|
|
#if defined(_MSC_VER) |
|
|
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING |
|
|
#endif |
|
|
|
|
|
#include "ggml.h" |
|
|
#include "gguf.h" |
|
|
|
|
|
#include "common.h" |
|
|
#include "log.h" |
|
|
#include "llama.h" |
|
|
|
|
|
#include <algorithm> |
|
|
#include <cinttypes> |
|
|
#include <climits> |
|
|
#include <cmath> |
|
|
#include <codecvt> |
|
|
#include <chrono> |
|
|
#include <cstdarg> |
|
|
#include <cstring> |
|
|
#include <ctime> |
|
|
#include <filesystem> |
|
|
#include <fstream> |
|
|
#include <iostream> |
|
|
#include <iterator> |
|
|
#include <regex> |
|
|
#include <sstream> |
|
|
#include <string> |
|
|
#include <thread> |
|
|
#include <unordered_map> |
|
|
#include <unordered_set> |
|
|
#include <vector> |
|
|
|
|
|
#if defined(__APPLE__) && defined(__MACH__) |
|
|
#include <sys/types.h> |
|
|
#include <sys/sysctl.h> |
|
|
#endif |
|
|
|
|
|
#if defined(_WIN32) |
|
|
#define WIN32_LEAN_AND_MEAN |
|
|
#ifndef NOMINMAX |
|
|
# define NOMINMAX |
|
|
#endif |
|
|
#include <locale> |
|
|
#include <windows.h> |
|
|
#include <string.h> |
|
|
#include <fcntl.h> |
|
|
#include <io.h> |
|
|
#else |
|
|
#include <sys/ioctl.h> |
|
|
#include <sys/stat.h> |
|
|
#include <unistd.h> |
|
|
#endif |
|
|
|
|
|
#if defined(__linux__) |
|
|
#include <sys/types.h> |
|
|
#include <pwd.h> |
|
|
#endif |
|
|
|
|
|
#if defined(_MSC_VER) |
|
|
#pragma warning(disable: 4244 4267) |
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int32_t cpu_get_num_physical_cores() { |
|
|
#ifdef __linux__ |
|
|
|
|
|
std::unordered_set<std::string> siblings; |
|
|
for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) { |
|
|
std::ifstream thread_siblings("/sys/devices/system/cpu/cpu" |
|
|
+ std::to_string(cpu) + "/topology/thread_siblings"); |
|
|
if (!thread_siblings.is_open()) { |
|
|
break; |
|
|
} |
|
|
std::string line; |
|
|
if (std::getline(thread_siblings, line)) { |
|
|
siblings.insert(line); |
|
|
} |
|
|
} |
|
|
if (!siblings.empty()) { |
|
|
return static_cast<int32_t>(siblings.size()); |
|
|
} |
|
|
#elif defined(__APPLE__) && defined(__MACH__) |
|
|
int32_t num_physical_cores; |
|
|
size_t len = sizeof(num_physical_cores); |
|
|
int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0); |
|
|
if (result == 0) { |
|
|
return num_physical_cores; |
|
|
} |
|
|
result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0); |
|
|
if (result == 0) { |
|
|
return num_physical_cores; |
|
|
} |
|
|
#elif defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) |
|
|
|
|
|
unsigned int n_threads_win = std::thread::hardware_concurrency(); |
|
|
unsigned int default_threads = n_threads_win > 0 ? (n_threads_win <= 4 ? n_threads_win : n_threads_win / 2) : 4; |
|
|
|
|
|
DWORD buffer_size = 0; |
|
|
if (!GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, &buffer_size)) { |
|
|
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) { |
|
|
return default_threads; |
|
|
} |
|
|
} |
|
|
|
|
|
std::vector<char> buffer(buffer_size); |
|
|
if (!GetLogicalProcessorInformationEx(RelationProcessorCore, reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data()), &buffer_size)) { |
|
|
return default_threads; |
|
|
} |
|
|
|
|
|
int32_t num_physical_cores = 0; |
|
|
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data()); |
|
|
while (buffer_size > 0) { |
|
|
if (info->Relationship == RelationProcessorCore) { |
|
|
num_physical_cores += info->Processor.GroupCount; |
|
|
} |
|
|
buffer_size -= info->Size; |
|
|
info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(reinterpret_cast<char*>(info) + info->Size); |
|
|
} |
|
|
|
|
|
return num_physical_cores > 0 ? num_physical_cores : default_threads; |
|
|
#endif |
|
|
unsigned int n_threads = std::thread::hardware_concurrency(); |
|
|
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4; |
|
|
} |
|
|
|
|
|
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__) |
|
|
#include <pthread.h> |
|
|
|
|
|
static void cpuid(unsigned leaf, unsigned subleaf, |
|
|
unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) { |
|
|
__asm__("movq\t%%rbx,%%rsi\n\t" |
|
|
"cpuid\n\t" |
|
|
"xchgq\t%%rbx,%%rsi" |
|
|
: "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx) |
|
|
: "0"(leaf), "2"(subleaf)); |
|
|
} |
|
|
|
|
|
static int pin_cpu(int cpu) { |
|
|
cpu_set_t mask; |
|
|
CPU_ZERO(&mask); |
|
|
CPU_SET(cpu, &mask); |
|
|
return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask); |
|
|
} |
|
|
|
|
|
static bool is_hybrid_cpu(void) { |
|
|
unsigned eax, ebx, ecx, edx; |
|
|
cpuid(7, 0, &eax, &ebx, &ecx, &edx); |
|
|
return !!(edx & (1u << 15)); |
|
|
} |
|
|
|
|
|
static bool is_running_on_efficiency_core(void) { |
|
|
unsigned eax, ebx, ecx, edx; |
|
|
cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx); |
|
|
int intel_atom = 0x20; |
|
|
int core_type = (eax & 0xff000000u) >> 24; |
|
|
return core_type == intel_atom; |
|
|
} |
|
|
|
|
|
static int cpu_count_math_cpus(int n_cpu) { |
|
|
int result = 0; |
|
|
for (int cpu = 0; cpu < n_cpu; ++cpu) { |
|
|
if (pin_cpu(cpu)) { |
|
|
return -1; |
|
|
} |
|
|
if (is_running_on_efficiency_core()) { |
|
|
continue; |
|
|
} |
|
|
++cpu; |
|
|
++result; |
|
|
} |
|
|
return result; |
|
|
} |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int32_t cpu_get_num_math() { |
|
|
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__) |
|
|
int n_cpu = sysconf(_SC_NPROCESSORS_ONLN); |
|
|
if (n_cpu < 1) { |
|
|
return cpu_get_num_physical_cores(); |
|
|
} |
|
|
if (is_hybrid_cpu()) { |
|
|
cpu_set_t affinity; |
|
|
if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) { |
|
|
int result = cpu_count_math_cpus(n_cpu); |
|
|
pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity); |
|
|
if (result > 0) { |
|
|
return result; |
|
|
} |
|
|
} |
|
|
} |
|
|
#endif |
|
|
return cpu_get_num_physical_cores(); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
#if defined(_WIN32) |
|
|
|
|
|
bool set_process_priority(enum ggml_sched_priority prio) { |
