) |
|
|
all_per_token_logps = [] |
|
|
|
|
|
for chunk_logits, chunk_index in zip(chunked_logits, chunked_index): |
|
|
chunk_logits = chunk_logits.to(torch.float32) |
|
|
selected_logits = torch.gather(chunk_logits, dim = -1, index = chunk_index.unsqueeze(-1)).squeeze(-1) |
|
|
logsumexp_values = torch.logsumexp(chunk_logits, dim = -1) |
|
|
per_token_logps = selected_logits - logsumexp_values |
|
|
all_per_token_logps.append(per_token_logps) |
|
|
pass |
|
|
all_per_token_logps = torch.concat(all_per_token_logps) |
|
|
all_per_token_logps = all_per_token_logps.reshape((logits.shape[0], logits.shape[1])) |
|
|
return all_per_token_logps |
|
|
|
|
|
def calculate_pad_tokens_in_prompt( |
|
|
input_ids: torch.Tensor, |
|
|
logits_to_keep: int, |
|
|
pad_token_id: int |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Given prompt tensor, it returns all the left padded tokens in that sequence. so [pad, pad, pad, cat] = 3 tokens |
|
|
""" |
|
|
if logits_to_keep >= input_ids.shape[1]: |
|
|
raise ValueError("logits_to_keep must be smaller than the sequence length.") |
|
|
|
|
|
prompt_section = input_ids[:, :-logits_to_keep] |
|
|
|
|
|
padding_mask = (prompt_section == pad_token_id) |
|
|
|
|
|
pad_token_counts = padding_mask.sum(dim=1) |
|
|
|
|
|
return pad_token_counts |
|
|
|
|
|
def create_completion_attention_mask( |
|
|
completion_input_ids: torch.Tensor, |
|
|
left_pad_tokens_per_prompt: torch.Tensor, |
|
|
max_left_pad: int, |
|
|
pad_token_id: int |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Given that we have a sequence, [p,p,p,c,c,c,pad,pad,pad] |
|
|
|
|
|
Where p are extra prompt tokens we got from slicing the torch tensor, c is completion tokens |
|
|
and pad are pad tokens, this function would make a completion mask that would 0 out the pad |
|
|
and p tokens. so in this example [0,0,0,1,1,1,0,0,0] |
|
|
""" |
|
|
batch_size, completion_len = completion_input_ids.shape |
|
|
device = completion_input_ids.device |
|
|
|
|
|
num_tokens_to_mask = max_left_pad - left_pad_tokens_per_prompt |
|
|
|
|
|
indices = torch.arange(completion_len, device=device).unsqueeze(0) |
|
|
shift_mask = indices >= num_tokens_to_mask.unsqueeze(1) |
|
|
|
|
|
non_padding_mask = (completion_input_ids != pad_token_id) |
|
|
|
|
|
final_mask = shift_mask & non_padding_mask |
|
|
|
|
|
return final_mask |
|
|
|
|
|
def left_pack_padding(tensor: torch.Tensor, pad_id: int) -> torch.Tensor: |
|
|
""" |
|
|
Moves all padding tokens in each sequence of a batch to the right. |
|
|
""" |
|
|
mask = (tensor != pad_id) |
|
|
|
|
|
sorted_indices = torch.argsort(mask, dim=1, descending=True, stable=True) |
|
|
packed_tensor = torch.gather(tensor, 1, sorted_indices) |
|
|
return packed_tensor |
|
|
@dataclass |
|
|
class UnslothGKDConfig(GKDConfig): |
|
|
""" |
|
|
|
|
|
Configuration class for [`GKDTrainer`]. |
|
|
|
|
|
This class includes only the parameters that are specific to GKD training. For a full list of training arguments, |
|
|
please refer to the [`~transformers.TrainingArguments`] and [`SFTConfig`] documentation. |
|
|
|
|
|
Args: |
|
|
temperature (`float`, *optional*, defaults to `0.9`): |
|
|
Temperature for sampling. The higher the temperature, the more random the completions. |
|
|
lmbda (`float`, *optional*, defaults to `0.5`): |
|
|
Lambda parameter that controls the student data fraction (i.e., the proportion of on-policy |
|
|
student-generated outputs). |
|
|
beta (`float`, *optional*, defaults to `0.5`): |
|
|
Interpolation coefficient between `0.0` and `1.0` of the Generalized Jensen-Shannon Divergence loss. When |
|
|
beta is `0.0`, the loss is the KL divergence. When beta is `1.0`, the loss is the Inverse KL Divergence. |
|
|
max_new_tokens (`int`, *optional*, defaults to `128`): |
|
|
Maximum number of tokens to generate per completion. |
|
|
teacher_model_name_or_path (`str` or `None`, *optional*, defaults to `None`): |
|
|
Model name or path of the teacher model. If `None`, the teacher model will be the same as the model being |
|
|
trained. |
|
|
teacher_model_init_kwargs (`dict[str, Any]]` or `None`, *optional*, defaults to `None`): |
|
|
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the teacher model |
|
|
from a string. |
|
|
disable_dropout (`bool`, *optional*, defaults to `True`): |
|
|
Whether to disable dropout in the model. |
|
|
seq_kd (`bool`, *optional*, defaults to `False`): |
|
|
Seq_kd parameter that controls whether to perform Sequence-Level KD (can be viewed as supervised FT on |
|
|
teacher-generated output). |
|
|
|
|
|
""" |
|
|
vllm_sampling_params: Optional[Any] = field( |
|
|
default = None, |
|
|
metadata = {'help': 'vLLM SamplingParams'}, |
|
|
) |
|
|
unsloth_num_chunks : Optional[int] = field( |
|
|
default = -1, |
|
|
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, |
|
|
) |
|
|
max_seq_length : Optional[int] = field( |
|
|
default = None, |
|
|
metadata = {'help': 'Maximum sequence length to truncate to.'}, |
|
|
) |
|
|
def __init__( |
|
|
self, |
|
|
output_dir = None, |
|
|
overwrite_output_dir = None, |
|
|
do_train = False, |
|
|
do_eval = False, |
|
|
do_predict = False, |
|
|
eval_strategy = 'no', |
|
|
prediction_loss_only = False, |
