|
|
#include "arg.h" |
|
|
|
|
|
#include "chat.h" |
|
|
#include "common.h" |
|
|
#include "gguf.h" |
|
|
#include "json-schema-to-grammar.h" |
|
|
#include "log.h" |
|
|
#include "sampling.h" |
|
|
|
|
|
|
|
|
#if defined(_WIN32) |
|
|
#define WIN32_LEAN_AND_MEAN |
|
|
#ifndef NOMINMAX |
|
|
# define NOMINMAX |
|
|
#endif |
|
|
#include <windows.h> |
|
|
#endif |
|
|
|
|
|
#define JSON_ASSERT GGML_ASSERT |
|
|
#include <nlohmann/json.hpp> |
|
|
|
|
|
#include <algorithm> |
|
|
#include <climits> |
|
|
#include <cstdarg> |
|
|
#include <filesystem> |
|
|
#include <fstream> |
|
|
#include <future> |
|
|
#include <list> |
|
|
#include <regex> |
|
|
#include <set> |
|
|
#include <string> |
|
|
#include <thread> |
|
|
#include <vector> |
|
|
|
|
|
#if defined(LLAMA_USE_CURL) |
|
|
#include <curl/curl.h> |
|
|
#include <curl/easy.h> |
|
|
#else |
|
|
#include "http.h" |
|
|
#endif |
|
|
|
|
|
#ifdef __linux__ |
|
|
#include <linux/limits.h> |
|
|
#elif defined(_WIN32) |
|
|
# if !defined(PATH_MAX) |
|
|
# define PATH_MAX MAX_PATH |
|
|
# endif |
|
|
#elif defined(_AIX) |
|
|
#include <sys/limits.h> |
|
|
#else |
|
|
#include <sys/syslimits.h> |
|
|
#endif |
|
|
#define LLAMA_MAX_URL_LENGTH 2084 |
|
|
|
|
|
|
|
|
#if defined(_WIN32) |
|
|
#include <io.h> |
|
|
#else |
|
|
#include <unistd.h> |
|
|
#endif |
|
|
|
|
|
using json = nlohmann::ordered_json; |
|
|
|
|
|
std::initializer_list<enum llama_example> mmproj_examples = { |
|
|
LLAMA_EXAMPLE_MTMD, |
|
|
LLAMA_EXAMPLE_SERVER, |
|
|
}; |
|
|
|
|
|
static std::string read_file(const std::string & fname) { |
|
|
std::ifstream file(fname); |
|
|
if (!file) { |
|
|
throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str())); |
|
|
} |
|
|
std::string content((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>()); |
|
|
file.close(); |
|
|
return content; |
|
|
} |
|
|
|
|
|
static void write_file(const std::string & fname, const std::string & content) { |
|
|
const std::string fname_tmp = fname + ".tmp"; |
|
|
std::ofstream file(fname_tmp); |
|
|
if (!file) { |
|
|
throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str())); |
|
|
} |
|
|
|
|
|
try { |
|
|
file << content; |
|
|
file.close(); |
|
|
|
|
|
|
|
|
if (rename(fname_tmp.c_str(), fname.c_str()) != 0) { |
|
|
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, fname_tmp.c_str(), fname.c_str()); |
|
|
|
|
|
if (remove(fname_tmp.c_str()) != 0) { |
|
|
LOG_ERR("%s: unable to delete temporary file: %s\n", __func__, fname_tmp.c_str()); |
|
|
} |
|
|
} |
|
|
} catch (...) { |
|
|
|
|
|
if (remove(fname_tmp.c_str()) != 0) { |
|
|
LOG_ERR("%s: unable to delete temporary file: %s\n", __func__, fname_tmp.c_str()); |
|
|
} |
|
|
|
|
|
throw std::runtime_error(string_format("error: failed to write file '%s'\n", fname.c_str())); |
|
|
} |
|
|
} |
|
|
|
|
|
static bool is_output_a_tty() { |
|
|
#if defined(_WIN32) |
|
|
return _isatty(_fileno(stdout)); |
|
|
#else |
|
|
return isatty(1); |
|
|
#endif |
|
|
} |
|
|
|
|
|
common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) { |
|
|
this->examples = std::move(examples); |
|
|
return *this; |
|
|
} |
|
|
|
|
|
common_arg & common_arg::set_excludes(std::initializer_list<enum llama_example> excludes) { |
|
|
this->excludes = std::move(excludes); |
|
|
return *this; |
|
|
} |
|
|
|
|
|
common_arg & common_arg::set_env(const char * env) { |
|
|
help = help + "\n(env: " + env + ")"; |
|
|
this->env = env; |
|
|
return *this; |
|
|
} |
|
|
|
|
|
common_arg & common_arg::set_sparam() { |
|
|
is_sparam = true; |
|
|
return *this; |
|
|
} |
|
|
|
|
|
bool common_arg::in_example(enum llama_example ex) { |
|
|
return examples.find(ex) != examples.end(); |
|
|
} |
|
|
|
|
|
bool common_arg::is_exclude(enum llama_example ex) { |
|
|
return excludes.find(ex) != excludes.end(); |
|
|
} |
|
|
|
|
|
bool common_arg::get_value_from_env(std::string & output) { |
|
|
if (env == nullptr) return false; |
|
|
char * value = std::getenv(env); |
|
|
if (value) { |
|
|
output = value; |
|
|
return true; |
|
|
} |
|
|
return false; |
|
|
} |
|
|
|
|
|
bool common_arg::has_value_from_env() { |
|
|
return env != nullptr && std::getenv(env); |
|
|
} |
|
|
|
|
|
static std::vector<std::string> break_str_into_lines(std::string input, size_t max_char_per_line) { |
|
|
std::vector<std::string> result; |
|
|
std::istringstream iss(input); |
|
|
std::string line; |
|
|
auto add_line = [&](const std::string& l) { |
|
|
if (l.length() <= max_char_per_line) { |
|
|
result.push_back(l); |
|
|
} else { |
|
|
std::istringstream line_stream(l); |
|
|
std::string word, current_line; |
|
|
while (line_stream >> word) { |
|
|
if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) { |
|
|
if (!current_line.empty()) result.push_back(current_line); |
|
|
current_line = word; |
|
|
} else { |
|
|
current_line += (!current_line.empty() ? " " : "") + word; |
|
|
} |
|
|
} |
|
|
if (!current_line.empty()) result.push_back(current_line); |
|
|
} |
|
|
}; |
|
|
while (std::getline(iss, line)) { |
|
|
add_line(line); |
|
|
} |
|
|
return result; |
|
|
} |
|
|
|
|
|
std::string common_arg::to_string() { |
|
|
|
|
|
const static int n_leading_spaces = 40; |
|
|
const static int n_char_per_line_help = 70; |
|
|
std::string leading_spaces(n_leading_spaces, ' '); |
|
|
|
|
|
std::ostringstream ss; |
|
|
for (const auto arg : args) { |
|
|
if (arg == args.front()) { |
|
|
if (args.size() == 1) { |
|
|
ss << arg; |
|
|
} else { |
|
|
|
|
|
auto tmp = std::string(arg) + ", "; |
|
|
auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' '); |
|
|
ss << tmp << spaces; |
|
|
} |
|
|
} else { |
|
|
ss << arg << (arg != args.back() ? ", " : ""); |
|
|
} |
|
|
} |
|
|
if (value_hint) ss << " " << value_hint; |
|
|
if (value_hint_2) ss << " " << value_hint_2; |
|
|
if (ss.tellp() > n_leading_spaces - 3) { |
|
|
|
|
|
ss << "\n" << leading_spaces; |
|
|
} else { |
|
|
|
|
|
ss << std::string(leading_spaces.size() - ss.tellp(), ' '); |
|
|
} |
|
|
const auto help_lines = break_str_into_lines(help, n_char_per_line_help); |
|
|
for (const auto & line : help_lines) { |
|
|
ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n"; |
|
|
} |
|
|
return ss.str(); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct common_hf_file_res { |
|
|
std::string repo; |
|
|
std::string ggufFile; |
|
|
std::string mmprojFile; |
|
|
}; |
|
|
|
|
|
static void write_etag(const std::string & path, const std::string & etag) { |
|
|
const std::string etag_path = path + ".etag"; |
|
|
write_file(etag_path, etag); |
|
|
LOG_DBG("%s: file etag saved: %s\n", __func__, etag_path.c_str()); |
|
|
} |
|
|
|
|
|
static std::string read_etag(const std::string & path) { |
|
|
std::string none; |
|
|
const std::string etag_path = path + ".etag"; |
|
|
|
|
|
if (std::filesystem::exists(etag_path)) { |
|
|
std::ifstream etag_in(etag_path); |
|
|
if (!etag_in) { |
|
|
LOG_ERR("%s: could not open .etag file for reading: %s\n", __func__, etag_path.c_str()); |
|
|
return none; |
|
|
} |
|
|
std::string etag; |
|
|
std::getline(etag_in, etag); |
|
|
return etag; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