|
|
if (prio == GGML_SCHED_PRIO_NORMAL) { |
|
|
return true; |
|
|
} |
|
|
|
|
|
DWORD p = NORMAL_PRIORITY_CLASS; |
|
|
switch (prio) { |
|
|
case GGML_SCHED_PRIO_LOW: p = BELOW_NORMAL_PRIORITY_CLASS; break; |
|
|
case GGML_SCHED_PRIO_NORMAL: p = NORMAL_PRIORITY_CLASS; break; |
|
|
case GGML_SCHED_PRIO_MEDIUM: p = ABOVE_NORMAL_PRIORITY_CLASS; break; |
|
|
case GGML_SCHED_PRIO_HIGH: p = HIGH_PRIORITY_CLASS; break; |
|
|
case GGML_SCHED_PRIO_REALTIME: p = REALTIME_PRIORITY_CLASS; break; |
|
|
} |
|
|
|
|
|
if (!SetPriorityClass(GetCurrentProcess(), p)) { |
|
|
LOG_WRN("failed to set process priority class %d : (%d)\n", prio, (int) GetLastError()); |
|
|
return false; |
|
|
} |
|
|
|
|
|
return true; |
|
|
} |
|
|
|
|
|
#else |
|
|
#include <sys/types.h> |
|
|
#include <sys/resource.h> |
|
|
|
|
|
bool set_process_priority(enum ggml_sched_priority prio) { |
|
|
if (prio == GGML_SCHED_PRIO_NORMAL) { |
|
|
return true; |
|
|
} |
|
|
|
|
|
int p = 0; |
|
|
switch (prio) { |
|
|
case GGML_SCHED_PRIO_LOW: p = 5; break; |
|
|
case GGML_SCHED_PRIO_NORMAL: p = 0; break; |
|
|
case GGML_SCHED_PRIO_MEDIUM: p = -5; break; |
|
|
case GGML_SCHED_PRIO_HIGH: p = -10; break; |
|
|
case GGML_SCHED_PRIO_REALTIME: p = -20; break; |
|
|
} |
|
|
|
|
|
if (!setpriority(PRIO_PROCESS, 0, p)) { |
|
|
LOG_WRN("failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno); |
|
|
return false; |
|
|
} |
|
|
return true; |
|
|
} |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model) { |
|
|
int32_t n_set = 0; |
|
|
|
|
|
if (cpuparams.n_threads < 0) { |
|
|
|
|
|
if (role_model != nullptr) { |
|
|
cpuparams = *role_model; |
|
|
} else { |
|
|
cpuparams.n_threads = cpu_get_num_math(); |
|
|
} |
|
|
} |
|
|
|
|
|
for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) { |
|
|
if (cpuparams.cpumask[i]) { |
|
|
n_set++; |
|
|
} |
|
|
} |
|
|
|
|
|
if (n_set && n_set < cpuparams.n_threads) { |
|
|
|
|
|
LOG_WRN("Not enough set bits in CPU mask (%d) to satisfy requested thread count: %d\n", n_set, cpuparams.n_threads); |
|
|
} |
|
|
} |
|
|
|
|
|
bool parse_cpu_range(const std::string & range, bool (&boolmask)[GGML_MAX_N_THREADS]) { |
|
|
size_t dash_loc = range.find('-'); |
|
|
if (dash_loc == std::string::npos) { |
|
|
LOG_ERR("Format of CPU range is invalid! Expected [<start>]-[<end>].\n"); |
|
|
return false; |
|
|
} |
|
|
|
|
|
size_t start_i; |
|
|
size_t end_i; |
|
|
|
|
|
if (dash_loc == 0) { |
|
|
start_i = 0; |
|
|
} else { |
|
|
start_i = std::stoull(range.substr(0, dash_loc)); |
|
|
if (start_i >= GGML_MAX_N_THREADS) { |
|
|
LOG_ERR("Start index out of bounds!\n"); |
|
|
return false; |
|
|
} |
|
|
} |
|
|
|
|
|
if (dash_loc == range.length() - 1) { |
|
|
end_i = GGML_MAX_N_THREADS - 1; |
|
|
} else { |
|
|
end_i = std::stoull(range.substr(dash_loc + 1)); |
|
|
if (end_i >= GGML_MAX_N_THREADS) { |
|
|
LOG_ERR("End index out of bounds!\n"); |
|
|
return false; |
|
|
} |
|
|
} |
|
|
|
|
|
for (size_t i = start_i; i <= end_i; i++) { |
|
|
boolmask[i] = true; |
|
|
} |
|
|
|
|
|
return true; |
|
|
} |
|
|
|
|
|
bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREADS]) { |
|
|
|
|
|
size_t start_i = 0; |
|
|
if (mask.length() >= 2 && mask.substr(0, 2) == "0x") { |
|
|
start_i = 2; |
|
|
} |
|
|
|
|
|
size_t num_digits = mask.length() - start_i; |
|
|
if (num_digits > 128) num_digits = 128; |
|
|
|
|
|
size_t end_i = num_digits + start_i; |
|
|
|
|
|
for (size_t i = start_i, n = (num_digits*4 - 1); i < end_i; i++, n-=4) { |
|
|
char c = mask.at(i); |
|
|
int8_t id = c; |
|
|
|
|
|
if ((c >= '0' && c <= '9')) { |
|
|
id -= '0'; |
|
|
} else if (c >= 'a' && c <= 'f') { |
|
|
id -= 'a' - 10; |
|
|
} else if (c >= 'A' && c <= 'F') { |
|
|
id -= 'A' - 10; |
|
|
} else { |
|
|
LOG_ERR("Invalid hex character '%c' at position %d\n", c, int32_t(i)); |
|
|
return false; |
|
|
} |
|
|
|
|
|
boolmask[ n ] = boolmask[ n ] || ((id & 8) != 0); |
|
|
boolmask[n - 1] = boolmask[n - 1] || ((id & 4) != 0); |
|
|
boolmask[n - 2] = boolmask[n - 2] || ((id & 2) != 0); |
|
|
boolmask[n - 3] = boolmask[n - 3] || ((id & 1) != 0); |
|
|
} |
|
|
|
|
|
return true; |
|
|
} |
|
|
|
|
|
void common_init() { |
|
|
llama_log_set([](ggml_log_level level, const char * text, void * ) { |
|
|
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) { |
|
|
common_log_add(common_log_main(), level, "%s", text); |
|
|
} |
|
|
}, NULL); |
|
|
|
|
|
#ifdef NDEBUG |
|
|
const char * build_type = ""; |
|
|
#else |
|
|
const char * build_type = " (debug)"; |
|
|
#endif |
|
|
|
|
|
LOG_INF("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type); |
|
|
} |
|
|
|
|
|
std::string common_params_get_system_info(const common_params & params) { |
|
|
std::ostringstream os; |
|
|
|
|
|
os << "system_info: n_threads = " << params.cpuparams.n_threads; |
|
|
if (params.cpuparams_batch.n_threads != -1) { |
|
|
os << " (n_threads_batch = " << params.cpuparams_batch.n_threads << ")"; |
|
|
} |
|
|
#if defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) |
|
|
|
|
|
DWORD logicalProcessorCount = GetActiveProcessorCount(ALL_PROCESSOR_GROUPS); |
|
|
os << " / " << logicalProcessorCount << " | " << llama_print_system_info(); |
|
|
#else |
|
|
os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info(); |
|
|
#endif |
|
|
|
|
|
return os.str(); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::string string_format(const char * fmt, ...) { |
|
|
va_list ap; |
|
|
va_list ap2; |
|
|
va_start(ap, fmt); |
|
|
va_copy(ap2, ap); |
|
|
int size = vsnprintf(NULL, 0, fmt, ap); |
|
|
GGML_ASSERT(size >= 0 && size < INT_MAX); |
|
|
std::vector<char> buf(size + 1); |
|
|
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); |
|
|
GGML_ASSERT(size2 == size); |
|
|
va_end(ap2); |
|
|
va_end(ap); |
|
|
return std::string(buf.data(), size); |
|
|
} |
|
|
|
|
|
std::string string_strip(const std::string & str) { |
|
|
size_t start = 0; |
|
|
size_t end = str.size(); |
|
|
while (start < end && std::isspace(str[start])) { |
|
|