|
|
per_device_train_batch_size = 4, |
|
|
per_device_eval_batch_size = 4, |
|
|
per_gpu_train_batch_size = None, |
|
|
per_gpu_eval_batch_size = None, |
|
|
gradient_accumulation_steps = 2, |
|
|
eval_accumulation_steps = 2, |
|
|
eval_delay = 0, |
|
|
torch_empty_cache_steps = 250, |
|
|
learning_rate = 5e-05, |
|
|
weight_decay = 0.01, |
|
|
adam_beta1 = 0.9, |
|
|
adam_beta2 = 0.999, |
|
|
adam_epsilon = 1e-08, |
|
|
max_grad_norm = 1.0, |
|
|
num_train_epochs = 3.0, |
|
|
max_steps = -1, |
|
|
lr_scheduler_type = 'linear', |
|
|
warmup_ratio = 0.1, |
|
|
warmup_steps = 0, |
|
|
log_level = 'passive', |
|
|
log_level_replica = 'warning', |
|
|
log_on_each_node = True, |
|
|
logging_dir = None, |
|
|
logging_strategy = 'steps', |
|
|
logging_first_step = False, |
|
|
logging_steps = 1, |
|
|
logging_nan_inf_filter = False, |
|
|
save_strategy = 'steps', |
|
|
save_steps = 500, |
|
|
save_total_limit = None, |
|
|
save_safetensors = True, |
|
|
save_on_each_node = False, |
|
|
save_only_model = False, |
|
|
restore_callback_states_from_checkpoint = False, |
|
|
no_cuda = False, |
|
|
use_cpu = False, |
|
|
use_mps_device = False, |
|
|
seed = 3407, |
|
|
data_seed = 3407, |
|
|
jit_mode_eval = False, |
|
|
use_ipex = False, |
|
|
bf16 = False, |
|
|
fp16 = False, |
|
|
fp16_opt_level = 'O1', |
|
|
half_precision_backend = 'auto', |
|
|
bf16_full_eval = False, |
|
|
fp16_full_eval = False, |
|
|
tf32 = None, |
|
|
local_rank = -1, |
|
|
ddp_backend = None, |
|
|
tpu_num_cores = None, |
|
|
tpu_metrics_debug = False, |
|
|
debug = '', |
|
|
dataloader_drop_last = False, |
|
|
eval_steps = None, |
|
|
dataloader_num_workers = 0, |
|
|
dataloader_prefetch_factor = None, |
|
|
past_index = -1, |
|
|
run_name = None, |
|
|
disable_tqdm = None, |
|
|
remove_unused_columns = True, |
|
|
label_names = None, |
|
|
load_best_model_at_end = False, |
|
|
metric_for_best_model = None, |
|
|
greater_is_better = None, |
|
|
ignore_data_skip = False, |
|
|
fsdp = '', |
|
|
fsdp_min_num_params = 0, |
|
|
fsdp_config = None, |
|
|
fsdp_transformer_layer_cls_to_wrap = None, |
|
|
accelerator_config = None, |
|
|
parallelism_config = None, |
|
|
deepspeed = None, |
|
|
label_smoothing_factor = 0.0, |
|
|
optim = 'adamw_8bit', |
|
|
optim_args = None, |
|
|
adafactor = False, |
|
|
group_by_length = False, |
|
|
length_column_name = 'length', |
|
|
report_to = None, |
|
|
ddp_find_unused_parameters = None, |
|
|
ddp_bucket_cap_mb = None, |
|
|
ddp_broadcast_buffers = None, |
|
|
dataloader_pin_memory = True, |
|
|
dataloader_persistent_workers = False, |
|
|
skip_memory_metrics = True, |
|
|
use_legacy_prediction_loop = False, |
|
|
push_to_hub = False, |
|
|
resume_from_checkpoint = None, |
|
|
hub_model_id = None, |
|
|
hub_strategy = 'every_save', |
|
|
hub_token = None, |
|
|
hub_private_repo = None, |
|
|
hub_always_push = False, |
|
|
hub_revision = None, |
|
|
gradient_checkpointing = True, |
|
|
gradient_checkpointing_kwargs = None, |
|
|
include_inputs_for_metrics = False, |
|
|
eval_do_concat_batches = True, |
|
|
fp16_backend = 'auto', |
|
|
push_to_hub_model_id = None, |
|
|
push_to_hub_organization = None, |
|
|
push_to_hub_token = None, |
|
|
mp_parameters = '', |
|
|
auto_find_batch_size = False, |
|
|
full_determinism = False, |
|
|
torchdynamo = None, |
|
|
ray_scope = 'last', |
|
|
ddp_timeout = 1800, |
|
|
torch_compile = False, |
|
|
torch_compile_backend = None, |
|
|
torch_compile_mode = None, |
|
|
include_tokens_per_second = False, |
|
|
include_num_input_tokens_seen = False, |
|
|
neftune_noise_alpha = None, |
|
|
optim_target_modules = None, |
|
|
batch_eval_metrics = False, |
|
|
eval_on_start = False, |
|
|
use_liger_kernel = False, |
|
|
liger_kernel_config = None, |
|
|
eval_use_gather_object = False, |
|
|
average_tokens_across_devices = True, |
|
|
model_init_kwargs = None, |
|
|
chat_template_path = None, |
|
|
dataset_text_field = 'text', |
|
|
dataset_kwargs = None, |
|
|
dataset_num_proc = None, |
|
|
eos_token = None, |
|
|
pad_token = None, |
|
|
max_length = 1024, |
|
|
packing = False, |
|
|
packing_strategy = 'bfd', |
|
|
padding_free = False, |
|
|
pad_to_multiple_of = None, |
|
|
eval_packing = None, |
|
|
completion_only_loss = None, |
|
|
assistant_only_loss = False, |
|
|
loss_type = 'nll', |
|
|
activation_offloading = False, |
|
|
temperature = 0.9, |
|
|
lmbda = 0.5, |
|
|
beta = 0.5, |
|
|
max_new_tokens = 128, |
|
|
teacher_model_name_or_path = None, |
|
|
teacher_model_init_kwargs = None, |
|
|
disable_dropout = True, |
|
|
seq_kd = False, |
|
|
vllm_sampling_params = None, |
|
|
unsloth_num_chunks = -1, |
|
|
max_seq_length = None, |
|
|
**kwargs, |
|
|
): |
|
|
if learning_rate < 1e-7: print(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') |
|
|
if learning_rate > 1: print(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') |
|
|
if output_dir is None and save_strategy == 'steps' and save_steps == 500: |
|
|
output_dir = 'unsloth_training_checkpoints' |
|
|
save_strategy = 'no' |
|
|
if dataset_num_proc is None: |
|
|
from multiprocessing import cpu_count |
|
|
dataset_num_proc = max(cpu_count()+4, 2) |
|
|
if os.environ.get('UNSLOTH_ENABLE_FLEX_ATTENTION', '0') == '1': |