const std::string metadata_path = path + ".json"; |
|
|
|
|
|
if (std::filesystem::exists(metadata_path)) { |
|
|
std::ifstream metadata_in(metadata_path); |
|
|
try { |
|
|
nlohmann::json metadata_json; |
|
|
metadata_in >> metadata_json; |
|
|
LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), |
|
|
metadata_json.dump().c_str()); |
|
|
if (metadata_json.contains("etag") && metadata_json.at("etag").is_string()) { |
|
|
std::string etag = metadata_json.at("etag"); |
|
|
write_etag(path, etag); |
|
|
if (!std::filesystem::remove(metadata_path)) { |
|
|
LOG_WRN("%s: failed to delete old .json metadata file: %s\n", __func__, metadata_path.c_str()); |
|
|
} |
|
|
return etag; |
|
|
} |
|
|
} catch (const nlohmann::json::exception & e) { |
|
|
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what()); |
|
|
} |
|
|
} |
|
|
return none; |
|
|
} |
|
|
|
|
|
#ifdef LLAMA_USE_CURL |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>; |
|
|
|
|
|
|
|
|
struct curl_slist_ptr { |
|
|
struct curl_slist * ptr = nullptr; |
|
|
~curl_slist_ptr() { |
|
|
if (ptr) { |
|
|
curl_slist_free_all(ptr); |
|
|
} |
|
|
} |
|
|
}; |
|
|
|
|
|
static CURLcode common_curl_perf(CURL * curl) { |
|
|
CURLcode res = curl_easy_perform(curl); |
|
|
if (res != CURLE_OK) { |
|
|
LOG_ERR("%s: curl_easy_perform() failed\n", __func__); |
|
|
} |
|
|
|
|
|
return res; |
|
|
} |
|
|
|
|
|
|
|
|
struct common_load_model_from_url_headers { |
|
|
std::string etag; |
|
|
std::string last_modified; |
|
|
std::string accept_ranges; |
|
|
}; |
|
|
|
|
|
struct FILE_deleter { |
|
|
void operator()(FILE * f) const { fclose(f); } |
|
|
}; |
|
|
|
|
|
static size_t common_header_callback(char * buffer, size_t, size_t n_items, void * userdata) { |
|
|
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata; |
|
|
static std::regex header_regex("([^:]+): (.*)\r\n"); |
|
|
static std::regex etag_regex("ETag", std::regex_constants::icase); |
|
|
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase); |
|
|
static std::regex accept_ranges_regex("Accept-Ranges", std::regex_constants::icase); |
|
|
std::string header(buffer, n_items); |
|
|
std::smatch match; |
|
|
if (std::regex_match(header, match, header_regex)) { |
|
|
const std::string & key = match[1]; |
|
|
const std::string & value = match[2]; |
|
|
if (std::regex_match(key, match, etag_regex)) { |
|
|
headers->etag = value; |
|
|
} else if (std::regex_match(key, match, last_modified_regex)) { |
|
|
headers->last_modified = value; |
|
|
} else if (std::regex_match(key, match, accept_ranges_regex)) { |
|
|
headers->accept_ranges = value; |
|
|
} |
|
|
} |
|
|
|
|
|
return n_items; |
|
|
} |
|
|
|
|
|
static size_t common_write_callback(void * data, size_t size, size_t nmemb, void * fd) { |
|
|
return std::fwrite(data, size, nmemb, static_cast<FILE *>(fd)); |
|
|
} |
|
|
|
|
|
|
|
|
static std::string llama_download_hide_password_in_url(const std::string & url) { |
|
|
|
|
|
|
|
|
static const std::regex url_regex(R"(^(?:[A-Za-z][A-Za-z0-9+.-]://)(?:[^/@]+@)?.$)"); |
|
|
std::smatch match; |
|
|
|
|
|
if (std::regex_match(url, match, url_regex)) { |
|
|
|
|
|
|
|
|
|
|
|
return match[1].str() + "********@" + match[3].str(); |
|
|
} |
|
|
|
|
|
return url; |
|
|
} |
|
|
|
|
|
static void common_curl_easy_setopt_head(CURL * curl, const std::string & url) { |
|
|
|
|
|
curl_easy_setopt(curl, CURLOPT_URL, url.c_str()); |
|
|
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L); |
|
|
|
|
|
# if defined(_WIN32) |
|
|
|
|
|
|
|
|
curl_easy_setopt(curl, CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA); |
|
|
# endif |
|
|
|
|
|
curl_easy_setopt(curl, CURLOPT_NOBODY, 1L); |
|
|
curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 1L); |
|
|
curl_easy_setopt(curl, CURLOPT_HEADERFUNCTION, common_header_callback); |
|
|
} |
|
|
|
|
|
static void common_curl_easy_setopt_get(CURL * curl) { |
|
|
curl_easy_setopt(curl, CURLOPT_NOBODY, 0L); |
|
|
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, common_write_callback); |
|
|
|
|
|
|
|
|
curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L); |
|
|
} |
|
|
|
|
|
static bool common_pull_file(CURL * curl, const std::string & path_temporary) { |
|
|
if (std::filesystem::exists(path_temporary)) { |
|
|
const std::string partial_size = std::to_string(std::filesystem::file_size(path_temporary)); |
|
|
LOG_INF("%s: server supports range requests, resuming download from byte %s\n", __func__, partial_size.c_str()); |
|
|
const std::string range_str = partial_size + "-"; |
|
|
curl_easy_setopt(curl, CURLOPT_RANGE, range_str.c_str()); |
|
|
} |
|
|
|
|
|
|
|
|
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "ab")); |
|
|
if (!outfile) { |
|
|
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path_temporary.c_str()); |
|
|
return false; |
|
|
} |
|
|
|
|
|
common_curl_easy_setopt_get(curl); |
|
|
curl_easy_setopt(curl, CURLOPT_WRITEDATA, outfile.get()); |
|
|
|
|
|
return common_curl_perf(curl) == CURLE_OK; |
|
|
} |
|
|
|
|
|
static bool common_download_head(CURL * curl, |
|
|
curl_slist_ptr & http_headers, |
|
|
const std::string & url, |
|
|
const std::string & bearer_token) { |
|
|
if (!curl) { |
|
|
LOG_ERR("%s: error initializing libcurl\n", __func__); |
|
|
return false; |
|
|
} |
|
|
|
|
|
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp"); |
|
|
|
|
|
if (!bearer_token.empty()) { |
|
|
std::string auth_header = "Authorization: Bearer " + bearer_token; |
|
|
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str()); |
|
|
} |
|
|
|
|
|
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, http_headers.ptr); |
|
|
common_curl_easy_setopt_head(curl, url); |
|
|
return common_curl_perf(curl) == CURLE_OK; |
|
|
} |
|
|
|
|
|
|
|
|
static bool common_download_file_single_online(const std::string & url, |
|
|
const std::string & path, |
|
|
const std::string & bearer_token) { |
|
|
static const int max_attempts = 3; |
|
|
static const int retry_delay_seconds = 2; |
|
|
for (int i = 0; i < max_attempts; ++i) { |
|
|
std::string etag; |
|
|
|
|
|
|
|
|
const auto file_exists = std::filesystem::exists(path); |
|
|
if (file_exists) { |
|
|
etag = read_etag(path); |
|
|
} else { |
|
|
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str()); |
|
|
} |
|
|
|
|
|
bool head_request_ok = false; |
|
|
bool should_download = !file_exists; |
|
|
|
|
|
|
|
|
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup); |
|
|
common_load_model_from_url_headers headers; |
|
|
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers); |
|
|
curl_slist_ptr http_headers; |
|
|
const bool was_perform_successful = common_download_head(curl.get(), http_headers, url, bearer_token); |
|
|
if (!was_perform_successful) { |
|
|
head_request_ok = false; |
|
|
} |
|
|
|
|
|
long http_code = 0; |
|
|
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code); |
|
|
if (http_code == 200) { |
|
|
head_request_ok = true; |
|
|
} else { |
|
|
LOG_WRN("%s: HEAD invalid http status code received: %ld\n", __func__, http_code); |
|
|
head_request_ok = false; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