start++; |
|
|
} |
|
|
while (end > start && std::isspace(str[end - 1])) { |
|
|
end--; |
|
|
} |
|
|
return str.substr(start, end - start); |
|
|
} |
|
|
|
|
|
std::string string_get_sortable_timestamp() { |
|
|
using clock = std::chrono::system_clock; |
|
|
|
|
|
const clock::time_point current_time = clock::now(); |
|
|
const time_t as_time_t = clock::to_time_t(current_time); |
|
|
char timestamp_no_ns[100]; |
|
|
std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t)); |
|
|
|
|
|
const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>( |
|
|
current_time.time_since_epoch() % 1000000000).count(); |
|
|
char timestamp_ns[11]; |
|
|
snprintf(timestamp_ns, 11, "%09" PRId64, ns); |
|
|
|
|
|
return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns); |
|
|
} |
|
|
|
|
|
void string_replace_all(std::string & s, const std::string & search, const std::string & replace) { |
|
|
if (search.empty()) { |
|
|
return; |
|
|
} |
|
|
std::string builder; |
|
|
builder.reserve(s.length()); |
|
|
size_t pos = 0; |
|
|
size_t last_pos = 0; |
|
|
while ((pos = s.find(search, last_pos)) != std::string::npos) { |
|
|
builder.append(s, last_pos, pos - last_pos); |
|
|
builder.append(replace); |
|
|
last_pos = pos + search.length(); |
|
|
} |
|
|
builder.append(s, last_pos, std::string::npos); |
|
|
s = std::move(builder); |
|
|
} |
|
|
|
|
|
bool string_ends_with(const std::string_view & str, const std::string_view & suffix) { |
|
|
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0; |
|
|
} |
|
|
|
|
|
bool string_remove_suffix(std::string & str, const std::string_view & suffix) { |
|
|
bool has_suffix = string_ends_with(str, suffix); |
|
|
if (has_suffix) { |
|
|
str = str.substr(0, str.size() - suffix.size()); |
|
|
} |
|
|
return has_suffix; |
|
|
} |
|
|
|
|
|
size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop) { |
|
|
if (!str.empty() && !stop.empty()) { |
|
|
const char text_last_char = str.back(); |
|
|
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) { |
|
|
if (stop[char_index] == text_last_char) { |
|
|
const auto current_partial = stop.substr(0, char_index + 1); |
|
|
if (string_ends_with(str, current_partial)) { |
|
|
return str.size() - char_index - 1; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
return std::string::npos; |
|
|
} |
|
|
|
|
|
std::string regex_escape(const std::string & s) { |
|
|
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]"); |
|
|
return std::regex_replace(s, special_chars, "\\$&"); |
|
|
} |
|
|
|
|
|
std::string string_join(const std::vector<std::string> & values, const std::string & separator) { |
|
|
std::ostringstream result; |
|
|
for (size_t i = 0; i < values.size(); ++i) { |
|
|
if (i > 0) { |
|
|
result << separator; |
|
|
} |
|
|
result << values[i]; |
|
|
} |
|
|
return result.str(); |
|
|
} |
|
|
|
|
|
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter) { |
|
|
std::vector<std::string> parts; |
|
|
size_t start = 0; |
|
|
size_t end = str.find(delimiter); |
|
|
|
|
|
while (end != std::string::npos) { |
|
|
parts.push_back(str.substr(start, end - start)); |
|
|
start = end + delimiter.length(); |
|
|
end = str.find(delimiter, start); |
|
|
} |
|
|
|
|
|
parts.push_back(str.substr(start)); |
|
|
|
|
|
return parts; |
|
|
} |
|
|
|
|
|
std::string string_repeat(const std::string & str, size_t n) { |
|
|
if (n == 0) { |
|
|
return ""; |
|
|
} |
|
|
|
|
|
std::string result; |
|
|
result.reserve(str.length() * n); |
|
|
|
|
|
for (size_t i = 0; i < n; ++i) { |
|
|
result += str; |
|
|
} |
|
|
|
|
|
return result; |
|
|
} |
|
|
|
|
|
std::string string_from(bool value) { |
|
|
return value ? "true" : "false"; |
|
|
} |
|
|
|
|
|
std::string string_from(const std::vector<int> & values) { |
|
|
std::stringstream buf; |
|
|
|
|
|
buf << "[ "; |
|
|
bool first = true; |
|
|
for (auto e : values) { |
|
|
if (first) { |
|
|
first = false; |
|
|
} else { |
|
|
buf << ", "; |
|
|
} |
|
|
buf << std::to_string(e); |
|
|
} |
|
|
buf << " ]"; |
|
|
|
|
|
return buf.str(); |
|
|
} |
|
|
|
|
|
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens) { |
|
|
std::stringstream buf; |
|
|
|
|
|
buf << "[ "; |
|
|
|
|
|
bool first = true; |
|
|
for (const auto & token : tokens) { |
|
|
if (!first) { |
|
|
buf << ", "; |
|
|
} else { |
|
|
first = false; |
|
|
} |
|
|
|
|
|
auto detokenized = common_token_to_piece(ctx, token); |
|
|
|
|
|
buf << "'" << detokenized << "'" |
|
|
<< ":" << std::to_string(token); |
|
|
} |
|
|
|
|
|
buf << " ]"; |
|
|
|
|
|
return buf.str(); |
|
|
} |
|
|
|
|
|
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch) { |
|
|
std::stringstream buf; |
|
|
|
|
|
buf << "[ "; |
|
|
|
|
|
bool first = true; |
|
|
for (int i = 0; i < batch.n_tokens; ++i) { |
|
|
if (!first) { |
|
|
buf << ", "; |
|
|
} else { |
|
|
first = false; |
|
|
} |
|
|
|
|
|
auto detokenized = common_token_to_piece(ctx, batch.token[i]); |
|
|
|
|
|
buf << "\n" << std::to_string(i) |
|
|
<< ", token '" << detokenized << "'" |
|
|
<< ", pos " << std::to_string(batch.pos[i]) |
|
|
<< ", n_seq_id " << std::to_string(batch.n_seq_id[i]) |
|
|
<< ", seq_id " << std::to_string(batch.seq_id[i][0]) |
|
|
<< ", logits " << std::to_string(batch.logits[i]); |
|
|
} |
|
|
|
|
|
buf << " ]"; |
|
|
|
|
|
return buf.str(); |
|
|
} |
|
|
|
|
|
void string_process_escapes(std::string & input) { |
|
|
std::size_t input_len = input.length(); |
|
|
std::size_t output_idx = 0; |
|
|
|
|
|
for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) { |
|
|
if (input[input_idx] == '\\' && input_idx + 1 < input_len) { |
|
|
switch (input[++input_idx]) { |
|
|
case 'n': input[output_idx++] = '\n'; break; |
|
|
case 'r': input[output_idx++] = '\r'; break; |
|
|
case 't': input[output_idx++] = '\t'; break; |
|
|
case '\'': input[output_idx++] = '\''; break; |
|
|
case '\"': input[output_idx++] = '\"'; break; |
|
|
case '\\': input[output_idx++] = '\\'; break; |
|
|
case 'x': |
|
|
|
|
|
if (input_idx + 2 < input_len) { |
|