|
|
from unsloth_zoo.flex_attention import HAS_FLEX_ATTENTION |
|
|
if HAS_FLEX_ATTENTION and pad_to_multiple_of is None: |
|
|
from unsloth_zoo.flex_attention import FLEX_ATTENTION_BLOCK_SIZE |
|
|
pad_to_multiple_of = FLEX_ATTENTION_BLOCK_SIZE |
|
|
|
|
|
if temperature <= 0: |
|
|
raise MathError('Unsloth: Please set a positive non-zero temperature since your results will be wrong.') |
|
|
elif temperature >= 10: |
|
|
raise MathError('Unsloth: Please set a positive non-zero temperature less than 10, since sampling will be quite erratic.') |
|
|
|
|
|
|
|
|
super().__init__( |
|
|
output_dir = output_dir, |
|
|
overwrite_output_dir = overwrite_output_dir, |
|
|
do_train = do_train, |
|
|
do_eval = do_eval, |
|
|
do_predict = do_predict, |
|
|
eval_strategy = eval_strategy, |
|
|
prediction_loss_only = prediction_loss_only, |
|
|
per_device_train_batch_size = per_device_train_batch_size, |
|
|
per_device_eval_batch_size = per_device_eval_batch_size, |
|
|
per_gpu_train_batch_size = per_gpu_train_batch_size, |
|
|
per_gpu_eval_batch_size = per_gpu_eval_batch_size, |
|
|
gradient_accumulation_steps = gradient_accumulation_steps, |
|
|
eval_accumulation_steps = eval_accumulation_steps, |
|
|
eval_delay = eval_delay, |
|
|
torch_empty_cache_steps = torch_empty_cache_steps, |
|
|
learning_rate = learning_rate, |
|
|
weight_decay = weight_decay, |
|
|
adam_beta1 = adam_beta1, |
|
|
adam_beta2 = adam_beta2, |
|
|
adam_epsilon = adam_epsilon, |
|
|
max_grad_norm = max_grad_norm, |
|
|
num_train_epochs = num_train_epochs, |
|
|
max_steps = max_steps, |
|
|
lr_scheduler_type = lr_scheduler_type, |
|
|
warmup_ratio = warmup_ratio, |
|
|
warmup_steps = warmup_steps, |
|
|
log_level = log_level, |
|
|
log_level_replica = log_level_replica, |
|
|
log_on_each_node = log_on_each_node, |
|
|
logging_dir = logging_dir, |
|
|
logging_strategy = logging_strategy, |
|
|
logging_first_step = logging_first_step, |
|
|
logging_steps = logging_steps, |
|
|
logging_nan_inf_filter = logging_nan_inf_filter, |
|
|
save_strategy = save_strategy, |
|
|
save_steps = save_steps, |
|
|
save_total_limit = save_total_limit, |
|
|
save_safetensors = save_safetensors, |
|
|
save_on_each_node = save_on_each_node, |
|
|
save_only_model = save_only_model, |
|
|
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, |
|
|
no_cuda = no_cuda, |
|
|
use_cpu = use_cpu, |
|
|
use_mps_device = use_mps_device, |
|
|
seed = seed, |
|
|
data_seed = data_seed, |
|
|
jit_mode_eval = jit_mode_eval, |
|
|
use_ipex = use_ipex, |
|
|
bf16 = bf16, |
|
|
fp16 = fp16, |
|
|
fp16_opt_level = fp16_opt_level, |
|
|
half_precision_backend = half_precision_backend, |
|
|
bf16_full_eval = bf16_full_eval, |
|
|
fp16_full_eval = fp16_full_eval, |
|
|
tf32 = tf32, |
|
|
local_rank = local_rank, |
|
|
ddp_backend = ddp_backend, |
|
|
tpu_num_cores = tpu_num_cores, |
|
|
tpu_metrics_debug = tpu_metrics_debug, |
|
|
debug = debug, |
|
|
dataloader_drop_last = dataloader_drop_last, |
|
|
eval_steps = eval_steps, |
|
|
dataloader_num_workers = dataloader_num_workers, |
|
|
dataloader_prefetch_factor = dataloader_prefetch_factor, |
|
|
past_index = past_index, |
|
|
run_name = run_name, |
|
|
disable_tqdm = disable_tqdm, |
|
|
remove_unused_columns = remove_unused_columns, |
|
|
label_names = label_names, |
|
|
load_best_model_at_end = load_best_model_at_end, |
|
|
metric_for_best_model = metric_for_best_model, |
|
|
greater_is_better = greater_is_better, |
|
|
ignore_data_skip = ignore_data_skip, |
|
|
fsdp = fsdp, |
|
|
fsdp_min_num_params = fsdp_min_num_params, |
|
|
fsdp_config = fsdp_config, |
|
|
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, |
|
|
accelerator_config = accelerator_config, |
|
|
parallelism_config = parallelism_config, |
|
|
deepspeed = deepspeed, |
|
|
label_smoothing_factor = label_smoothing_factor, |
|
|
optim = optim, |
|
|
optim_args = optim_args, |
|
|
adafactor = adafactor, |
|
|
group_by_length = group_by_length, |
|
|
length_column_name = length_column_name, |
|
|
report_to = report_to, |
|
|
ddp_find_unused_parameters = ddp_find_unused_parameters, |
|
|
ddp_bucket_cap_mb = ddp_bucket_cap_mb, |
|
|
ddp_broadcast_buffers = ddp_broadcast_buffers, |
|
|
dataloader_pin_memory = dataloader_pin_memory, |
|
|
dataloader_persistent_workers = dataloader_persistent_workers, |
|
|
skip_memory_metrics = skip_memory_metrics, |
|
|
use_legacy_prediction_loop = use_legacy_prediction_loop, |
|
|
push_to_hub = push_to_hub, |
|
|
resume_from_checkpoint = resume_from_checkpoint, |
|
|
hub_model_id = hub_model_id, |
|
|
hub_strategy = hub_strategy, |
|
|
hub_token = hub_token, |
|
|
hub_private_repo = hub_private_repo, |
|
|
hub_always_push = hub_always_push, |
|
|
hub_revision = hub_revision, |
|
|
gradient_checkpointing = gradient_checkpointing, |
|
|
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, |
|
|
include_inputs_for_metrics = include_inputs_for_metrics, |
|
|
eval_do_concat_batches = eval_do_concat_batches, |
|
|
fp16_backend = fp16_backend, |
|
|
push_to_hub_model_id = push_to_hub_model_id, |
|
|
push_to_hub_organization = push_to_hub_organization, |
|
|
push_to_hub_token = push_to_hub_token, |
|
|