bool should_download_from_scratch = false; |
|
|
if (head_request_ok) { |
|
|
|
|
|
|
|
|
if (!etag.empty() && etag != headers.etag) { |
|
|
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), |
|
|
headers.etag.c_str()); |
|
|
should_download = true; |
|
|
should_download_from_scratch = true; |
|
|
} |
|
|
} |
|
|
|
|
|
const bool accept_ranges_supported = !headers.accept_ranges.empty() && headers.accept_ranges != "none"; |
|
|
if (should_download) { |
|
|
if (file_exists && |
|
|
!accept_ranges_supported) { |
|
|
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str()); |
|
|
if (remove(path.c_str()) != 0) { |
|
|
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str()); |
|
|
return false; |
|
|
} |
|
|
} |
|
|
|
|
|
const std::string path_temporary = path + ".downloadInProgress"; |
|
|
if (should_download_from_scratch) { |
|
|
if (std::filesystem::exists(path_temporary)) { |
|
|
if (remove(path_temporary.c_str()) != 0) { |
|
|
LOG_ERR("%s: unable to delete file: %s\n", __func__, path_temporary.c_str()); |
|
|
return false; |
|
|
} |
|
|
} |
|
|
|
|
|
if (std::filesystem::exists(path)) { |
|
|
if (remove(path.c_str()) != 0) { |
|
|
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str()); |
|
|
return false; |
|
|
} |
|
|
} |
|
|
} |
|
|
if (head_request_ok) { |
|
|
write_etag(path, headers.etag); |
|
|
} |
|
|
|
|
|
|
|
|
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", |
|
|
__func__, llama_download_hide_password_in_url(url).c_str(), path_temporary.c_str(), |
|
|
headers.etag.c_str(), headers.last_modified.c_str()); |
|
|
const bool was_pull_successful = common_pull_file(curl.get(), path_temporary); |
|
|
if (!was_pull_successful) { |
|
|
if (i + 1 < max_attempts) { |
|
|
const int exponential_backoff_delay = std::pow(retry_delay_seconds, i) * 1000; |
|
|
LOG_WRN("%s: retrying after %d milliseconds...\n", __func__, exponential_backoff_delay); |
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay)); |
|
|
} else { |
|
|
LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts); |
|
|
} |
|
|
|
|
|
continue; |
|
|
} |
|
|
|
|
|
long http_code = 0; |
|
|
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code); |
|
|
if (http_code < 200 || http_code >= 400) { |
|
|
LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code); |
|
|
return false; |
|
|
} |
|
|
|
|
|
if (rename(path_temporary.c_str(), path.c_str()) != 0) { |
|
|
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str()); |
|
|
return false; |
|
|
} |
|
|
} else { |
|
|
LOG_INF("%s: using cached file: %s\n", __func__, path.c_str()); |
|
|
} |
|
|
|
|
|
break; |
|
|
} |
|
|
|
|
|
return true; |
|
|
} |
|
|
|
|
|
std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params & params) { |
|
|
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup); |
|
|
curl_slist_ptr http_headers; |
|
|
std::vector<char> res_buffer; |
|
|
|
|
|
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str()); |
|
|
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); |
|
|
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L); |
|
|
curl_easy_setopt(curl.get(), CURLOPT_VERBOSE, 1L); |
|
|
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data); |
|
|
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t { |
|
|
auto data_vec = static_cast<std::vector<char> *>(data); |
|
|
data_vec->insert(data_vec->end(), (char *)ptr, (char *)ptr + size * nmemb); |
|
|
return size * nmemb; |
|
|
}; |
|
|
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback)); |
|
|
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_buffer); |
|
|
#if defined(_WIN32) |
|
|
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA); |
|
|
#endif |
|
|
if (params.timeout > 0) { |
|
|
curl_easy_setopt(curl.get(), CURLOPT_TIMEOUT, params.timeout); |
|
|
} |
|
|
if (params.max_size > 0) { |
|
|
curl_easy_setopt(curl.get(), CURLOPT_MAXFILESIZE, params.max_size); |
|
|
} |
|
|
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp"); |
|
|
for (const auto & header : params.headers) { |
|
|
http_headers.ptr = curl_slist_append(http_headers.ptr, header.c_str()); |
|
|
} |
|
|
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr); |
|
|
|
|
|
CURLcode res = curl_easy_perform(curl.get()); |
|
|
|
|
|
if (res != CURLE_OK) { |
|
|
std::string error_msg = curl_easy_strerror(res); |
|
|
throw std::runtime_error("error: cannot make GET request: " + error_msg); |
|
|
} |
|
|
|
|
|
long res_code; |
|
|
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code); |
|
|
|
|
|
return { res_code, std::move(res_buffer) }; |
|
|
} |
|
|
|
|
|
#else |
|
|
|
|
|
static void print_progress(size_t current, size_t total) { |
|
|
if (!is_output_a_tty()) { |
|
|
return; |
|
|
} |
|
|
|
|
|
if (!total) { |
|
|
return; |
|
|
} |
|
|
|
|
|
size_t width = 50; |
|
|
size_t pct = (100 * current) / total; |
|
|
size_t pos = (width * current) / total; |
|
|
|
|
|
std::cout << "[" |
|
|
<< std::string(pos, '=') |
|
|
<< (pos < width ? ">" : "") |
|
|
<< std::string(width - pos, ' ') |
|
|
<< "] " << std::setw(3) << pct << "% (" |
|
|
<< current / (1024 * 1024) << " MB / " |
|
|
<< total / (1024 * 1024) << " MB)\r"; |
|
|
std::cout.flush(); |
|
|
} |
|
|
|
|
|
static bool common_pull_file(httplib::Client & cli, |
|
|
const std::string & resolve_path, |
|
|
const std::string & path_tmp, |
|
|
bool supports_ranges, |
|
|
size_t existing_size, |
|
|
size_t & total_size) { |
|
|
std::ofstream ofs(path_tmp, std::ios::binary | std::ios::app); |
|
|
if (!ofs.is_open()) { |
|
|
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path_tmp.c_str()); |
|
|
return false; |
|
|
} |
|
|
|
|
|
httplib::Headers headers; |
|
|
if (supports_ranges && existing_size > 0) { |
|
|
headers.emplace("Range", "bytes=" + std::to_string(existing_size) + "-"); |
|
|
} |
|
|
|
|
|
std::atomic<size_t> downloaded{existing_size}; |
|
|
|
|
|
auto res = cli.Get(resolve_path, headers, |
|
|
[&](const httplib::Response &response) { |
|
|
if (existing_size > 0 && response.status != 206) { |
|
|
LOG_WRN("%s: server did not respond with 206 Partial Content for a resume request. Status: %d\n", __func__, response.status); |
|
|
return false; |
|
|
} |
|
|
if (existing_size == 0 && response.status != 200) { |
|
|
LOG_WRN("%s: download received non-successful status code: %d\n", __func__, response.status); |
|
|
return false; |
|
|
} |
|
|
if (total_size == 0 && response.has_header("Content-Length")) { |
|
|
try { |
|
|
size_t content_length = std::stoull(response.get_header_value("Content-Length")); |
|
|
total_size = existing_size + content_length; |
|
|
} catch (const std::exception &e) { |
|
|
LOG_WRN("%s: invalid Content-Length header: %s\n", __func__, e.what()); |
|
|
} |
|
|
} |
|
|
return true; |
|
|
}, |
|
|
[&](const char *data, size_t len) { |
|
|
ofs.write(data, len); |
|
|
if (!ofs) { |
|
|
LOG_ERR("%s: error writing to file: %s\n", __func__, path_tmp.c_str()); |
|
|
return false; |
|
|
} |
|
|
downloaded += len; |
|
|
print_progress(downloaded, total_size); |
|
|
return true; |
|
|
}, |
|
|
nullptr |
|
|
); |
|
|
|
|
|
std::cout << "\n"; |
|
|
|
|
|
if (!res) { |
|
|
