|
|
#include "speculative.h" |
|
|
|
|
|
#include "ggml.h" |
|
|
#include "llama.h" |
|
|
#include "log.h" |
|
|
#include "common.h" |
|
|
#include "sampling.h" |
|
|
|
|
|
#include <cstring> |
|
|
#include <algorithm> |
|
|
#include <map> |
|
|
|
|
|
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128 |
|
|
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5 |
|
|
|
|
|
struct common_speculative { |
|
|
struct llama_context * ctx_tgt; |
|
|
struct llama_context * ctx_dft; |
|
|
struct common_sampler * smpl; |
|
|
|
|
|
llama_batch batch; |
|
|
llama_tokens prompt_dft; |
|
|
bool vocab_dft_compatible = true; |
|
|
std::map<std::string, std::string> tgt_dft_replacements = {}; |
|
|
}; |
|
|
|
|
|
struct common_speculative * common_speculative_init( |
|
|
struct llama_context * ctx_tgt, |
|
|
struct llama_context * ctx_dft) { |
|
|
auto * result = new common_speculative { |
|
|
ctx_tgt, |
|
|
ctx_dft, |
|
|
nullptr, |
|
|
llama_batch_init(llama_n_batch(ctx_dft), 0, 1), |
|
|
{}, |
|
|
false, |
|
|
}; |
|
|
|
|
|
|
|
|
#if 0 |
|
|
{ |
|
|
common_params_sampling params; |
|
|
params.no_perf = false; |
|
|
|
|
|
params.top_k = 40; |
|
|
params.top_p = 0.9; |
|
|
|
|
|
params.samplers = { |
|
|
COMMON_SAMPLER_TYPE_TOP_K, |
|
|
COMMON_SAMPLER_TYPE_TOP_P, |
|
|
COMMON_SAMPLER_TYPE_INFILL, |
|
|
}; |
|
|
|
|
|
result->smpl = common_sampler_init(llama_get_model(ctx_dft), params); |
|
|
} |
|
|
#else |
|
|
{ |
|
|
common_params_sampling params; |
|
|
params.no_perf = false; |
|
|
|
|
|
params.top_k = 10; |
|
|
|
|
|
params.samplers = { |
|
|
COMMON_SAMPLER_TYPE_TOP_K, |
|
|
}; |
|
|
|
|
|
result->smpl = common_sampler_init(llama_get_model(ctx_dft), params); |
|
|
} |
|
|
#endif |
|
|
|
|
|
result->vocab_dft_compatible = common_speculative_are_compatible(ctx_tgt, ctx_dft); |
|
|
LOG_DBG("vocab_dft_compatible = %d\n", result->vocab_dft_compatible); |
|
|
|
|
|
return result; |
|
|
} |
|
|
|
|
|
void common_speculative_free(struct common_speculative * spec) { |
|
|
if (spec == nullptr) { |
|
|
return; |
|
|
} |
|
|
|
|
|
common_sampler_free(spec->smpl); |
|
|
|
|
|
llama_batch_free(spec->batch); |
|
|
|
|
|
delete spec; |
|
|
} |
|
|
|
|
|
bool common_speculative_are_compatible( |
|
|
const struct llama_context * ctx_tgt, |
|
|
const struct llama_context * ctx_dft) { |
|
|
const struct llama_model * model_tgt = llama_get_model(ctx_tgt); |
|
|
const struct llama_model * model_dft = llama_get_model(ctx_dft); |
|
|
|
|
|
const struct llama_vocab * vocab_tgt = llama_model_get_vocab(model_tgt); |
|
|
const struct llama_vocab * vocab_dft = llama_model_get_vocab(model_dft); |
|
|
|
|
|
const bool vocab_type_tgt = llama_vocab_type(vocab_tgt); |
|
|
LOG_DBG("%s: vocab_type tgt: %d\n", __func__, vocab_type_tgt); |
|
|
|
|
|
const bool vocab_type_dft = llama_vocab_type(vocab_dft); |
|
|
LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft); |
|
|
|
|
|
if (vocab_type_tgt != vocab_type_dft) { |
|
|
LOG_DBG("%s: draft model vocab type must match target model to use speculation but ", __func__); |
|
|
LOG_DBG("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt); |
|
|
return false; |
|
|
} |
|
|
|
|
|
if ( |
|
|
llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) || |
|
|
llama_vocab_get_add_eos(vocab_tgt) != llama_vocab_get_add_eos(vocab_dft) || |
|
|
llama_vocab_bos(vocab_tgt) != llama_vocab_bos(vocab_dft) || |
|
|
llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft) |
|
|
) { |
|
|
LOG_DBG("%s: draft model special tokens must match target model to use speculation\n", __func__); |
|
|
return false; |
|
|
} |
|
|
|
|
|
{ |
|
|
const int n_vocab_tgt = llama_vocab_n_tokens(vocab_tgt); |
|
|
const int n_vocab_dft = llama_vocab_n_tokens(vocab_dft); |
|
|
const int vocab_diff = n_vocab_tgt > n_vocab_dft |
|
|
? n_vocab_tgt - n_vocab_dft |
|
|