|
const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 }; |
|
|
char *err_p = nullptr; |
|
|
const long val = std::strtol(x, &err_p, 16); |
|
|
if (err_p == x + 2) { |
|
|
input_idx += 2; |
|
|
input[output_idx++] = char(val); |
|
|
break; |
|
|
} |
|
|
} |
|
|
|
|
|
default: input[output_idx++] = '\\'; |
|
|
input[output_idx++] = input[input_idx]; break; |
|
|
} |
|
|
} else { |
|
|
input[output_idx++] = input[input_idx]; |
|
|
} |
|
|
} |
|
|
|
|
|
input.resize(output_idx); |
|
|
} |
|
|
|
|
|
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) { |
|
|
const char * sep = strchr(data, '='); |
|
|
if (sep == nullptr || sep - data >= 128) { |
|
|
LOG_ERR("%s: malformed KV override '%s'\n", __func__, data); |
|
|
return false; |
|
|
} |
|
|
llama_model_kv_override kvo; |
|
|
std::strncpy(kvo.key, data, sep - data); |
|
|
kvo.key[sep - data] = 0; |
|
|
sep++; |
|
|
if (strncmp(sep, "int:", 4) == 0) { |
|
|
sep += 4; |
|
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT; |
|
|
kvo.val_i64 = std::atol(sep); |
|
|
} else if (strncmp(sep, "float:", 6) == 0) { |
|
|
sep += 6; |
|
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT; |
|
|
kvo.val_f64 = std::atof(sep); |
|
|
} else if (strncmp(sep, "bool:", 5) == 0) { |
|
|
sep += 5; |
|
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL; |
|
|
if (std::strcmp(sep, "true") == 0) { |
|
|
kvo.val_bool = true; |
|
|
} else if (std::strcmp(sep, "false") == 0) { |
|
|
kvo.val_bool = false; |
|
|
} else { |
|
|
LOG_ERR("%s: invalid boolean value for KV override '%s'\n", __func__, data); |
|
|
return false; |
|
|
} |
|
|
} else if (strncmp(sep, "str:", 4) == 0) { |
|
|
sep += 4; |
|
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR; |
|
|
if (strlen(sep) > 127) { |
|
|
LOG_ERR("%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data); |
|
|
return false; |
|
|
} |
|
|
strncpy(kvo.val_str, sep, 127); |
|
|
kvo.val_str[127] = '\0'; |
|
|
} else { |
|
|
LOG_ERR("%s: invalid type for KV override '%s'\n", __func__, data); |
|
|
return false; |
|
|
} |
|
|
overrides.emplace_back(std::move(kvo)); |
|
|
return true; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool fs_validate_filename(const std::string & filename) { |
|
|
if (!filename.length()) { |
|
|
|
|
|
return false; |
|
|
} |
|
|
if (filename.length() > 255) { |
|
|
|
|
|
|
|
|
|
|
|
return false; |
|
|
} |
|
|
|
|
|
std::u32string filename_utf32; |
|
|
try { |
|
|
#if defined(__clang__) |
|
|
|
|
|
# pragma clang diagnostic push |
|
|
# pragma clang diagnostic ignored "-Wdeprecated-declarations" |
|
|
#elif defined(__GNUC__) |
|
|
# pragma GCC diagnostic push |
|
|
# pragma GCC diagnostic ignored "-Wdeprecated-declarations" |
|
|
#endif |
|
|
|
|
|
std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter; |
|
|
|
|
|
#if defined(__clang__) |
|
|
# pragma clang diagnostic pop |
|
|
#elif defined(__GNUC__) |
|
|
# pragma GCC diagnostic pop |
|
|
#endif |
|
|
|
|
|
filename_utf32 = converter.from_bytes(filename); |
|
|
|
|
|
|
|
|
|
|
|
std::string filename_reencoded = converter.to_bytes(filename_utf32); |
|
|
if (filename_reencoded != filename) { |
|
|
return false; |
|
|
} |
|
|
} catch (const std::exception &) { |
|
|
return false; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (char32_t c : filename_utf32) { |
|
|
if (c <= 0x1F |
|
|
|| c == 0x7F |
|
|
|| (c >= 0x80 && c <= 0x9F) |
|
|
|| c == 0xFF0E |
|
|
|| c == 0x2215 |
|
|
|| c == 0x2216 |
|
|
|| (c >= 0xD800 && c <= 0xDFFF) |
|
|
|| c == 0xFFFD |
|
|
|| c == 0xFEFF |
|
|
|| c == '/' || c == '\\' || c == ':' || c == '*' |
|
|
|| c == '?' || c == '"' || c == '<' || c == '>' || c == '|') { |
|
|
return false; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') { |
|
|
return false; |
|
|
} |
|
|
|
|
|
|
|
|
if (filename.find("..") != std::string::npos) { |
|
|
return false; |
|
|
} |
|
|
|
|
|
|
|
|
if (filename == ".") { |
|
|
return false; |
|
|
} |
|
|
|
|
|
return true; |
|
|
} |
|
|
|
|
|
#include <iostream> |
|
|
|
|
|
|
|
|
|
|
|
bool fs_create_directory_with_parents(const std::string & path) { |
|
|
#ifdef _WIN32 |
|
|
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter; |
|
|
std::wstring wpath = converter.from_bytes(path); |
|
|
|
|
|
|
|
|
const DWORD attributes = GetFileAttributesW(wpath.c_str()); |
|
|
if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) { |
|
|
return true; |
|
|
} |
|
|
|
|
|
size_t pos_slash = 0; |
|
|
|
|
|
|
|
|
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) { |
|
|
const std::wstring subpath = wpath.substr(0, pos_slash); |
|
|
|
|
|
pos_slash += 1; |
|
|
|
|
|
|
|
|
if (subpath.length() == 2 && subpath[1] == ':') { |
|
|
continue; |
|
|
} |
|
|
|
|
|
const bool success = CreateDirectoryW(subpath.c_str(), NULL); |
|
|
|
|
|
if (!success) { |
|
|
const DWORD error = GetLastError(); |
|
|
|
|
|
|
|
|
if (error == ERROR_ALREADY_EXISTS) { |
|
|
const DWORD attributes = GetFileAttributesW(subpath.c_str()); |
|
|
if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) { |
|
|
return false; |
|
|
} |
|
|
} else { |
|
|
return false; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
return true; |
|
|
#else |
|
|
|
|
|
struct stat info; |
|
|
if (stat(path.c_str(), &info) == 0) { |
|
|
return S_ISDIR(info.st_mode); |
|
|
} |
|
|
|
|
|
size_t pos_slash = 1; |
|
|
|
|
|
|
|
|
while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) { |
|
|
const std::string subpath = path.substr(0, pos_slash); |
|
|
struct stat info; |
|
|
|
|
|
|
|
|
if (stat(subpath.c_str(), &info) == 0) { |
|
|
if (!S_ISDIR(info.st_mode)) { |
|
|
return false; |
|
|
} |
|
|
} else { |
|
|
|
|
|
const int ret = mkdir(subpath.c_str(), 0755); |
|
|
if (ret != 0) { |
|
|
return false; |
|
|
} |
|
|
} |
|
|
|
|
|
pos_slash += 1; |
|
|
} |
|
|
|
|
|
return true; |
|
|
#endif |
|
|
} |
|
|
|
|
|
std::string fs_get_cache_directory() { |
|
|
std::string cache_directory = ""; |
|
|
auto ensure_trailing_slash = [](std::string p) { |
|
|
|
|
|