LOG_ERR("%s: error during download. Status: %d\n", __func__, res ? res->status : -1); |
|
|
return false; |
|
|
} |
|
|
|
|
|
return true; |
|
|
} |
|
|
|
|
|
|
|
|
static bool common_download_file_single_online(const std::string & url, |
|
|
const std::string & path, |
|
|
const std::string & bearer_token) { |
|
|
static const int max_attempts = 3; |
|
|
static const int retry_delay_seconds = 2; |
|
|
|
|
|
auto [cli, parts] = common_http_client(url); |
|
|
|
|
|
httplib::Headers default_headers = {{"User-Agent", "llama-cpp"}}; |
|
|
if (!bearer_token.empty()) { |
|
|
default_headers.insert({"Authorization", "Bearer " + bearer_token}); |
|
|
} |
|
|
cli.set_default_headers(default_headers); |
|
|
|
|
|
const bool file_exists = std::filesystem::exists(path); |
|
|
|
|
|
std::string last_etag; |
|
|
if (file_exists) { |
|
|
last_etag = read_etag(path); |
|
|
} else { |
|
|
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str()); |
|
|
} |
|
|
|
|
|
for (int i = 0; i < max_attempts; ++i) { |
|
|
auto head = cli.Head(parts.path); |
|
|
bool head_ok = head && head->status >= 200 && head->status < 300; |
|
|
if (!head_ok) { |
|
|
LOG_WRN("%s: HEAD invalid http status code received: %d\n", __func__, head ? head->status : -1); |
|
|
if (file_exists) { |
|
|
LOG_INF("%s: Using cached file (HEAD failed): %s\n", __func__, path.c_str()); |
|
|
return true; |
|
|
} |
|
|
} |
|
|
|
|
|
std::string etag; |
|
|
if (head_ok && head->has_header("ETag")) { |
|
|
etag = head->get_header_value("ETag"); |
|
|
} |
|
|
|
|
|
size_t total_size = 0; |
|
|
if (head_ok && head->has_header("Content-Length")) { |
|
|
try { |
|
|
total_size = std::stoull(head->get_header_value("Content-Length")); |
|
|
} catch (const std::exception& e) { |
|
|
LOG_WRN("%s: Invalid Content-Length in HEAD response: %s\n", __func__, e.what()); |
|
|
} |
|
|
} |
|
|
|
|
|
bool supports_ranges = false; |
|
|
if (head_ok && head->has_header("Accept-Ranges")) { |
|
|
supports_ranges = head->get_header_value("Accept-Ranges") != "none"; |
|
|
} |
|
|
|
|
|
bool should_download_from_scratch = false; |
|
|
if (!last_etag.empty() && !etag.empty() && last_etag != etag) { |
|
|
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, |
|
|
last_etag.c_str(), etag.c_str()); |
|
|
should_download_from_scratch = true; |
|
|
} |
|
|
|
|
|
if (file_exists) { |
|
|
if (!should_download_from_scratch) { |
|
|
LOG_INF("%s: using cached file: %s\n", __func__, path.c_str()); |
|
|
return true; |
|
|
} |
|
|
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str()); |
|
|
if (remove(path.c_str()) != 0) { |
|
|
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str()); |
|
|
return false; |
|
|
} |
|
|
} |
|
|
|
|
|
const std::string path_temporary = path + ".downloadInProgress"; |
|
|
size_t existing_size = 0; |
|
|
|
|
|
if (std::filesystem::exists(path_temporary)) { |
|
|
if (supports_ranges && !should_download_from_scratch) { |
|
|
existing_size = std::filesystem::file_size(path_temporary); |
|
|
} else if (remove(path_temporary.c_str()) != 0) { |
|
|
LOG_ERR("%s: unable to delete file: %s\n", __func__, path_temporary.c_str()); |
|
|
return false; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
LOG_INF("%s: trying to download model from %s to %s (etag:%s)...\n", |
|
|
__func__, common_http_show_masked_url(parts).c_str(), path_temporary.c_str(), etag.c_str()); |
|
|
const bool was_pull_successful = common_pull_file(cli, parts.path, path_temporary, supports_ranges, existing_size, total_size); |
|
|
if (!was_pull_successful) { |
|
|
if (i + 1 < max_attempts) { |
|
|
const int exponential_backoff_delay = std::pow(retry_delay_seconds, i) * 1000; |
|
|
LOG_WRN("%s: retrying after %d milliseconds...\n", __func__, exponential_backoff_delay); |
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay)); |
|
|
} else { |
|
|
LOG_ERR("%s: download failed after %d attempts\n", __func__, max_attempts); |
|
|
} |
|
|
continue; |
|
|
} |
|
|
|
|
|
if (std::rename(path_temporary.c_str(), path.c_str()) != 0) { |
|
|
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str()); |
|
|
return false; |
|
|
} |
|
|
if (!etag.empty()) { |
|
|
write_etag(path, etag); |
|
|
} |
|
|
break; |
|
|
} |
|
|
|
|
|
return true; |
|
|
} |
|
|
|
|
|
std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, |
|
|
const common_remote_params & params) { |
|
|
auto [cli, parts] = common_http_client(url); |
|
|
|
|
|
httplib::Headers headers = {{"User-Agent", "llama-cpp"}}; |
|
|
for (const auto & header : params.headers) { |
|
|
size_t pos = header.find(':'); |
|
|
if (pos != std::string::npos) { |
|
|
headers.emplace(header.substr(0, pos), header.substr(pos + 1)); |
|
|
} else { |
|
|
headers.emplace(header, ""); |
|
|
} |
|
|
} |
|
|
|
|
|
if (params.timeout > 0) { |
|
|
cli.set_read_timeout(params.timeout, 0); |
|
|
cli.set_write_timeout(params.timeout, 0); |
|
|
} |
|
|
|
|
|
std::vector<char> buf; |
|
|
auto res = cli.Get(parts.path, headers, |
|
|
[&](const char *data, size_t len) { |
|
|
buf.insert(buf.end(), data, data + len); |
|
|
return params.max_size == 0 || |
|
|
buf.size() <= static_cast<size_t>(params.max_size); |
|
|
}, |
|
|
nullptr |
|
|
); |
|
|
|
|
|
if (!res) { |
|
|
throw std::runtime_error("error: cannot make GET request"); |
|
|
} |
|
|
|
|
|
return { res->status, std::move(buf) }; |
|
|
} |
|
|
|
|
|
#endif |
|
|
|
|
|
static bool common_download_file_single(const std::string & url, |
|
|
const std::string & path, |
|
|
const std::string & bearer_token, |
|
|
bool offline) { |
|
|
if (!offline) { |
|
|
return common_download_file_single_online(url, path, bearer_token); |
|
|
} |
|
|
|
|
|
if (!std::filesystem::exists(path)) { |
|
|
LOG_ERR("%s: required file is not available in cache (offline mode): %s\n", __func__, path.c_str()); |
|
|
return false; |
|
|
} |
|
|
|
|
|
LOG_INF("%s: using cached file (offline mode): %s\n", __func__, path.c_str()); |
|
|
return true; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token, bool offline) { |
|
|
|
|
|
std::vector<std::future<bool>> futures_download; |
|
|
for (auto const & item : urls) { |
|
|
futures_download.push_back(std::async(std::launch::async, [bearer_token, offline](const std::pair<std::string, std::string> & it) -> bool { |
|
|
return common_download_file_single(it.first, it.second, bearer_token, offline); |
|
|
}, item)); |
|
|
} |
|
|
|
|
|
|
|
|
for (auto & f : futures_download) { |
|
|
if (!f.get()) { |
|
|
return false; |
|
|
} |
|
|
} |
|
|
|
|
|
return true; |
|
|
} |
|
|
|
|
|
static bool common_download_model( |
|
|
const common_params_model & model, |
|
|
const std::string & bearer_token, |
|
|
bool offline) { |
|
|
|
|
|
if (model.url.empty()) { |
|
|
LOG_ERR("%s: invalid model url\n", __func__); |
|
|
return false; |
|
|
} |
|
|
|
|
|
if (!common_download_file_single(model.url, model.path, bearer_token, offline)) { |
|
|
return false; |
|
|
} |
|
|
|
|
|
|
|
|
int n_split = 0; |
|
|
{ |
|
|
struct gguf_init_params gguf_params = { |
|
|
true, |
|
|
NULL, |
|
|
}; |
|
|
auto * ctx_gguf = gguf_init_from_file(model.path.c_str(), gguf_params); |
|
|
if (!ctx_gguf) { |
|
|
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, model.path.c_str()); |