: n_vocab_dft - n_vocab_tgt; |
|
|
|
|
|
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) { |
|
|
LOG_DBG("%s: draft model vocab must closely match target model to use speculation but ", __func__); |
|
|
LOG_DBG("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n", |
|
|
n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE); |
|
|
return false; |
|
|
} |
|
|
|
|
|
for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) { |
|
|
const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i); |
|
|
const char * token_text_dft = llama_vocab_get_text(vocab_dft, i); |
|
|
if (std::strcmp(token_text_tgt, token_text_dft) != 0) { |
|
|
LOG_DBG("%s: draft model vocab must match target model to use speculation but ", __func__); |
|
|
LOG_DBG("token %d content differs - target '%s', draft '%s'\n", i, |
|
|
common_token_to_piece(ctx_tgt, i).c_str(), |
|
|
common_token_to_piece(ctx_dft, i).c_str()); |
|
|
return false; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
return true; |
|
|
} |
|
|
|
|
|
void common_speculative_add_replacement_tgt_dft( |
|
|
struct common_speculative * spec, |
|
|
const char *source, const char *dest) { |
|
|
spec->tgt_dft_replacements[source] = dest; |
|
|
} |
|
|
|
|
|
static std::string replace_to_dft( |
|
|
struct common_speculative * spec, |
|
|
const std::string& input) { |
|
|
std::string result = input; |
|
|
for (const auto & pair : spec->tgt_dft_replacements) { |
|
|
size_t pos = result.find(pair.first); |
|
|
while (pos != std::string::npos) { |
|
|
result.replace(pos, pair.first.length(), pair.second); |
|
|
pos = result.find(pair.first, pos + pair.second.length()); |
|
|
} |
|
|
} |
|
|
return result; |
|
|
} |
|
|
|
|
|
static std::string replace_to_tgt( |
|
|
struct common_speculative * spec, |
|
|
const std::string& input) { |
|
|
std::string result = input; |
|
|
for (const auto& pair : spec->tgt_dft_replacements) { |
|
|
size_t pos = result.find(pair.second); |
|
|
while (pos != std::string::npos) { |
|
|
result.replace(pos, pair.second.length(), pair.first); |
|
|
pos = result.find(pair.second, pos + pair.first.length()); |
|
|
} |
|
|
} |
|
|
return result; |
|
|
} |
|
|
|
|
|
|
|
|
llama_tokens common_speculative_gen_draft( |
|
|
struct common_speculative * spec, |
|
|
struct common_speculative_params params, |
|
|
const llama_tokens & prompt_tgt_main_model, |
|
|
llama_token id_last) { |
|
|
auto & batch = spec->batch; |
|
|
auto & ctx_tgt = spec->ctx_tgt; |
|
|
auto & ctx_dft = spec->ctx_dft; |
|
|
auto & smpl = spec->smpl; |
|
|
auto & prompt_dft = spec->prompt_dft; |
|
|
|
|
|
auto * mem_dft = llama_get_memory(ctx_dft); |
|
|
|
|
|
int reuse_i = 0; |
|
|
int reuse_n = 0; |
|
|
|
|
|
const int n_ctx = llama_n_ctx(ctx_dft) - params.n_draft; |
|
|
|
|
|
llama_tokens prompt_tgt_draft_model; |
|
|
if (!spec->vocab_dft_compatible) { |
|
|
std::string text; |
|
|
text = common_detokenize(ctx_tgt, prompt_tgt_main_model, true); |
|
|
text = replace_to_dft(spec, text); |
|
|
LOG_DBG("%s: main->draft detokenized string: '%s'\n", __func__, text.c_str()); |
|
|
prompt_tgt_draft_model = common_tokenize(ctx_dft, text, false, true); |
|
|
|
|
|
|
|
|
const auto * model_tgt = llama_get_model(ctx_tgt); |
|
|
const auto * vocab_tgt = llama_model_get_vocab(model_tgt); |
|
|
|
|
|
int32_t n_chars = llama_detokenize(vocab_tgt, &id_last, 1, nullptr, 0, false, false); |
|
|
GGML_ASSERT(n_chars < 0 && "failed to detokenize id_last"); |
|
|
text.resize(-n_chars); |
|
|
llama_detokenize(vocab_tgt, &id_last, 1, text.data(), text.size(), false, false); |
|
|
text = replace_to_dft(spec, text); |
|
|
|
|
|
LOG_DBG("main->draft detokenized id_last(%d): '%s'\n", id_last, text.c_str()); |
|
|
id_last = common_tokenize(ctx_dft, text, false, true)[0]; |
|
|
} |
|
|
|
|
|
const llama_tokens &prompt_tgt = |
|
|