if (p.back() != DIRECTORY_SEPARATOR) { |
|
|
p += DIRECTORY_SEPARATOR; |
|
|
} |
|
|
return p; |
|
|
}; |
|
|
if (getenv("LLAMA_CACHE")) { |
|
|
cache_directory = std::getenv("LLAMA_CACHE"); |
|
|
} else { |
|
|
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX) || defined(__OpenBSD__) |
|
|
if (std::getenv("XDG_CACHE_HOME")) { |
|
|
cache_directory = std::getenv("XDG_CACHE_HOME"); |
|
|
} else if (std::getenv("HOME")) { |
|
|
cache_directory = std::getenv("HOME") + std::string("/.cache/"); |
|
|
} else { |
|
|
#if defined(__linux__) |
|
|
|
|
|
struct passwd *pw = getpwuid(getuid()); |
|
|
if ((!pw) || (!pw->pw_dir)) { |
|
|
throw std::runtime_error("Failed to find $HOME directory"); |
|
|
} |
|
|
|
|
|
cache_directory = std::string(pw->pw_dir) + std::string("/.cache/"); |
|
|
#else |
|
|
throw std::runtime_error("Failed to find $HOME directory"); |
|
|
#endif |
|
|
} |
|
|
#elif defined(__APPLE__) |
|
|
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/"); |
|
|
#elif defined(_WIN32) |
|
|
cache_directory = std::getenv("LOCALAPPDATA"); |
|
|
#else |
|
|
# error Unknown architecture |
|
|
#endif |
|
|
cache_directory = ensure_trailing_slash(cache_directory); |
|
|
cache_directory += "llama.cpp"; |
|
|
} |
|
|
return ensure_trailing_slash(cache_directory); |
|
|
} |
|
|
|
|
|
std::string fs_get_cache_file(const std::string & filename) { |
|
|
GGML_ASSERT(filename.find(DIRECTORY_SEPARATOR) == std::string::npos); |
|
|
std::string cache_directory = fs_get_cache_directory(); |
|
|
const bool success = fs_create_directory_with_parents(cache_directory); |
|
|
if (!success) { |
|
|
throw std::runtime_error("failed to create cache directory: " + cache_directory); |
|
|
} |
|
|
return cache_directory + filename; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct common_init_result common_init_from_params(common_params & params) { |
|
|
common_init_result iparams; |
|
|
auto mparams = common_model_params_to_llama(params); |
|
|
|
|
|
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams); |
|
|
if (model == NULL) { |
|
|
LOG_ERR("%s: failed to load model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n", |
|
|
__func__, params.model.path.c_str()); |
|
|
return iparams; |
|
|
} |
|
|
|
|
|
const llama_vocab * vocab = llama_model_get_vocab(model); |
|
|
|
|
|
auto cparams = common_context_params_to_llama(params); |
|
|
|
|
|
llama_context * lctx = llama_init_from_model(model, cparams); |
|
|
if (lctx == NULL) { |
|
|
LOG_ERR("%s: failed to create context with model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n", |
|
|
__func__, params.model.path.c_str()); |
|
|
llama_model_free(model); |
|
|
return iparams; |
|
|
} |
|
|
|
|
|
if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) { |
|
|
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__); |
|
|
params.ctx_shift = false; |
|
|
} |
|
|
|
|
|
if (!params.control_vectors.empty()) { |
|
|
if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1; |
|
|
if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_model_n_layer(model); |
|
|
|
|
|
const auto cvec = common_control_vector_load(params.control_vectors); |
|
|
if (cvec.n_embd == -1) { |
|
|
llama_free(lctx); |
|
|
llama_model_free(model); |
|
|
|
|
|
return iparams; |
|
|
} |
|
|
|
|
|
int err = llama_apply_adapter_cvec( |
|
|
lctx, |
|
|
cvec.data.data(), |
|
|
cvec.data.size(), |
|
|
cvec.n_embd, |
|
|
params.control_vector_layer_start, |
|
|
params.control_vector_layer_end); |
|
|
if (err) { |
|
|
llama_free(lctx); |
|
|
llama_model_free(model); |
|
|
|
|
|
return iparams; |
|
|
} |
|
|
} |
|
|
|
|
|
if (llama_pooling_type(lctx) == LLAMA_POOLING_TYPE_RANK) { |
|
|
bool ok = true; |
|
|
|
|
|
if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) { |
|
|
LOG_WRN("%s: warning: vocab does not have a BOS token, reranking will not work\n", __func__); |
|
|
ok = false; |
|
|
} |
|
|
|
|
|
bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL; |
|
|
bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL; |
|
|
bool has_rerank_prompt = llama_model_chat_template(model, "rerank") != NULL; |
|
|
|
|
|
if (!has_eos && !has_sep && !has_rerank_prompt) { |
|
|
LOG_WRN("%s: warning: vocab does not have an EOS token, SEP token, or rerank prompt. Reranking will not work\n", __func__); |
|
|
ok = false; |
|
|
} else if (!has_eos) { |
|
|
LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__); |
|
|
} |
|
|
|
|
|
if (!ok) { |
|
|
llama_free(lctx); |
|
|
llama_model_free(model); |
|
|
|
|
|
return iparams; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
for (auto & la : params.lora_adapters) { |
|
|
llama_adapter_lora_ptr lora; |
|
|
lora.reset(llama_adapter_lora_init(model, la.path.c_str())); |
|
|
if (lora == nullptr) { |
|
|
LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str()); |
|
|
llama_free(lctx); |
|
|
llama_model_free(model); |
|
|
return iparams; |
|
|
} |
|
|
|
|
|
char buf[1024]; |
|
|
la.ptr = lora.get(); |
|
|
llama_adapter_meta_val_str(la.ptr, "adapter.lora.task_name", buf, sizeof(buf)); |
|
|
la.task_name = buf; |
|
|
llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf)); |
|
|
la.prompt_prefix = buf; |
|
|
iparams.lora.emplace_back(std::move(lora)); |
|
|
} |
|
|
|
|
|
if (!params.lora_init_without_apply) { |
|
|
common_set_adapter_lora(lctx, params.lora_adapters); |
|
|
} |
|
|
|
|
|
if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) { |
|
|
LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__); |
|
|
params.sampling.ignore_eos = false; |
|
|
} |
|
|
|
|
|
|
|
|
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) { |
|
|
if (llama_vocab_is_eog(vocab, i)) { |
|
|
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY); |
|
|
params.sampling.logit_bias_eog.push_back({i, -INFINITY}); |
|
|
} |
|
|
} |
|
|
|
|
|
if (params.sampling.ignore_eos) { |
|
|
|
|
|
params.sampling.logit_bias.insert( |
|
|
params.sampling.logit_bias.end(), |
|
|
params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end()); |
|