|
|
return false; |
|
|
} |
|
|
|
|
|
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT); |
|
|
if (key_n_split >= 0) { |
|
|
n_split = gguf_get_val_u16(ctx_gguf, key_n_split); |
|
|
} |
|
|
|
|
|
gguf_free(ctx_gguf); |
|
|
} |
|
|
|
|
|
if (n_split > 1) { |
|
|
char split_prefix[PATH_MAX] = {0}; |
|
|
char split_url_prefix[LLAMA_MAX_URL_LENGTH] = {0}; |
|
|
|
|
|
|
|
|
|
|
|
{ |
|
|
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), model.path.c_str(), 0, n_split)) { |
|
|
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, model.path.c_str(), n_split); |
|
|
return false; |
|
|
} |
|
|
|
|
|
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model.url.c_str(), 0, n_split)) { |
|
|
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model.url.c_str(), n_split); |
|
|
return false; |
|
|
} |
|
|
} |
|
|
|
|
|
std::vector<std::pair<std::string, std::string>> urls; |
|
|
for (int idx = 1; idx < n_split; idx++) { |
|
|
char split_path[PATH_MAX] = {0}; |
|
|
llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split); |
|
|
|
|
|
char split_url[LLAMA_MAX_URL_LENGTH] = {0}; |
|
|
llama_split_path(split_url, sizeof(split_url), split_url_prefix, idx, n_split); |
|
|
|
|
|
if (std::string(split_path) == model.path) { |
|
|
continue; |
|
|
} |
|
|
|
|
|
urls.push_back({split_url, split_path}); |
|
|
} |
|
|
|
|
|
|
|
|
common_download_file_multiple(urls, bearer_token, offline); |
|
|
} |
|
|
|
|
|
return true; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token, bool offline) { |
|
|
auto parts = string_split<std::string>(hf_repo_with_tag, ':'); |
|
|
std::string tag = parts.size() > 1 ? parts.back() : "latest"; |
|
|
std::string hf_repo = parts[0]; |
|
|
if (string_split<std::string>(hf_repo, '/').size() != 2) { |
|
|
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n"); |
|
|
} |
|
|
|
|
|
std::string url = get_model_endpoint() + "v2/" + hf_repo + "/manifests/" + tag; |
|
|
|
|
|
|
|
|
std::vector<std::string> headers; |
|
|
headers.push_back("Accept: application/json"); |
|
|
if (!bearer_token.empty()) { |
|
|
headers.push_back("Authorization: Bearer " + bearer_token); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::string cached_response_fname = "manifest=" + hf_repo + "=" + tag + ".json"; |
|
|
string_replace_all(cached_response_fname, "/", "_"); |
|
|
std::string cached_response_path = fs_get_cache_file(cached_response_fname); |
|
|
|
|
|
|
|
|
common_remote_params params; |
|
|
params.headers = headers; |
|
|
long res_code = 0; |
|
|
std::string res_str; |
|
|
bool use_cache = false; |
|
|
if (!offline) { |
|
|
try { |
|
|
auto res = common_remote_get_content(url, params); |
|
|
res_code = res.first; |
|
|
res_str = std::string(res.second.data(), res.second.size()); |
|
|
} catch (const std::exception & e) { |
|
|
LOG_WRN("error: failed to get manifest at %s: %s\n", url.c_str(), e.what()); |
|
|
} |
|
|
} |
|
|
if (res_code == 0) { |
|
|
if (std::filesystem::exists(cached_response_path)) { |
|
|
LOG_WRN("trying to read manifest from cache: %s\n", cached_response_path.c_str()); |
|
|
res_str = read_file(cached_response_path); |
|
|
res_code = 200; |
|
|
use_cache = true; |
|
|
} else { |
|
|
throw std::runtime_error( |
|
|
offline ? "error: failed to get manifest (offline mode)" |
|
|
: "error: failed to get manifest (check your internet connection)"); |
|
|
} |
|
|
} |
|
|
std::string ggufFile; |
|
|
std::string mmprojFile; |
|
|
|
|
|
if (res_code == 200 || res_code == 304) { |
|
|
try { |
|
|
auto j = json::parse(res_str); |
|
|
|
|
|
if (j.contains("ggufFile") && j["ggufFile"].contains("rfilename")) { |
|
|
ggufFile = j["ggufFile"]["rfilename"].get<std::string>(); |
|
|
} |
|
|
if (j.contains("mmprojFile") && j["mmprojFile"].contains("rfilename")) { |
|
|
mmprojFile = j["mmprojFile"]["rfilename"].get<std::string>(); |
|
|
} |
|
|
} catch (const std::exception & e) { |
|
|
throw std::runtime_error(std::string("error parsing manifest JSON: ") + e.what()); |
|
|
} |
|
|
if (!use_cache) { |
|
|
|
|
|
write_file(cached_response_path, res_str); |
|
|
} |
|
|
} else if (res_code == 401) { |
|
|
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token"); |
|
|
} else { |
|
|
throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str())); |
|
|
} |
|
|
|
|
|
|
|
|
if (ggufFile.empty()) { |
|
|
throw std::runtime_error("error: model does not have ggufFile"); |
|
|
} |
|
|
|
|
|
return { hf_repo, ggufFile, mmprojFile }; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static std::string common_docker_get_token(const std::string & repo) { |
|
|
std::string url = "https://auth.docker.io/token?service=registry.docker.io&scope=repository:" + repo + ":pull"; |
|
|
|
|
|
common_remote_params params; |
|
|
auto res = common_remote_get_content(url, params); |
|
|
|
|
|
if (res.first != 200) { |
|
|
throw std::runtime_error("Failed to get Docker registry token, HTTP code: " + std::to_string(res.first)); |
|
|
} |
|
|
|
|
|
std::string response_str(res.second.begin(), res.second.end()); |
|
|
nlohmann::ordered_json response = nlohmann::ordered_json::parse(response_str); |
|
|
|
|
|
if (!response.contains("token")) { |
|
|
throw std::runtime_error("Docker registry token response missing 'token' field"); |
|
|
} |
|
|
|
|
|
return response["token"].get<std::string>(); |
|
|
} |
|
|
|
|
|
static std::string common_docker_resolve_model(const std::string & docker) { |
|
|
|
|
|
size_t colon_pos = docker.find(':'); |
|
|
std::string repo, tag; |
|
|
if (colon_pos != std::string::npos) { |
|
|
repo = docker.substr(0, colon_pos); |
|
|
tag = docker.substr(colon_pos + 1); |
|
|
} else { |
|
|
repo = docker; |
|
|
tag = "latest"; |
|
|
} |
|
|
|
|
|
|
|
|
size_t slash_pos = docker.find('/'); |
|
|
if (slash_pos == std::string::npos) { |
|
|
repo.insert(0, "ai/"); |
|
|
} |
|
|
|
|
|
LOG_INF("%s: Downloading Docker Model: %s:%s\n", __func__, repo.c_str(), tag.c_str()); |
|
|
try { |
|
|
|
|
|
auto validate_oci_digest = [](const std::string & digest) -> std::string { |
|
|
|
|
|
|
|
|
static const std::regex re("^sha256:([a-fA-F0-9]{64})$"); |
|
|
std::smatch m; |
|
|
if (!std::regex_match(digest, m, re)) { |
|
|
throw std::runtime_error("Invalid OCI digest format received in manifest: " + digest); |
|
|
} |
|
|
|
|
|
std::string normalized = digest; |
|
|
std::transform(normalized.begin()+7, normalized.end(), normalized.begin()+7, [](unsigned char c){ |
|
|
return std::tolower(c); |
|
|
}); |
|
|
return normalized; |
|
|
}; |
|
|
|
|
|
std::string token = common_docker_get_token(repo); |
|
|
|
|
|
|
|
|
const std::string url_prefix = "https://registry-1.docker.io/v2/" + repo; |
|
|
std::string manifest_url = url_prefix + "/manifests/" + tag; |
|
|
common_remote_params manifest_params; |
|
|
manifest_params.headers.push_back("Authorization: Bearer " + token); |
|
|
manifest_params.headers.push_back( |
|
|
"Accept: application/vnd.docker.distribution.manifest.v2+json,application/vnd.oci.image.manifest.v1+json"); |
|
|
auto manifest_res = common_remote_get_content(manifest_url, manifest_params); |
|
|
if (manifest_res.first != 200) { |