spec->vocab_dft_compatible ? prompt_tgt_main_model : prompt_tgt_draft_model; |
|
|
|
|
|
const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx); |
|
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < (int) prompt_dft.size(); ++i) { |
|
|
int cur = 0; |
|
|
while (i_start + cur < (int) prompt_tgt.size() && |
|
|
i + cur < (int) prompt_dft.size() && |
|
|
prompt_tgt[i_start + cur] == prompt_dft[i + cur]) { |
|
|
cur++; |
|
|
} |
|
|
|
|
|
if ((cur >= params.n_reuse || n_ctx >= (int) prompt_tgt.size()) && cur > reuse_n) { |
|
|
reuse_i = i; |
|
|
reuse_n = cur; |
|
|
} |
|
|
} |
|
|
|
|
|
LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt_dft.size()); |
|
|
|
|
|
llama_tokens result; |
|
|
result.reserve(params.n_draft); |
|
|
|
|
|
if (reuse_n == 0) { |
|
|
llama_memory_clear(mem_dft, false); |
|
|
prompt_dft.clear(); |
|
|
} else { |
|
|
|
|
|
|
|
|
if (reuse_i + reuse_n < (int) prompt_dft.size() && prompt_dft[reuse_i + reuse_n] == id_last) { |
|
|
for (int i = reuse_i + reuse_n + 1; i < (int) prompt_dft.size(); ++i) { |
|
|
result.push_back(prompt_dft[i]); |
|
|
|
|
|
if (params.n_draft <= (int) result.size()) { |
|
|
break; |
|
|
} |
|
|
} |
|
|
|
|
|
return result; |
|
|
} |
|
|
|
|
|
if (reuse_i > 0) { |
|
|
llama_memory_seq_rm (mem_dft, 0, 0, reuse_i); |
|
|
llama_memory_seq_add(mem_dft, 0, reuse_i, -1, -reuse_i); |
|
|
|
|
|
prompt_dft.erase(prompt_dft.begin(), prompt_dft.begin() + reuse_i); |
|
|
} |
|
|
|
|
|
if (reuse_n < (int) prompt_dft.size()) { |
|
|
llama_memory_seq_rm (mem_dft, 0, reuse_n, -1); |
|
|
prompt_dft.erase(prompt_dft.begin() + reuse_n, prompt_dft.end()); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
common_batch_clear(batch); |
|
|
|
|
|
for (size_t i = i_start + reuse_n; i < prompt_tgt.size(); ++i) { |
|
|
|
|
|
common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false); |
|
|
|
|
|
prompt_dft.push_back(prompt_tgt[i]); |
|
|
} |
|
|
|
|
|
|
|
|
if (batch.n_tokens > 0) { |
|
|
|
|
|
|
|
|
llama_decode(ctx_dft, batch); |
|
|
} |
|
|
|
|
|
const llama_pos n_past = prompt_dft.size(); |
|
|
|
|
|
LOG_DBG("%s: n_past = %d\n", __func__, n_past); |
|
|
|
|
|
common_batch_clear(batch); |
|
|
common_batch_add (batch, id_last, n_past, { 0 }, true); |
|
|
|
|
|
prompt_dft.push_back(id_last); |
|
|
|
|
|
LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx_dft, prompt_dft).c_str()); |
|
|
|
|
|
llama_decode(ctx_dft, batch); |
|
|
|
|
|
common_sampler_reset(smpl); |
|
|
|
|
|
|
|
|
for (int i = 0; i < params.n_draft; ++i) { |
|
|
common_batch_clear(batch); |
|
|
|
|
|
common_sampler_sample(smpl, ctx_dft, 0, true); |
|
|
|
|
|
const auto * cur_p = common_sampler_get_candidates(smpl, true); |
|
|
|
|
|
for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) { |
|
|
LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n", |
|
|
k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx_dft, cur_p->data[k].id).c_str()); |
|
|
} |
|
|
|
|
|
|
|
|
const llama_token id = cur_p->data[0].id; |
|
|
|
|
|
common_sampler_accept(smpl, id, true); |
|
|
|
|
|
result.push_back(id); |
|
|
|
|
|
if (params.n_draft <= (int) result.size()) { |
|
|
break; |
|
|
} |
|
|
|
|
|
|
|
|
if (cur_p->data[0].p < params.p_min) { |
|
|
break; |
|
|
} |
|
|
|
|
|
common_batch_add(batch, id, n_past + i + 1, { 0 }, true); |
|
|
|
|
|
|
|
|
llama_decode(ctx_dft, batch); |
|
|
|
|
|
prompt_dft.push_back(id); |
|
|
} |
|
|
|
|
|
if (!spec->vocab_dft_compatible) { |
|
|
std::string detokenized = common_detokenize(ctx_dft, result, true); |
|
|
detokenized = replace_to_tgt(spec, detokenized); |
|
|
LOG_DBG("draft->main detokenized string: '%s'\n", detokenized.c_str()); |
|
|
result = common_tokenize(ctx_tgt, detokenized, false, true); |
|
|
if (result.size() > (size_t)params.n_draft) { |
|
|
result.resize(params.n_draft); |
|
|
} |
|
|
} |
|
|
return result; |
|
|
} |
|
|
|