|
} |
|
|
|
|
|
if (params.sampling.penalty_last_n == -1) { |
|
|
LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx)); |
|
|
params.sampling.penalty_last_n = llama_n_ctx(lctx); |
|
|
} |
|
|
|
|
|
if (params.sampling.dry_penalty_last_n == -1) { |
|
|
LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx)); |
|
|
params.sampling.dry_penalty_last_n = llama_n_ctx(lctx); |
|
|
} |
|
|
|
|
|
if (params.warmup) { |
|
|
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__); |
|
|
|
|
|
llama_set_warmup(lctx, true); |
|
|
|
|
|
std::vector<llama_token> tmp; |
|
|
llama_token bos = llama_vocab_bos(vocab); |
|
|
llama_token eos = llama_vocab_eos(vocab); |
|
|
|
|
|
|
|
|
if (bos != LLAMA_TOKEN_NULL) { |
|
|
tmp.push_back(bos); |
|
|
} |
|
|
if (eos != LLAMA_TOKEN_NULL) { |
|
|
tmp.push_back(eos); |
|
|
} |
|
|
if (tmp.empty()) { |
|
|
tmp.push_back(0); |
|
|
} |
|
|
|
|
|
if (llama_model_has_encoder(model)) { |
|
|
llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size())); |
|
|
llama_token decoder_start_token_id = llama_model_decoder_start_token(model); |
|
|
if (decoder_start_token_id == LLAMA_TOKEN_NULL) { |
|
|
decoder_start_token_id = bos; |
|
|
} |
|
|
tmp.clear(); |
|
|
tmp.push_back(decoder_start_token_id); |
|
|
} |
|
|
if (llama_model_has_decoder(model)) { |
|
|
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch))); |
|
|
} |
|
|
llama_memory_clear(llama_get_memory(lctx), true); |
|
|
llama_synchronize(lctx); |
|
|
llama_perf_context_reset(lctx); |
|
|
llama_set_warmup(lctx, false); |
|
|
} |
|
|
|
|
|
iparams.model.reset(model); |
|
|
iparams.context.reset(lctx); |
|
|
|
|
|
return iparams; |
|
|
} |
|
|
|
|
|
std::string get_model_endpoint() { |
|
|
const char * model_endpoint_env = getenv("MODEL_ENDPOINT"); |
|
|
|
|
|
const char * hf_endpoint_env = getenv("HF_ENDPOINT"); |
|
|
const char * endpoint_env = model_endpoint_env ? model_endpoint_env : hf_endpoint_env; |
|
|
std::string model_endpoint = "https://huggingface.co/"; |
|
|
if (endpoint_env) { |
|
|
model_endpoint = endpoint_env; |
|
|
if (model_endpoint.back() != '/') model_endpoint += '/'; |
|
|
} |
|
|
return model_endpoint; |
|
|
} |
|
|
|
|
|
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) { |
|
|
llama_clear_adapter_lora(ctx); |
|
|
for (auto & la : lora) { |
|
|
if (la.scale != 0.0f) { |
|
|
llama_set_adapter_lora(ctx, la.ptr, la.scale); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
struct llama_model_params common_model_params_to_llama(common_params & params) { |
|
|
auto mparams = llama_model_default_params(); |
|
|
|
|
|
if (!params.devices.empty()) { |
|
|
mparams.devices = params.devices.data(); |
|
|
} |
|
|
|
|
|
if (params.n_gpu_layers != -1) { |
|
|
mparams.n_gpu_layers = params.n_gpu_layers; |
|
|
} |
|
|
|
|
|
mparams.main_gpu = params.main_gpu; |
|
|
mparams.split_mode = params.split_mode; |
|
|
mparams.tensor_split = params.tensor_split; |
|
|
mparams.use_mmap = params.use_mmap; |
|
|
mparams.use_mlock = params.use_mlock; |
|
|
mparams.check_tensors = params.check_tensors; |
|
|
mparams.use_extra_bufts = !params.no_extra_bufts; |
|
|
|
|
|
if (params.kv_overrides.empty()) { |
|
|
mparams.kv_overrides = NULL; |
|
|
} else { |
|
|
GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key"); |
|
|
mparams.kv_overrides = params.kv_overrides.data(); |
|
|
} |
|
|
|
|
|
if (params.tensor_buft_overrides.empty()) { |
|
|
mparams.tensor_buft_overrides = NULL; |
|
|
} else { |
|
|
GGML_ASSERT(params.tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern"); |
|
|
mparams.tensor_buft_overrides = params.tensor_buft_overrides.data(); |
|
|
} |
|
|
|
|
|
mparams.progress_callback = params.load_progress_callback; |
|
|
mparams.progress_callback_user_data = params.load_progress_callback_user_data; |
|
|
|
|
|
return mparams; |
|
|
} |
|
|
|
|
|
struct llama_context_params common_context_params_to_llama(const common_params & params) { |
|
|
auto cparams = llama_context_default_params(); |
|
|
|
|
|
cparams.n_ctx = params.n_ctx; |
|
|
cparams.n_seq_max = params.n_parallel; |
|
|
cparams.n_batch = params.n_batch; |
|
|
cparams.n_ubatch = params.n_ubatch; |
|
|
cparams.n_threads = params.cpuparams.n_threads; |
|
|
cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ? |
|
|
params.cpuparams.n_threads : params.cpuparams_batch.n_threads; |
|
|
cparams.embeddings = params.embedding; |
|
|
cparams.rope_scaling_type = params.rope_scaling_type; |
|
|
cparams.rope_freq_base = params.rope_freq_base; |
|
|
cparams.rope_freq_scale = params.rope_freq_scale; |
|
|
cparams.yarn_ext_factor = params.yarn_ext_factor; |
|
|
cparams.yarn_attn_factor = params.yarn_attn_factor; |
|
|
cparams.yarn_beta_fast = params.yarn_beta_fast; |
|
|
cparams.yarn_beta_slow = params.yarn_beta_slow; |
|
|
cparams.yarn_orig_ctx = params.yarn_orig_ctx; |
|
|
cparams.pooling_type = params.pooling_type; |
|
|
cparams.attention_type = params.attention_type; |
|
|
cparams.flash_attn_type = params.flash_attn_type; |
|
|
cparams.cb_eval = params.cb_eval; |
|
|
cparams.cb_eval_user_data = params.cb_eval_user_data; |
|
|
cparams.offload_kqv = !params.no_kv_offload; |
|
|
cparams.no_perf = params.no_perf; |
|
|
cparams.op_offload = !params.no_op_offload; |
|
|
cparams.swa_full = params.swa_full; |
|
|
cparams.kv_unified = params.kv_unified; |
|
|
|
|
|
cparams.type_k = params.cache_type_k; |
|
|
cparams.type_v = params.cache_type_v; |
|
|
|
|
|
return cparams; |
|
|
} |
|
|
|
|
|
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params) { |
|
|
struct ggml_threadpool_params tpp; |
|
|
|
|
|
ggml_threadpool_params_init(&tpp, params.n_threads); |
|
|
|
|
|
if (params.mask_valid) { |
|
|
std::memcpy(&tpp.cpumask, ¶ms.cpumask, GGML_MAX_N_THREADS); |
|
|
} |
|
|
|
|
|
tpp.prio = params.priority; |
|
|
tpp.poll = params.poll; |
|
|
tpp.strict_cpu = params.strict_cpu; |
|
|
|
|
|
return tpp; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void common_batch_clear(struct llama_batch & batch) { |
|
|