|
|
throw std::runtime_error("Failed to get Docker manifest, HTTP code: " + std::to_string(manifest_res.first)); |
|
|
} |
|
|
|
|
|
std::string manifest_str(manifest_res.second.begin(), manifest_res.second.end()); |
|
|
nlohmann::ordered_json manifest = nlohmann::ordered_json::parse(manifest_str); |
|
|
std::string gguf_digest; |
|
|
if (manifest.contains("layers")) { |
|
|
for (const auto & layer : manifest["layers"]) { |
|
|
if (layer.contains("mediaType")) { |
|
|
std::string media_type = layer["mediaType"].get<std::string>(); |
|
|
if (media_type == "application/vnd.docker.ai.gguf.v3" || |
|
|
media_type.find("gguf") != std::string::npos) { |
|
|
gguf_digest = layer["digest"].get<std::string>(); |
|
|
break; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
if (gguf_digest.empty()) { |
|
|
throw std::runtime_error("No GGUF layer found in Docker manifest"); |
|
|
} |
|
|
|
|
|
|
|
|
gguf_digest = validate_oci_digest(gguf_digest); |
|
|
LOG_DBG("%s: Using validated digest: %s\n", __func__, gguf_digest.c_str()); |
|
|
|
|
|
|
|
|
std::string model_filename = repo; |
|
|
std::replace(model_filename.begin(), model_filename.end(), '/', '_'); |
|
|
model_filename += "_" + tag + ".gguf"; |
|
|
std::string local_path = fs_get_cache_file(model_filename); |
|
|
|
|
|
const std::string blob_url = url_prefix + "/blobs/" + gguf_digest; |
|
|
if (!common_download_file_single(blob_url, local_path, token, false)) { |
|
|
throw std::runtime_error("Failed to download Docker Model"); |
|
|
} |
|
|
|
|
|
LOG_INF("%s: Downloaded Docker Model to: %s\n", __func__, local_path.c_str()); |
|
|
return local_path; |
|
|
} catch (const std::exception & e) { |
|
|
LOG_ERR("%s: Docker Model download failed: %s\n", __func__, e.what()); |
|
|
throw; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void parse_tensor_buffer_overrides(const std::string & value, std::vector<llama_model_tensor_buft_override> & overrides) { |
|
|
std::map<std::string, ggml_backend_buffer_type_t> buft_list; |
|
|
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { |
|
|
auto * dev = ggml_backend_dev_get(i); |
|
|
auto * buft = ggml_backend_dev_buffer_type(dev); |
|
|
if (buft) { |
|
|
buft_list[ggml_backend_buft_name(buft)] = buft; |
|
|
} |
|
|
} |
|
|
|
|
|
for (const auto & override : string_split<std::string>(value, ',')) { |
|
|
std::string::size_type pos = override.find('='); |
|
|
if (pos == std::string::npos) { |
|
|
throw std::invalid_argument("invalid value"); |
|
|
} |
|
|
std::string tensor_name = override.substr(0, pos); |
|
|
std::string buffer_type = override.substr(pos + 1); |
|
|
|
|
|
if (buft_list.find(buffer_type) == buft_list.end()) { |
|
|
printf("Available buffer types:\n"); |
|
|
for (const auto & it : buft_list) { |
|
|
printf(" %s\n", ggml_backend_buft_name(it.second)); |
|
|
} |
|
|
throw std::invalid_argument("unknown buffer type"); |
|
|
} |
|
|
|
|
|
static std::list<std::string> buft_overrides; |
|
|
buft_overrides.push_back(tensor_name); |
|
|
overrides.push_back({buft_overrides.back().c_str(), buft_list.at(buffer_type)}); |
|
|
} |
|
|
} |
|
|
|
|
|
struct handle_model_result { |
|
|
bool found_mmproj = false; |
|
|
common_params_model mmproj; |
|
|
}; |
|
|
|
|
|
static handle_model_result common_params_handle_model( |
|
|
struct common_params_model & model, |
|
|
const std::string & bearer_token, |
|
|
const std::string & model_path_default, |
|
|
bool offline) { |
|
|
handle_model_result result; |
|
|
|
|
|
{ |
|
|
if (!model.docker_repo.empty()) { |
|
|
model.path = common_docker_resolve_model(model.docker_repo); |
|
|
} else if (!model.hf_repo.empty()) { |
|
|
|
|
|
if (model.hf_file.empty()) { |
|
|
if (model.path.empty()) { |
|
|
auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token, offline); |
|
|
if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) { |
|
|
exit(1); |
|
|
} |
|
|
model.hf_repo = auto_detected.repo; |
|
|
model.hf_file = auto_detected.ggufFile; |
|
|
if (!auto_detected.mmprojFile.empty()) { |
|
|
result.found_mmproj = true; |
|
|
result.mmproj.hf_repo = model.hf_repo; |
|
|
result.mmproj.hf_file = auto_detected.mmprojFile; |
|
|
} |
|
|
} else { |
|
|
model.hf_file = model.path; |
|
|
} |
|
|
} |
|
|
|
|
|
std::string model_endpoint = get_model_endpoint(); |
|
|
model.url = model_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file; |
|
|
|
|
|
if (model.path.empty()) { |
|
|
|
|
|
std::string filename = model.hf_repo + "_" + model.hf_file; |
|
|
|
|
|
string_replace_all(filename, "/", "_"); |
|
|
model.path = fs_get_cache_file(filename); |
|
|
} |
|
|
|
|
|
} else if (!model.url.empty()) { |
|
|
if (model.path.empty()) { |
|
|
auto f = string_split<std::string>(model.url, '#').front(); |
|
|
f = string_split<std::string>(f, '?').front(); |
|
|
model.path = fs_get_cache_file(string_split<std::string>(f, '/').back()); |
|
|
} |
|
|
|
|
|
} else if (model.path.empty()) { |
|
|
model.path = model_path_default; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
if (!model.url.empty()) { |
|
|
bool ok = common_download_model(model, bearer_token, offline); |
|
|
if (!ok) { |
|
|
LOG_ERR("error: failed to download model from %s\n", model.url.c_str()); |
|
|
exit(1); |
|
|
} |
|
|
} |
|
|
|
|
|
return result; |
|
|
} |
|
|
|
|
|
const std::vector<ggml_type> kv_cache_types = { |
|
|
GGML_TYPE_F32, |
|
|
GGML_TYPE_F16, |
|
|
GGML_TYPE_BF16, |
|
|
GGML_TYPE_Q8_0, |
|
|
GGML_TYPE_Q4_0, |
|
|
GGML_TYPE_Q4_1, |
|
|
GGML_TYPE_IQ4_NL, |
|
|
GGML_TYPE_Q5_0, |
|
|
GGML_TYPE_Q5_1, |
|
|
}; |
|
|
|
|
|
static ggml_type kv_cache_type_from_str(const std::string & s) { |
|
|
for (const auto & type : kv_cache_types) { |
|
|
if (ggml_type_name(type) == s) { |
|
|
return type; |
|
|
} |
|
|
} |
|
|
throw std::runtime_error("Unsupported cache type: " + s); |
|
|
} |
|
|
|
|
|
static std::string get_all_kv_cache_types() { |
|
|
std::ostringstream msg; |
|
|
for (const auto & type : kv_cache_types) { |
|
|
msg << ggml_type_name(type) << (&type == &kv_cache_types.back() ? "" : ", "); |
|
|
} |
|
|
return msg.str(); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static bool common_params_parse_ex(int argc, char ** argv, common_params_context & ctx_arg) { |
|
|
common_params & params = ctx_arg.params; |
|
|
|
|
|
std::unordered_map<std::string, common_arg *> arg_to_options; |
|
|
for (auto & opt : ctx_arg.options) { |
|
|
for (const auto & arg : opt.args) { |
|
|
arg_to_options[arg] = &opt; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
for (auto & opt : ctx_arg.options) { |
|
|
std::string value; |
|
|
if (opt.get_value_from_env(value)) { |
|
|
try { |
|
|
if (opt.handler_void && (value == "1" || value == "true")) { |
|
|
opt.handler_void(params); |
|
|
} |
|
|
if (opt.handler_int) { |
|
|
opt.handler_int(params, std::stoi(value)); |
|
|
} |
|
|
if (opt.handler_string) { |
|
|
opt.handler_string(params, value); |
|
|
continue; |
|
|
} |
|
|
} catch (std::exception & e) { |
|
|
throw std::invalid_argument(string_format( |
|
|
"error while handling environment variable \"%s\": %s\n\n", opt.env, e.what())); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