mp_parameters = mp_parameters, |
|
|
auto_find_batch_size = auto_find_batch_size, |
|
|
full_determinism = full_determinism, |
|
|
torchdynamo = torchdynamo, |
|
|
ray_scope = ray_scope, |
|
|
ddp_timeout = ddp_timeout, |
|
|
torch_compile = torch_compile, |
|
|
torch_compile_backend = torch_compile_backend, |
|
|
torch_compile_mode = torch_compile_mode, |
|
|
include_tokens_per_second = include_tokens_per_second, |
|
|
include_num_input_tokens_seen = include_num_input_tokens_seen, |
|
|
neftune_noise_alpha = neftune_noise_alpha, |
|
|
optim_target_modules = optim_target_modules, |
|
|
batch_eval_metrics = batch_eval_metrics, |
|
|
eval_on_start = eval_on_start, |
|
|
use_liger_kernel = use_liger_kernel, |
|
|
liger_kernel_config = liger_kernel_config, |
|
|
eval_use_gather_object = eval_use_gather_object, |
|
|
average_tokens_across_devices = average_tokens_across_devices, |
|
|
model_init_kwargs = model_init_kwargs, |
|
|
chat_template_path = chat_template_path, |
|
|
dataset_text_field = dataset_text_field, |
|
|
dataset_kwargs = dataset_kwargs, |
|
|
dataset_num_proc = dataset_num_proc, |
|
|
eos_token = eos_token, |
|
|
pad_token = pad_token, |
|
|
max_length = max_length, |
|
|
packing = packing, |
|
|
packing_strategy = packing_strategy, |
|
|
padding_free = padding_free, |
|
|
pad_to_multiple_of = pad_to_multiple_of, |
|
|
eval_packing = eval_packing, |
|
|
completion_only_loss = completion_only_loss, |
|
|
assistant_only_loss = assistant_only_loss, |
|
|
loss_type = loss_type, |
|
|
activation_offloading = activation_offloading, |
|
|
temperature = temperature, |
|
|
lmbda = lmbda, |
|
|
beta = beta, |
|
|
max_new_tokens = max_new_tokens, |
|
|
teacher_model_name_or_path = teacher_model_name_or_path, |
|
|
teacher_model_init_kwargs = teacher_model_init_kwargs, |
|
|
disable_dropout = disable_dropout, |
|
|
seq_kd = seq_kd,**kwargs) |
|
|
self.vllm_sampling_params = vllm_sampling_params |
|
|
self.unsloth_num_chunks = unsloth_num_chunks |
|
|
self.max_seq_length = max_seq_length |
|
|
pass |
|
|
|
|
|
class _UnslothGKDTrainer(SFTTrainer): |
|
|
"""""" |
|
|
|
|
|
_tag_names = ["trl", "gkd"] |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
model: Optional[Union[PreTrainedModel, nn.Module, str]] = None, |
|
|
teacher_model: Union[PreTrainedModel, nn.Module, str] = None, |
|
|
args: Optional[GKDConfig] = None, |
|
|
data_collator: Optional[DataCollator] = None, |
|
|
train_dataset: Optional[Dataset] = None, |
|
|
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, |
|
|
processing_class: Optional[ |
|
|
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] |
|
|
] = None, |
|
|
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, |
|
|
callbacks: Optional[list[TrainerCallback]] = None, |
|
|
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), |
|
|
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, |
|
|
peft_config: Optional["PeftConfig"] = None, |
|
|
formatting_func: Optional[Callable] = None, |
|
|
): |
|
|
|
|
|
args.remove_unused_columns = False |
|
|
|
|
|
if data_collator is None: |
|
|
data_collator = DataCollatorForChatML(tokenizer=processing_class, max_length=args.max_length) |
|
|
|
|
|
|
|
|
|
|
|
if args.dataset_kwargs is None: |
|
|
args.dataset_kwargs = {"skip_prepare_dataset": True} |
|
|
else: |
|
|
args.dataset_kwargs["skip_prepare_dataset"] = True |
|
|
|
|
|
|
|
|
self.use_liger_gkd_loss = False |
|
|
if args.use_liger_kernel: |
|
|
self.liger_jsd_loss = LigerFusedLinearJSDLoss( |
|
|
beta=args.beta, |
|
|
ignore_index=-100, |
|
|
temperature=args.temperature, |
|
|
compiled=False, |
|
|
) |
|
|
self.use_liger_gkd_loss = True |
|
|
|
|
|
super().__init__( |
|
|
model, |
|
|
args=args, |
|
|
data_collator=data_collator, |
|
|
train_dataset=train_dataset, |
|
|
eval_dataset=eval_dataset, |
|
|
processing_class=processing_class, |
|
|
compute_metrics=compute_metrics, |
|
|
callbacks=callbacks, |
|
|
optimizers=optimizers, |
|
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics, |
|
|
peft_config=peft_config, |
|
|
formatting_func=formatting_func, |
|
|
) |
|
|
|
|
|
if args.teacher_model_init_kwargs is None: |
|
|
teacher_model_init_kwargs = {} |
|
|
elif not isinstance(teacher_model, str): |
|
|
raise ValueError( |
|
|
"You passed teacher_model_init_kwargs to the GKDConfig, but your teacher_model is already instantiated." |
|
|
) |
|
|
else: |
|
|
teacher_model_init_kwargs = args.teacher_model_init_kwargs |
|
|
teacher_model_init_kwargs["dtype"] = ( |
|
|
teacher_model_init_kwargs["dtype"] |
|
|
if teacher_model_init_kwargs["dtype"] in ["auto", None] |
|
|
else getattr(torch, teacher_model_init_kwargs["dtype"]) |
|
|
) |
|
|
|
|
|
if isinstance(teacher_model, str): |
|
|
teacher_model = AutoModelForCausalLM.from_pretrained(teacher_model, **teacher_model_init_kwargs) |
|
|
|
|
|
|
|
|
if args.disable_dropout: |
|
|
disable_dropout_in_model(self.model) |
|
|
|
|
|
if self.is_deepspeed_enabled: |
|
|
self.teacher_model = prepare_deepspeed(teacher_model, self.accelerator) |
|
|
else: |
|
|
self.teacher_model = self.accelerator.prepare_model(teacher_model, evaluation_mode=True) |
|
|
|
|
|
self.lmbda = args.lmbda |
|
|
self.beta = args.beta |
|
|