batch.n_tokens = 0; |
|
|
} |
|
|
|
|
|
void common_batch_add( |
|
|
struct llama_batch & batch, |
|
|
llama_token id, |
|
|
llama_pos pos, |
|
|
const std::vector<llama_seq_id> & seq_ids, |
|
|
bool logits) { |
|
|
GGML_ASSERT(batch.seq_id[batch.n_tokens] && "llama_batch size exceeded"); |
|
|
|
|
|
batch.token [batch.n_tokens] = id; |
|
|
batch.pos [batch.n_tokens] = pos; |
|
|
batch.n_seq_id[batch.n_tokens] = seq_ids.size(); |
|
|
for (size_t i = 0; i < seq_ids.size(); ++i) { |
|
|
batch.seq_id[batch.n_tokens][i] = seq_ids[i]; |
|
|
} |
|
|
batch.logits [batch.n_tokens] = logits; |
|
|
|
|
|
batch.n_tokens++; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
size_t common_lcp(const llama_tokens & a, const llama_tokens & b) { |
|
|
size_t i; |
|
|
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {} |
|
|
|
|
|
return i; |
|
|
} |
|
|
|
|
|
size_t common_lcs(const llama_tokens & a, const llama_tokens & b) { |
|
|
|
|
|
if (a.empty() || b.empty()) { |
|
|
return 0; |
|
|
} |
|
|
|
|
|
|
|
|
size_t a_len = a.size(); |
|
|
size_t b_len = b.size(); |
|
|
|
|
|
|
|
|
size_t max_length = 0; |
|
|
|
|
|
|
|
|
std::vector<size_t> prev_row(b_len + 1, 0); |
|
|
std::vector<size_t> curr_row(b_len + 1, 0); |
|
|
|
|
|
|
|
|
for (size_t i = 1; i <= a_len; i++) { |
|
|
|
|
|
for (size_t j = 1; j <= b_len; j++) { |
|
|
|
|
|
if (a[i - 1] == b[j - 1]) { |
|
|
|
|
|
if (i == 1 || j == 1) { |
|
|
curr_row[j] = 1; |
|
|
} else { |
|
|
|
|
|
curr_row[j] = prev_row[j - 1] + 1; |
|
|
} |
|
|
|
|
|
|
|
|
if (curr_row[j] > max_length) { |
|
|
max_length = curr_row[j]; |
|
|
} |
|
|
} else { |
|
|
|
|
|
curr_row[j] = 0; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
prev_row = curr_row; |
|
|
} |
|
|
|
|
|
|
|
|
return max_length; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::vector<llama_token> common_tokenize( |
|
|
const struct llama_context * ctx, |
|
|
const std::string & text, |
|
|
bool add_special, |
|
|
bool parse_special) { |
|
|
const llama_model * model = llama_get_model(ctx); |
|
|
const llama_vocab * vocab = llama_model_get_vocab(model); |
|
|
return common_tokenize(vocab, text, add_special, parse_special); |
|
|
} |
|
|
|
|
|
std::vector<llama_token> common_tokenize( |
|
|
const struct llama_vocab * vocab, |
|
|
const std::string & text, |
|
|
bool add_special, |
|
|
bool parse_special) { |
|
|
|
|
|
int n_tokens = text.length() + 2 * add_special; |
|
|
std::vector<llama_token> result(n_tokens); |
|
|
n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); |
|
|
if (n_tokens == std::numeric_limits<int32_t>::min()) { |
|
|
throw std::runtime_error("Tokenization failed: input text too large, tokenization result exceeds int32_t limit"); |
|
|
} |
|
|
if (n_tokens < 0) { |
|
|
result.resize(-n_tokens); |
|
|
int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); |
|
|
GGML_ASSERT(check == -n_tokens); |
|
|
} else { |
|
|
result.resize(n_tokens); |
|
|
} |
|
|
return result; |
|
|
} |
|
|
|
|
|
std::string common_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) { |
|
|
const llama_model * model = llama_get_model(ctx); |
|
|
const llama_vocab * vocab = llama_model_get_vocab(model); |
|
|
return common_token_to_piece(vocab, token, special); |
|
|
} |
|
|
|
|
|
std::string common_token_to_piece(const struct llama_vocab * vocab, llama_token token, bool special) { |
|
|
std::string piece; |
|
|
piece.resize(piece.capacity()); |
|
|
const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special); |
|
|
if (n_chars < 0) { |
|
|
piece.resize(-n_chars); |
|
|
int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special); |
|
|
GGML_ASSERT(check == -n_chars); |
|
|
} |
|
|
else { |
|
|
piece.resize(n_chars); |
|
|
} |
|
|
|
|
|
return piece; |
|
|
} |
|
|
|
|
|
std::string common_detokenize(const struct llama_context * ctx, const std::vector<llama_token> & tokens, bool special) { |
|
|
const llama_model * model = llama_get_model(ctx); |
|
|
const llama_vocab * vocab = llama_model_get_vocab(model); |
|
|
return common_detokenize(vocab, tokens, special); |
|
|
} |
|
|
|
|
|
std::string common_detokenize(const struct llama_vocab * vocab, const std::vector<llama_token> & tokens, bool special) { |
|
|
std::string text; |
|
|
text.resize(std::max(text.capacity(), tokens.size())); |
|
|
int32_t n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special); |
|
|
if (n_chars < 0) { |
|
|
text.resize(-n_chars); |
|
|
n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special); |
|
|
GGML_ASSERT(n_chars <= (int32_t)text.size()); |
|
|
} |
|
|
|
|
|
text.resize(n_chars); |
|
|
|
|
|
|
|
|
return text; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm) { |
|
|
double sum = 0.0; |
|
|
|
|
|
switch (embd_norm) { |
|
|
case -1: |
|
|
sum = 1.0; |
|
|
break; |
|
|
case 0: |
|
|
for (int i = 0; i < n; i++) { |
|
|
if (sum < std::abs(inp[i])) { |
|
|
sum = std::abs(inp[i]); |
|
|
} |
|
|
} |
|
|
sum /= 32760.0; |
|
|
break; |
|
|
case 2: |
|
|
for (int i = 0; i < n; i++) { |
|
|
sum += inp[i] * inp[i]; |
|
|
} |
|
|
sum = std::sqrt(sum); |
|
|
break; |
|
|
default: |
|
|
for (int i = 0; i < n; i++) { |
|
|
sum += std::pow(std::abs(inp[i]), embd_norm); |
|
|
} |
|
|
sum = std::pow(sum, 1.0 / embd_norm); |
|
|
break; |
|
|
} |
|
|
|
|
|
const float norm = sum > 0.0 ? 1.0 / sum : 0.0f; |
|
|
|
|
|
for (int i = 0; i < n; i++) { |
|
|
out[i] = inp[i] * norm; |
|
|
} |
|
|
} |
|
|
|
|
|
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n){ |
|
|
double sum = 0.0; |
|
|
double sum1 = 0.0; |
|
|
double sum2 = 0.0; |
|
|
|
|
|
for (int i = 0; i < n; i++) { |
|
|
sum += embd1[i] * embd2[i]; |
|
|
sum1 += embd1[i] * embd1[i]; |
|
|
sum2 += embd2[i] * embd2[i]; |
|
|
} |
|
|
|
|
|
|
|
|
if (sum1 == 0.0 || sum2 == 0.0) { |
|
|
if (sum1 == 0.0 && sum2 == 0.0) { |
|
|
return 1.0f; |
|
|
} |
|
|
return 0.0f; |
|
|
} |
|
|
|
|
|
return sum / (sqrt(sum1) * sqrt(sum2)); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static common_control_vector_data common_control_vector_load_one(const common_control_vector_load_info & load_info) { |