auto check_arg = [&](int i) { |
|
|
if (i+1 >= argc) { |
|
|
throw std::invalid_argument("expected value for argument"); |
|
|
} |
|
|
}; |
|
|
|
|
|
for (int i = 1; i < argc; i++) { |
|
|
const std::string arg_prefix = "--"; |
|
|
|
|
|
std::string arg = argv[i]; |
|
|
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { |
|
|
std::replace(arg.begin(), arg.end(), '_', '-'); |
|
|
} |
|
|
if (arg_to_options.find(arg) == arg_to_options.end()) { |
|
|
throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str())); |
|
|
} |
|
|
auto opt = *arg_to_options[arg]; |
|
|
if (opt.has_value_from_env()) { |
|
|
fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str()); |
|
|
} |
|
|
try { |
|
|
if (opt.handler_void) { |
|
|
opt.handler_void(params); |
|
|
continue; |
|
|
} |
|
|
|
|
|
|
|
|
check_arg(i); |
|
|
std::string val = argv[++i]; |
|
|
if (opt.handler_int) { |
|
|
opt.handler_int(params, std::stoi(val)); |
|
|
continue; |
|
|
} |
|
|
if (opt.handler_string) { |
|
|
opt.handler_string(params, val); |
|
|
continue; |
|
|
} |
|
|
|
|
|
|
|
|
check_arg(i); |
|
|
std::string val2 = argv[++i]; |
|
|
if (opt.handler_str_str) { |
|
|
opt.handler_str_str(params, val, val2); |
|
|
continue; |
|
|
} |
|
|
} catch (std::exception & e) { |
|
|
throw std::invalid_argument(string_format( |
|
|
"error while handling argument \"%s\": %s\n\n" |
|
|
"usage:\n%s\n\nto show complete usage, run with -h", |
|
|
arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str())); |
|
|
} |
|
|
} |
|
|
|
|
|
postprocess_cpu_params(params.cpuparams, nullptr); |
|
|
postprocess_cpu_params(params.cpuparams_batch, ¶ms.cpuparams); |
|
|
|
|
|
postprocess_cpu_params(params.speculative.cpuparams, ¶ms.cpuparams); |
|
|
postprocess_cpu_params(params.speculative.cpuparams_batch, ¶ms.cpuparams_batch); |
|
|
|
|
|
if (params.prompt_cache_all && (params.interactive || params.interactive_first)) { |
|
|
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n"); |
|
|
} |
|
|
|
|
|
|
|
|
{ |
|
|
auto res = common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH, params.offline); |
|
|
if (params.no_mmproj) { |
|
|
params.mmproj = {}; |
|
|
} else if (res.found_mmproj && params.mmproj.path.empty() && params.mmproj.url.empty()) { |
|
|
|
|
|
params.mmproj = res.mmproj; |
|
|
} |
|
|
|
|
|
for (auto & ex : mmproj_examples) { |
|
|
if (ctx_arg.ex == ex) { |
|
|
common_params_handle_model(params.mmproj, params.hf_token, "", params.offline); |
|
|
break; |
|
|
} |
|
|
} |
|
|
common_params_handle_model(params.speculative.model, params.hf_token, "", params.offline); |
|
|
common_params_handle_model(params.vocoder.model, params.hf_token, "", params.offline); |
|
|
} |
|
|
|
|
|
if (params.escape) { |
|
|
string_process_escapes(params.prompt); |
|
|
string_process_escapes(params.input_prefix); |
|
|
string_process_escapes(params.input_suffix); |
|
|
for (auto & antiprompt : params.antiprompt) { |
|
|
string_process_escapes(antiprompt); |
|
|
} |
|
|
for (auto & seq_breaker : params.sampling.dry_sequence_breakers) { |
|
|
string_process_escapes(seq_breaker); |
|
|
} |
|
|
for (auto & pair : params.speculative.replacements) { |
|
|
string_process_escapes(pair.first); |
|
|
string_process_escapes(pair.second); |
|
|
} |
|
|
} |
|
|
|
|
|
if (!params.kv_overrides.empty()) { |
|
|
params.kv_overrides.emplace_back(); |
|
|
params.kv_overrides.back().key[0] = 0; |
|
|
} |
|
|
|
|
|
if (!params.tensor_buft_overrides.empty()) { |
|
|
params.tensor_buft_overrides.push_back({nullptr, nullptr}); |
|
|
} |
|
|
|
|
|
if (!params.speculative.tensor_buft_overrides.empty()) { |
|
|
params.speculative.tensor_buft_overrides.push_back({nullptr, nullptr}); |
|
|
} |
|
|
|
|
|
if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) { |
|
|
throw std::runtime_error(string_format( |
|
|
"error: the supplied chat template is not supported: %s%s\n", |
|
|
params.chat_template.c_str(), |
|
|
params.use_jinja ? "" : "\nnote: llama.cpp was started without --jinja, we only support commonly used templates" |
|
|
)); |
|
|
} |
|
|
|
|
|
return true; |
|
|
} |
|
|
|
|
|
static void common_params_print_usage(common_params_context & ctx_arg) { |
|
|
auto print_options = [](std::vector<common_arg *> & options) { |
|
|
for (common_arg * opt : options) { |
|
|
printf("%s", opt->to_string().c_str()); |
|
|
} |
|
|
}; |
|
|
|
|
|
std::vector<common_arg *> common_options; |
|
|
std::vector<common_arg *> sparam_options; |
|
|
std::vector<common_arg *> specific_options; |
|
|
for (auto & opt : ctx_arg.options) { |
|
|
|
|
|
if (opt.is_sparam) { |
|
|
sparam_options.push_back(&opt); |
|
|
} else if (opt.in_example(ctx_arg.ex)) { |
|
|
specific_options.push_back(&opt); |
|
|
} else { |
|
|
common_options.push_back(&opt); |
|
|
} |
|
|
} |
|
|
printf("----- common params -----\n\n"); |
|
|
print_options(common_options); |
|
|
printf("\n\n----- sampling params -----\n\n"); |
|
|
print_options(sparam_options); |
|
|
|
|
|
printf("\n\n----- example-specific params -----\n\n"); |
|
|
print_options(specific_options); |
|
|
} |
|
|
|
|
|
static void common_params_print_completion(common_params_context & ctx_arg) { |
|
|
std::vector<common_arg *> common_options; |
|
|
std::vector<common_arg *> sparam_options; |
|
|
std::vector<common_arg *> specific_options; |
|
|
|
|
|
for (auto & opt : ctx_arg.options) { |
|
|
if (opt.is_sparam) { |
|
|
sparam_options.push_back(&opt); |
|
|
} else if (opt.in_example(ctx_arg.ex)) { |
|
|
specific_options.push_back(&opt); |
|
|
} else { |
|
|
common_options.push_back(&opt); |
|
|
} |
|
|
} |
|
|
|
|
|
printf("_llama_completions() {\n"); |
|
|
printf(" local cur prev opts\n"); |
|
|
printf(" COMPREPLY=()\n"); |
|
|
printf(" cur=\"${COMP_WORDS[COMP_CWORD]}\"\n"); |
|
|
printf(" prev=\"${COMP_WORDS[COMP_CWORD-1]}\"\n\n"); |
|
|
|
|
|
printf(" opts=\""); |
|
|
auto print_options = [](const std::vector<common_arg *> & options) { |
|
|
for (const common_arg * opt : options) { |
|
|
for (const char * arg : opt->args) { |
|
|
printf("%s ", arg); |
|
|
} |
|
|
} |
|
|
}; |
|
|
|
|
|
print_options(common_options); |
|
|
print_options(sparam_options); |
|
|
print_options(specific_options); |
|
|
printf("\"\n\n"); |
|
|
|
|
|
printf(" case \"$prev\" in\n"); |
|
|
printf(" --model|-m)\n"); |
|
|
printf(" COMPREPLY=( $(compgen -f -X '!*.gguf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n"); |
|
|
printf(" return 0\n"); |
|
|
printf(" ;;\n"); |
|
|
printf(" --grammar-file)\n"); |
|
|
printf(" COMPREPLY=( $(compgen -f -X '!*.gbnf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n"); |
|
|
printf(" return 0\n"); |
|
|
printf(" ;;\n"); |
|
|
printf(" --chat-template-file)\n"); |
|
|
printf(" COMPREPLY=( $(compgen -f -X '!*.jinja' -- \"$cur\") $(compgen -d -- \"$cur\") )\n"); |
|
|
printf(" return 0\n"); |
|
|
printf(" ;;\n"); |
|
|
printf(" *)\n"); |
|
|
printf(" COMPREPLY=( $(compgen -W \"${opts}\" -- \"$cur\") )\n"); |
|
|
printf(" return 0\n"); |
|
|
printf(" ;;\n"); |
|
|
printf(" esac\n"); |
|
|
printf("}\n\n"); |
|
|
|
|
|
std::set<std::string> executables = { |
|
|
"llama-batched", |
|
|
"llama-batched-bench", |
|
|