self.temperature = args.temperature |
|
|
self.seq_kd = args.seq_kd |
|
|
|
|
|
self.generation_config = GenerationConfig( |
|
|
max_new_tokens=args.max_new_tokens, |
|
|
temperature=args.temperature, |
|
|
do_sample=True, |
|
|
top_k=0, |
|
|
use_cache=False if args.gradient_checkpointing else True, |
|
|
pad_token_id=self.processing_class.pad_token_id, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ( |
|
|
hasattr(self.model.generation_config, "eos_token_id") |
|
|
and self.model.generation_config.eos_token_id is not None |
|
|
): |
|
|
self.generation_config.eos_token_id = self.model.generation_config.eos_token_id |
|
|
|
|
|
@staticmethod |
|
|
def generalized_jsd_loss( |
|
|
student_logits, teacher_logits, labels=None, beta=0.5, temperature=1.0, reduction="batchmean" |
|
|
): |
|
|
""" |
|
|
Compute the generalized Jensen-Shannon Divergence loss for knowledge distillation using F.kl_div. See Eq. (1) |
|
|
of https://huggingface.co/papers/2306.13649 for the definition. |
|
|
|
|
|
Args: |
|
|
student_logits: |
|
|
Tensor of shape (batch_size, sequence_length, vocab_size) |
|
|
teacher_logits: |
|
|
Tensor of shape (batch_size, sequence_length, vocab_size) |
|
|
labels: |
|
|
Tensor of shape (batch_size, sequence_length) with -100 for padding tokens to ignore when computing |
|
|
loss |
|
|
beta: |
|
|
Interpolation coefficient between 0 and 1 (default: 0.5) |
|
|
temperature: |
|
|
Softmax temperature (default: 1.0) |
|
|
reduction: |
|
|
Specifies the reduction to apply to the output (default: 'batchmean') |
|
|
|
|
|
Returns: |
|
|
loss: Scalar tensor with the generalized JSD loss |
|
|
""" |
|
|
|
|
|
|
|
|
student_logits = student_logits / temperature |
|
|
teacher_logits = teacher_logits / temperature |
|
|
|
|
|
|
|
|
student_log_probs = F.log_softmax(student_logits, dim=-1) |
|
|
teacher_log_probs = F.log_softmax(teacher_logits, dim=-1) |
|
|
|
|
|
if beta == 0: |
|
|
jsd = F.kl_div(student_log_probs, teacher_log_probs, reduction="none", log_target=True) |
|
|
elif beta == 1: |
|
|
jsd = F.kl_div(teacher_log_probs, student_log_probs, reduction="none", log_target=True) |
|
|
else: |
|
|
|
|
|
|
|
|
beta = torch.tensor(beta, dtype=student_log_probs.dtype) |
|
|
mixture_log_probs = torch.logsumexp( |
|
|
torch.stack([student_log_probs + torch.log(1 - beta), teacher_log_probs + torch.log(beta)]), |
|
|
dim=0, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
kl_teacher = F.kl_div(mixture_log_probs, teacher_log_probs, reduction="none", log_target=True) |
|
|
kl_student = F.kl_div(mixture_log_probs, student_log_probs, reduction="none", log_target=True) |
|
|
|
|
|
|
|
|
jsd = beta * kl_teacher + (1 - beta) * kl_student |
|
|
|
|
|
|
|
|
if labels is not None: |
|
|
mask = labels != -100 |
|
|
jsd = jsd[mask] |
|
|
|
|
|
|
|
|
if reduction == "batchmean": |
|
|
return jsd.sum() / mask.sum() if labels is not None else jsd.sum() / (jsd.size(0) * jsd.size(1)) |
|
|
elif reduction == "sum": |
|
|
return jsd.sum() |
|
|
elif reduction == "mean": |
|
|
return jsd.mean() |
|
|
else: |
|
|
return jsd |
|
|
|
|
|
def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None): |
|
|
if self.use_liger_gkd_loss: |
|
|
|
|
|
unwrapped_student = self.accelerator.unwrap_model(model) |
|
|
if hasattr(unwrapped_student, "get_decoder") and unwrapped_student.get_decoder() is not None: |
|
|
base_student = unwrapped_student.get_decoder() |
|
|
else: |
|
|
base_student = getattr( |
|
|
unwrapped_student, getattr(unwrapped_student, "base_model_prefix", "model"), unwrapped_student |
|
|
) |
|
|
|
|
|
student_outputs = base_student( |
|
|
input_ids=inputs["input_ids"], |
|
|
attention_mask=inputs["attention_mask"], |
|
|
output_hidden_states=True, |
|
|
use_cache=False, |
|
|
) |
|
|
|
|
|
self.teacher_model.eval() |
|
|
unwrapped_teacher = self.accelerator.unwrap_model(self.teacher_model) |
|
|
if hasattr(unwrapped_teacher, "get_decoder") and unwrapped_teacher.get_decoder() is not None: |
|
|
base_teacher = unwrapped_teacher.get_decoder() |
|
|
else: |
|
|
base_teacher = getattr( |
|
|
unwrapped_teacher, getattr(unwrapped_teacher, "base_model_prefix", "model"), unwrapped_teacher |
|
|
) |
|
|
with torch.no_grad(): |
|
|
teacher_outputs = base_teacher( |
|
|
input_ids=inputs["input_ids"], |
|
|
attention_mask=inputs["attention_mask"], |
|
|
output_hidden_states=True, |
|
|
use_cache=False, |
|
|
) |
|
|
|
|
|
|
|
|
student_hidden = student_outputs.last_hidden_state[:, :-1].contiguous() |
|
|
teacher_hidden = teacher_outputs.last_hidden_state[:, :-1].contiguous() |
|
|
|
|
|
|
|
|
labels_mask = inputs["labels"] != -100 |
|
|
masked_input_ids = torch.where( |
|
|
labels_mask, inputs["input_ids"], torch.full_like(inputs["input_ids"], -100) |
|
|
) |
|
|
true_labels = masked_input_ids[:, 1:].contiguous() |
|
|
|
|
|
|
|
|
student_head = unwrapped_student.get_output_embeddings() |
|
|
teacher_head = unwrapped_teacher.get_output_embeddings() |
|
|
|
|
|
|
|
|
loss = self.liger_jsd_loss( |
|
|
student_input=student_hidden, |
|
|
student_weight=student_head.weight, |
|
|
teacher_input=teacher_hidden, |
|
|
teacher_weight=teacher_head.weight, |
|
|
true_labels=true_labels, |
|
|
student_bias=getattr(student_head, "bias", None), |