|
|
common_control_vector_data result = { -1, {} }; |
|
|
|
|
|
ggml_context * ctx = nullptr; |
|
|
struct gguf_init_params meta_gguf_params = { |
|
|
false, |
|
|
&ctx, |
|
|
}; |
|
|
struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params); |
|
|
if (!ctx_gguf) { |
|
|
LOG_ERR("%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str()); |
|
|
return result; |
|
|
} |
|
|
|
|
|
int32_t n_tensors = gguf_get_n_tensors(ctx_gguf); |
|
|
if (n_tensors == 0) { |
|
|
LOG_WRN("%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str()); |
|
|
} |
|
|
|
|
|
for (int i = 0; i < n_tensors; i++) { |
|
|
std::string name = gguf_get_tensor_name(ctx_gguf, i); |
|
|
|
|
|
int layer_idx = -1; |
|
|
|
|
|
|
|
|
size_t dotpos = name.find('.'); |
|
|
if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") { |
|
|
try { |
|
|
layer_idx = std::stoi(name.substr(dotpos + 1)); |
|
|
} catch (...) { |
|
|
layer_idx = -1; |
|
|
} |
|
|
} |
|
|
if (layer_idx < 0) { |
|
|
LOG_ERR("%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str()); |
|
|
result.n_embd = -1; |
|
|
break; |
|
|
} else if (layer_idx == 0) { |
|
|
LOG_ERR("%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str()); |
|
|
result.n_embd = -1; |
|
|
break; |
|
|
} |
|
|
|
|
|
struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str()); |
|
|
if (tensor->type != GGML_TYPE_F32) { |
|
|
LOG_ERR("%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str()); |
|
|
result.n_embd = -1; |
|
|
break; |
|
|
} |
|
|
if (ggml_n_dims(tensor) != 1) { |
|
|
LOG_ERR("%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str()); |
|
|
result.n_embd = -1; |
|
|
break; |
|
|
} |
|
|
|
|
|
if (result.n_embd == -1) { |
|
|
result.n_embd = ggml_nelements(tensor); |
|
|
} else if (ggml_nelements(tensor) != result.n_embd) { |
|
|
LOG_ERR("%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str()); |
|
|
result.n_embd = -1; |
|
|
break; |
|
|
} |
|
|
|
|
|
|
|
|
result.data.resize(std::max(result.data.size(), static_cast<size_t>(result.n_embd * layer_idx)), 0.0f); |
|
|
|
|
|
const float * src = (const float *) tensor->data; |
|
|
float * dst = result.data.data() + result.n_embd * (layer_idx - 1); |
|
|
for (int j = 0; j < result.n_embd; j++) { |
|
|
dst[j] += src[j] * load_info.strength; |
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
if (result.n_embd == -1) { |
|
|
LOG_WRN("%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str()); |
|
|
result.data.clear(); |
|
|
} |
|
|
|
|
|
gguf_free(ctx_gguf); |
|
|
ggml_free(ctx); |
|
|
|
|
|
return result; |
|
|
} |
|
|
|
|
|
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos) { |
|
|
common_control_vector_data result = { -1, {} }; |
|
|
|
|
|
for (const auto & info : load_infos) { |
|
|
auto cur = common_control_vector_load_one(info); |
|
|
|
|
|
if (cur.n_embd == -1) { |
|
|
result.n_embd = -1; |
|
|
break; |
|
|
} |
|
|
if (result.n_embd != -1 && result.n_embd != cur.n_embd) { |
|
|
LOG_ERR("%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str()); |
|
|
result.n_embd = -1; |
|
|
break; |
|
|
} |
|
|
|
|
|
if (result.n_embd == -1) { |
|
|
result = std::move(cur); |
|
|
} else { |
|
|
result.data.resize(std::max(result.data.size(), cur.data.size()), 0.0f); |
|
|
for (size_t i = 0; i < cur.data.size(); i++) { |
|
|
result.data[i] += cur.data[i]; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
if (result.n_embd == -1) { |
|
|
LOG_ERR("%s: no valid control vector files passed\n", __func__); |
|
|
result.data.clear(); |
|
|
} |
|
|
|
|
|
return result; |
|
|
} |
|
|
|
|
|
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride) { |
|
|
const int64_t ne_datapoint = llama_n_ctx(ctx); |
|
|
const int64_t ndata = (tokens.size() - ne_datapoint - 1) / stride; |
|
|
ggml_opt_dataset_t result = ggml_opt_dataset_init( |
|
|
GGML_TYPE_I32, GGML_TYPE_I32, ne_datapoint, ne_datapoint, ndata, 1); |
|
|
|
|
|
llama_token * data = (llama_token *) ggml_opt_dataset_data(result)->data; |
|
|
llama_token * labels = (llama_token *) ggml_opt_dataset_labels(result)->data; |
|
|
|
|
|
for (int64_t idata = 0; idata < ndata; ++idata) { |
|
|
memcpy(data + idata*ne_datapoint, tokens.data() + idata*stride + 0, ne_datapoint*sizeof(llama_token)); |
|
|
memcpy(labels + idata*ne_datapoint, tokens.data() + idata*stride + 1, ne_datapoint*sizeof(llama_token)); |
|
|
} |
|
|
|
|
|
return result; |
|
|
} |
|
|
|
|
|
ggml_opt_optimizer_params common_opt_lr_pars(void * userdata) { |
|
|
ggml_opt_optimizer_params result = ggml_opt_get_default_optimizer_params(nullptr); |
|
|
const lr_opt & d = *(lr_opt *) userdata; |
|
|
result.adamw.alpha = result.sgd.alpha = d.get_lr(d.epoch); |
|
|
result.sgd.wd = result.adamw.wd = d.wd; |
|
|
return result; |
|
|
} |
|
|
|
|
|
|
|
|
static inline bool eq_case_insensitive(char const* a, char const* b) { |
|
|
return ! |
|
|
#if defined(_MSC_VER) |
|
|
_stricmp |
|
|
#else |
|
|
strcasecmp |
|
|
#endif |
|
|
(a, b); |
|
|
} |
|
|
|
|
|
enum ggml_opt_optimizer_type common_opt_get_optimizer(const char * n) { |
|
|
if (eq_case_insensitive("adamw", n)) { |
|
|
return GGML_OPT_OPTIMIZER_TYPE_ADAMW; |
|
|
} |
|
|
if (eq_case_insensitive("sgd", n)) { |
|
|
return GGML_OPT_OPTIMIZER_TYPE_SGD; |
|
|
} |
|
|
return GGML_OPT_OPTIMIZER_TYPE_COUNT; |
|
|
} |
|
|
|
|
|
|
|
|
static float const k_log_2 = std::log(2.f); |
|
|
|
|
|
void lr_opt::init() { |
|
|
if (lr_min > 0 && lr_min < lr0) { |
|
|
float nhalf = std::log(lr0 / lr_min) / k_log_2; |
|
|
float e = epochs; |
|
|
if (decay_epochs > 0 && decay_epochs < e) { |
|
|
e = decay_epochs; |
|
|
} else { |
|
|
decay_epochs = e; |
|
|
} |
|
|
scale_epoch = nhalf / e; |
|
|
} |
|
|
} |
|
|
|
|
|
float lr_opt::get_lr(float epoch) const { |
|
|
float r = lr_min <= 0 ? lr0 : |
|
|
epoch >= decay_epochs ? lr_min : |
|
|
lr0 * std::pow(0.5f, epoch * scale_epoch); |
|
|
LOG_INF("epoch %.2g lr=%.2g\n", epoch, r); |
|
|
return r; |
|
|
} |
|
|
|