|
|
teacher_bias=getattr(teacher_head, "bias", None), |
|
|
) |
|
|
else: |
|
|
|
|
|
student_outputs = model( |
|
|
input_ids=inputs["input_ids"], |
|
|
attention_mask=inputs["attention_mask"], |
|
|
) |
|
|
|
|
|
|
|
|
self.teacher_model.eval() |
|
|
with torch.no_grad(): |
|
|
teacher_outputs = self.teacher_model( |
|
|
input_ids=inputs["input_ids"], |
|
|
attention_mask=inputs["attention_mask"], |
|
|
) |
|
|
|
|
|
|
|
|
prompt_lengths = inputs["prompts"].shape[1] |
|
|
shifted_student_logits = student_outputs.logits[:, prompt_lengths - 1 : -1, :] |
|
|
shifted_teacher_logits = teacher_outputs.logits[:, prompt_lengths - 1 : -1, :] |
|
|
shifted_labels = inputs["labels"][:, prompt_lengths:] |
|
|
|
|
|
|
|
|
loss = self.generalized_jsd_loss( |
|
|
student_logits=shifted_student_logits, |
|
|
teacher_logits=shifted_teacher_logits, |
|
|
labels=shifted_labels, |
|
|
beta=self.beta, |
|
|
) |
|
|
|
|
|
|
|
|
empty_cache() |
|
|
|
|
|
|
|
|
return (loss, student_outputs) if return_outputs else loss |
|
|
|
|
|
@staticmethod |
|
|
def generate_on_policy_outputs(model, inputs, generation_config, pad_token_id=None): |
|
|
|
|
|
generated_outputs = model.generate( |
|
|
input_ids=inputs["prompts"], |
|
|
attention_mask=inputs.get("prompt_attention_mask", None), |
|
|
generation_config=generation_config, |
|
|
return_dict_in_generate=True, |
|
|
) |
|
|
|
|
|
|
|
|
generated_tokens = generated_outputs.sequences |
|
|
|
|
|
new_attention_mask = torch.ones_like(generated_tokens) |
|
|
new_labels = generated_tokens.clone() |
|
|
|
|
|
|
|
|
if pad_token_id is not None: |
|
|
new_labels[new_labels == pad_token_id] = -100 |
|
|
new_attention_mask[generated_tokens == pad_token_id] = 0 |
|
|
|
|
|
return generated_tokens, new_attention_mask, new_labels |
|
|
|
|
|
def training_step( |
|
|
self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Perform a training step for the Generalized Knowledge Distillation (GKD) model. |
|
|
|
|
|
This method implements the on-policy learning approach described in the GKD paper. With probability |
|
|
`self.lmbda`, it generates new responses using the student model, which are then used for training instead of |
|
|
the original inputs. |
|
|
""" |
|
|
if self.seq_kd: |
|
|
with unwrap_model_for_generation(self.teacher_model, self.accelerator) as unwrapped_model: |
|
|
new_input_ids, new_attention_mask, new_labels = self.generate_on_policy_outputs( |
|
|
unwrapped_model, inputs, self.generation_config, self.processing_class.pad_token_id |
|
|
) |
|
|
inputs["input_ids"] = new_input_ids |
|
|
inputs["attention_mask"] = new_attention_mask |
|
|
inputs["labels"] = new_labels |
|
|
if random.random() <= self.lmbda: |
|
|
with unwrap_model_for_generation(model, self.accelerator) as unwrapped_model: |
|
|
new_input_ids, new_attention_mask, new_labels = self.generate_on_policy_outputs( |
|
|
unwrapped_model, inputs, self.generation_config, self.processing_class.pad_token_id |
|
|
) |
|
|
inputs["input_ids"] = new_input_ids |
|
|
inputs["attention_mask"] = new_attention_mask |
|
|
inputs["labels"] = new_labels |
|
|
|
|
|
loss = super().training_step(model, inputs, num_items_in_batch) |
|
|
return loss |
|
|
|
|
|
def create_model_card( |
|
|
self, |
|
|
model_name: Optional[str] = None, |
|
|
dataset_name: Optional[str] = None, |
|
|
tags: Union[str, list[str], None] = None, |
|
|
): |
|
|
""" |
|
|
Creates a draft of a model card using the information available to the `Trainer`. |
|
|
|
|
|
Args: |
|
|
model_name (`str` or `None`, *optional*, defaults to `None`): |
|
|
Name of the model. |
|
|
dataset_name (`str` or `None`, *optional*, defaults to `None`): |
|
|
Name of the dataset used for training. |
|
|
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): |
|
|
Tags to be associated with the model card. |
|
|
""" |
|
|
if not self.is_world_process_zero(): |
|
|
return |
|
|
|
|
|
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): |
|
|
base_model = self.model.config._name_or_path |
|
|
else: |
|
|
base_model = None |
|
|
|
|
|
|
|
|
if tags is None: |
|
|
tags = set() |
|
|
elif isinstance(tags, str): |
|
|
tags = {tags} |
|
|
else: |
|
|
tags = set(tags) |
|
|
|
|
|
if hasattr(self.model.config, "unsloth_version"): |
|
|
tags.add("unsloth") |
|
|
|
|
|
if "JOB_ID" in os.environ: |
|
|
tags.add("hf_jobs") |
|
|
|
|
|
tags.update(self._tag_names) |
|
|
|
|
|
|
|
|
citation = textwrap.dedent("""\ |
|
|
@inproceedings{agarwal2024on-policy, |
|
|
title = {{On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes}}, |
|
|
author = {Rishabh Agarwal and Nino Vieillard and Yongchao Zhou and Piotr Stanczyk and Sabela Ramos Garea and Matthieu Geist and Olivier Bachem}, |
|
|
year = 2024, |
|
|
booktitle = {The Twelfth International Conference on Learning Representations, {ICLR} 2024, Vienna, Austria, May 7-11, 2024}, |
|
|
publisher = {OpenReview.net}, |
|
|
url = {https://openreview.net/forum?id=3zKtaqxLhW}, |
|
|
}""") |
|
|
|
|
|
model_card = generate_model_card( |
|
|
base_model=base_model, |
|
|
model_name=model_name, |
|
|
hub_model_id=self.hub_model_id, |
|
|
dataset_name=dataset_name, |
|
|
tags=tags, |
|
|
wandb_url=wandb.run.url if is_wandb_available() and wandb.run is not None else None, |
|
|
comet_url=get_comet_experiment_url(), |
|
|
trainer_name="GKD", |
|
|
trainer_citation=citation, |
|
|
paper_title="On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes", |
|
|
paper_id="2306.13649", |
|
|
) |
|
|
|
|
|
model_card.save(os.path.join(self.args.output_dir, "README.md")) |
|
|
class UnslothGKDTrainer(_UnslothGKDTrainer): |
|
|
""" |
|
|
Trainer for Generalized Knowledge Distillation (GKD) of language models. |
|
|
|
|
|
For details on GKD, see the paper: [On-Policy Distillation of Language Models: Learning from Self-Generated |
|
|
Mistakes](https://huggingface.co/papers/2306.13649). |
|
|
|
|
|
Args: |
|
|
model ([`~transformers.PreTrainedModel`] or `torch.nn.Module` or `str`, *optional*): |
|
|
Model to be trained, or the string identifier of the model to be instantiated from a pretrained model. |
|
|
teacher_model ([`~transformers.PreTrainedModel`] or `torch.nn.Module` or `str`, *optional*): |
|
|
Teacher model for knowledge distillation, or the string identifier of the model to be instantiated from a |
|
|
pretrained model. |
|
|
args ([`GKDConfig`], *optional*): |
|
|
Training arguments. |
|
|
data_collator ([`~transformers.DataCollator`], *optional*): |
|
|
Data collator to batch samples from the dataset. It defaults to a [`DataCollatorForChatML`] using the |
|
|
`processing_class`. |
|
|
train_dataset ([`~datasets.Dataset`], *optional*): |
|
|
Dataset for training. |
|
|
eval_dataset ([`~datasets.Dataset`] or `dict` of [`~datasets.Dataset`], *optional*): |
|
|
Dataset for evaluation. |
|
|
processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.BaseImageProcessor`], [`~transformers.FeatureExtractionMixin`] or [`~transformers.ProcessorMixin`], *optional*): |
|
|
Class to process the data. |
|
|
compute_metrics (`Callable`, *optional*): |
|
|
Function to compute metrics at evaluation. Must take in an [`~transformers.EvalPrediction`] and return a |
|
|
dictionary string to float. |
|
|
callbacks (`list` of [`~transformers.TrainerCallback`], *optional*): |
|
|
Callbacks to use during training. |
|
|
optimizers (`tuple` of `torch.optim.Optimizer` and `torch.optim.lr_scheduler.LambdaLR`, *optional*, defaults to `(None, None)`): |
|
|
Tuple containing the optimizer and the learning rate scheduler to use for training. |
|
|
preprocess_logits_for_metrics (`Callable`, *optional*): |
|
|
Function to preprocess the logits before computing the metrics. Must take in the `logits` and `labels` and |
|
|
return the logits to be used for metrics computation. |
|
|
peft_config ([`~peft.config.PeftConfig`], *optional*): |
|
|
PEFT configuration to use PEFT for training. If `None`, PEFT is not used. If provided, the `model` will be |
|
|
wrapped with the specified PEFT adapter. |
|
|
formatting_func (`Callable`, *optional*): |
|
|
Function to format the dataset. Must take in an example and return an example. |
|
|
|
|
|
""" |
|
|
def __init__( |
|
|
self, |
|
|
model = None, |
|
|
teacher_model = None, |
|
|
args = None, |
|
|
data_collator = None, |
|
|
train_dataset = None, |
|
|
eval_dataset = None, |
|
|
processing_class = None, |
|
|
compute_metrics = None, |
|
|
callbacks = None, |
|
|
preprocess_logits_for_metrics = None, |
|
|
peft_config = None, |
|
|
formatting_func = None, |
|
|
**kwargs |
|
|
): |
|
|
if args is None: args = UnslothGKDConfig() |
|
|
use_bf16 = getattr(args, 'bf16', False) |
|
|
if type(use_bf16) is not bool: use_bf16 = False |
|
|
use_fp16 = getattr(args, 'fp16', False) |
|
|
if type(use_fp16) is not bool: use_fp16 = False |
|
|
force_float32 = False |
|
|
full_finetuning = os.environ.get('UNSLOTH_ENABLE_FULL_FINETUNING', '0') == '1' |
|
|
if not full_finetuning and (os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1'): |
|
|
print('Unsloth: Switching to float32 training since model cannot work with float16') |
|
|
force_float32 = True |
|
|
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') |
|
|
dtype = getattr(model.config, 'dtype', None) or getattr(model.config, 'torch_dtype', None) |
|
|
if dtype is None: dtype = model.get_input_embeddings().dtype |
|
|
from unsloth_zoo.utils import _get_dtype |
|
|
dtype = _get_dtype(dtype) |
|
|
float16 = dtype == torch.float16 |
|
|
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') |
|
|
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') |
|
|
if force_float32: |
|
|
|
|
|
args.fp16 = False |
|
|
args.bf16 = False |
|
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' |
|
|
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': |
|
|
|
|
|
args.fp16 = float16 |
|
|
args.bf16 = not float16 |
|
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' |
|
|
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': |
|
|
args.eval_strategy = 'steps' |
|
|
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 |
|
|
ga_steps = getattr(args, 'gradient_accumulation_steps', None) |
|
|
if ga_steps is not None and ga_steps > 1: |
|
|
from transformers import __version__ as transformers_version |
|
|
if Version(transformers_version) <= Version('4.45.2'): |
|
|
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' |
|
|
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') |
|
|
if getattr(args, 'eval_strategy', 'no') != 'no': |
|
|
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) |
|
|
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size |
|
|
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps |
|
|
fp16_full_eval = getattr(args, 'fp16_full_eval', False) |
|
|
if type(fp16_full_eval) is not bool: fp16_full_eval = False |
|
|
bf16_full_eval = getattr(args, 'bf16_full_eval', False) |
|
|
if type(bf16_full_eval) is not bool: bf16_full_eval = False |
|
|
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True |
|
|
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False |
|
|
if force_float32: |
|
|
args.bf16_full_eval = False |
|
|
args.fp16_full_eval = False |
|
|
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': |
|
|
args.bf16_full_eval = True |
|
|
args.fp16_full_eval = False |
|
|
elif not bf16_full_eval and not fp16_full_eval: |
|
|
args.bf16_full_eval = args.bf16 |
|
|
args.fp16_full_eval = args.fp16 |
|
|
_output_logits = False |
|
|
if locals().get('compute_metrics', None) is not None: _output_logits = True |
|
|
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True |
|
|
if _output_logits: |
|
|
os.environ['UNSLOTH_RETURN_LOGITS'] = '1' |
|
|
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): |
|
|
pass |
|
|
else: |
|
|
model_max_seq_length = getattr(model, 'max_seq_length', None) |
|
|
args_max_seq_length = getattr(args, 'max_seq_length', None) |
|
|
if args_max_seq_length is None and model_max_seq_length is not None: |
|
|
max_seq_length = model.max_seq_length |
|
|
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length |
|
|
if model is not None and hasattr(model, 'for_training'): |
|
|
model.for_training() |
|
|
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' |
|
|
if 'processing_class' in locals(): |
|
|
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' |
|
|
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' |
|
|
__tokenizer = processing_class if 'processing_class' in locals() else tokenizer |
|
|
from unsloth_zoo.vision_utils import UnslothVisionDataCollator |
|
|
if not isinstance(data_collator, UnslothVisionDataCollator): |
|
|
if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: |
|
|
data_collator = TransformersDataCollatorForLanguageModeling( |
|
|
__tokenizer, |
|
|
mlm = False, |
|
|
mlm_probability = 0.0, |
|
|
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), |
|
|
) |
|
|
elif isinstance(data_collator, TransformersDataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: |
|
|
data_collator = DataCollatorForSeq2Seq( |
|
|
__tokenizer, |
|
|
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), |
|
|
) |
|
|
else: |
|
|
if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False |
|
|
if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' |
|
|
if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} |
|
|
if not isinstance(data_collator, UnslothVisionDataCollator): |
|
|
if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): |
|
|
if isinstance(data_collator, DataCollatorForSeq2Seq): |
|
|
data_collator = DataCollatorForSeq2Seq( |
|
|
__tokenizer.tokenizer, |
|
|
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), |
|
|
) |
|
|
else: |
|
|
data_collator = TransformersDataCollatorForLanguageModeling( |
|
|
__tokenizer.tokenizer, |
|
|
mlm = False, |
|
|
mlm_probability = 0.0, |
|
|
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), |
|
|
) |
|
|
other_metrics = [] |
|
|
|
|
|
from unsloth_zoo.logging_utils import PatchRLStatistics |
|
|
PatchRLStatistics('gkd_trainer', other_metrics) |
|
|
|
|
|
|
|
|
|
|
|
if getattr(args, "parallel_mode", None) == ParallelMode.NOT_DISTRIBUTED and args.n_gpu > 1: |
|
|
if getattr(args, "_n_gpu", 1) != 1: |
|
|
args._n_gpu = 1 |
|
|
if "model" in locals() and hasattr(model, "for_training"): |
|
|
model.for_training() |
|
|
super().__init__( |
|
|
model = model, |
|
|
teacher_model = teacher_model, |
|
|
args = args, |
|
|
data_collator = data_collator, |
|
|
train_dataset = train_dataset, |
|
|
eval_dataset = eval_dataset, |
|
|
processing_class = processing_class, |
|
|
compute_metrics = compute_metrics, |
|
|
callbacks = callbacks, |
|
|
preprocess_logits_for_metrics = preprocess_logits_for_metrics, |
|
|
peft_config = peft_config, |
|
|
formatting_func = formatting_func,**kwargs) |
|
|
if "model" in locals() and hasattr(model, "for_inference"): |
|
|
model.for_inference() |
|
|
if hasattr(self, 'neftune_hook_handle'): |
|
|
self.neftune_hook_handle.remove() |
|
|
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle |
|
|
if getattr(args, 'neftune_noise_alpha', None) is not None: |
|
|
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha |
|
|
pass |
|
|
if hasattr(self, 'accelerator'): |
|
|
scaler = self.accelerator.scaler |
|
|
current_model = model |
|
|
while hasattr(current_model, 'model'): |
|
|
current_model.accelerator_scaler = scaler |
|
|
current_model = current_model.model |
|
|
current_model.accelerator_scaler = scaler |
|
|
pass |
|
|
if hasattr(self, 'train'): |
|
|
self.train = MethodType(prepare_for_training_mode(self.__class__.train), self) |
|
|
pass |
|
|
|
|
|
pass |
|
|
|