"llama-bench", |
|
|
"llama-cli", |
|
|
"llama-convert-llama2c-to-ggml", |
|
|
"llama-cvector-generator", |
|
|
"llama-embedding", |
|
|
"llama-eval-callback", |
|
|
"llama-export-lora", |
|
|
"llama-gen-docs", |
|
|
"llama-gguf", |
|
|
"llama-gguf-hash", |
|
|
"llama-gguf-split", |
|
|
"llama-gritlm", |
|
|
"llama-imatrix", |
|
|
"llama-infill", |
|
|
"llama-mtmd-cli", |
|
|
"llama-llava-clip-quantize-cli", |
|
|
"llama-lookahead", |
|
|
"llama-lookup", |
|
|
"llama-lookup-create", |
|
|
"llama-lookup-merge", |
|
|
"llama-lookup-stats", |
|
|
"llama-parallel", |
|
|
"llama-passkey", |
|
|
"llama-perplexity", |
|
|
"llama-q8dot", |
|
|
"llama-quantize", |
|
|
"llama-qwen2vl-cli", |
|
|
"llama-retrieval", |
|
|
"llama-run", |
|
|
"llama-save-load-state", |
|
|
"llama-server", |
|
|
"llama-simple", |
|
|
"llama-simple-chat", |
|
|
"llama-speculative", |
|
|
"llama-speculative-simple", |
|
|
"llama-tokenize", |
|
|
"llama-tts", |
|
|
"llama-vdot" |
|
|
}; |
|
|
|
|
|
for (const auto& exe : executables) { |
|
|
printf("complete -F _llama_completions %s\n", exe.c_str()); |
|
|
} |
|
|
} |
|
|
|
|
|
static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & value) { |
|
|
std::vector<ggml_backend_dev_t> devices; |
|
|
auto dev_names = string_split<std::string>(value, ','); |
|
|
if (dev_names.empty()) { |
|
|
throw std::invalid_argument("no devices specified"); |
|
|
} |
|
|
if (dev_names.size() == 1 && dev_names[0] == "none") { |
|
|
devices.push_back(nullptr); |
|
|
} else { |
|
|
for (const auto & device : dev_names) { |
|
|
auto * dev = ggml_backend_dev_by_name(device.c_str()); |
|
|
if (!dev || ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) { |
|
|
throw std::invalid_argument(string_format("invalid device: %s", device.c_str())); |
|
|
} |
|
|
devices.push_back(dev); |
|
|
} |
|
|
devices.push_back(nullptr); |
|
|
} |
|
|
return devices; |
|
|
} |
|
|
|
|
|
static void add_rpc_devices(const std::string & servers) { |
|
|
auto rpc_servers = string_split<std::string>(servers, ','); |
|
|
if (rpc_servers.empty()) { |
|
|
throw std::invalid_argument("no RPC servers specified"); |
|
|
} |
|
|
ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC"); |
|
|
if (!rpc_reg) { |
|
|
throw std::invalid_argument("failed to find RPC backend"); |
|
|
} |
|
|
typedef ggml_backend_reg_t (*ggml_backend_rpc_add_server_t)(const char * endpoint); |
|
|
ggml_backend_rpc_add_server_t ggml_backend_rpc_add_server_fn = (ggml_backend_rpc_add_server_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_server"); |
|
|
if (!ggml_backend_rpc_add_server_fn) { |
|
|
throw std::invalid_argument("failed to find RPC add server function"); |
|
|
} |
|
|
for (const auto & server : rpc_servers) { |
|
|
auto reg = ggml_backend_rpc_add_server_fn(server.c_str()); |
|
|
ggml_backend_register(reg); |
|
|
} |
|
|
} |
|
|
|
|
|
bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) { |
|
|
auto ctx_arg = common_params_parser_init(params, ex, print_usage); |
|
|
const common_params params_org = ctx_arg.params; |
|
|
|
|
|
try { |
|
|
if (!common_params_parse_ex(argc, argv, ctx_arg)) { |
|
|
ctx_arg.params = params_org; |
|
|
return false; |
|
|
} |
|
|
if (ctx_arg.params.usage) { |
|
|
common_params_print_usage(ctx_arg); |
|
|
if (ctx_arg.print_usage) { |
|
|
ctx_arg.print_usage(argc, argv); |
|
|
} |
|
|
exit(0); |
|
|
} |
|
|
if (ctx_arg.params.completion) { |
|
|
common_params_print_completion(ctx_arg); |
|
|
exit(0); |
|
|
} |
|
|
params.lr.init(); |
|
|
} catch (const std::invalid_argument & ex) { |
|
|
fprintf(stderr, "%s\n", ex.what()); |
|
|
ctx_arg.params = params_org; |
|
|
return false; |
|
|
} catch (std::exception & ex) { |
|
|
fprintf(stderr, "%s\n", ex.what()); |
|
|
exit(1); |
|
|
} |
|
|
|
|
|
return true; |
|
|
} |
|
|
|
|
|
static std::string list_builtin_chat_templates() { |
|
|
std::vector<const char *> supported_tmpl; |
|
|
int32_t res = llama_chat_builtin_templates(nullptr, 0); |
|
|
supported_tmpl.resize(res); |
|
|
res = llama_chat_builtin_templates(supported_tmpl.data(), supported_tmpl.size()); |
|
|
std::ostringstream msg; |
|
|
for (auto & tmpl : supported_tmpl) { |
|
|
msg << tmpl << (&tmpl == &supported_tmpl.back() ? "" : ", "); |
|
|
} |
|
|
return msg.str(); |
|
|
} |
|
|
|
|
|
static bool is_truthy(const std::string & value) { |
|
|
return value == "on" || value == "enabled" || value == "1"; |
|
|
} |
|
|
|
|
|
static bool is_falsey(const std::string & value) { |
|
|
return value == "off" || value == "disabled" || value == "0"; |
|
|
} |
|
|
|
|
|
static bool is_autoy(const std::string & value) { |
|
|
return value == "auto" || value == "-1"; |
|
|
} |
|
|
|
|
|
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) { |
|
|
|
|
|
ggml_backend_load_all(); |
|
|
|
|
|
common_params_context ctx_arg(params); |
|
|
ctx_arg.print_usage = print_usage; |
|
|
ctx_arg.ex = ex; |
|
|
|
|
|
std::string sampler_type_chars; |
|
|
std::string sampler_type_names; |
|
|
for (const auto & sampler : params.sampling.samplers) { |
|
|
sampler_type_chars += common_sampler_type_to_chr(sampler); |
|
|
sampler_type_names += common_sampler_type_to_str(sampler) + ";"; |
|
|
} |
|
|
sampler_type_names.pop_back(); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
auto add_opt = [&](common_arg arg) { |
|
|
if ((arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) && !arg.is_exclude(ex)) { |
|
|
ctx_arg.options.push_back(std::move(arg)); |
|
|
} |
|
|
}; |
|
|
|
|
|
|
|
|
add_opt(common_arg( |
|
|
{"-h", "--help", "--usage"}, |
|
|
"print usage and exit", |
|
|
[](common_params & params) { |
|
|
params.usage = true; |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--version"}, |
|
|
"show version and build info", |
|
|
[](common_params &) { |
|
|
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT); |
|
|
fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET); |
|
|
exit(0); |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--completion-bash"}, |
|
|
"print source-able bash completion script for llama.cpp", |
|
|
[](common_params & params) { |
|
|
params.completion = true; |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--verbose-prompt"}, |
|
|
string_format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"), |
|
|
[](common_params & params) { |
|
|
params.verbose_prompt = true; |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--no-display-prompt"}, |
|
|
string_format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"), |
|
|
[](common_params & params) { |
|
|
params.display_prompt = false; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN})); |
|
|
add_opt(common_arg( |
|
|
{"-co", "--color"}, |
|
|
string_format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"), |
|
|
[](common_params & params) { |
|
|
params.use_color = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP})); |
|
|
add_opt(common_arg( |
|
|
{"-t", "--threads"}, "N", |
|
|
string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads), |
|
|
[](common_params & params, int value) { |
|
|
params.cpuparams.n_threads = value; |
|
|
if (params.cpuparams.n_threads <= 0) { |
|
|
params.cpuparams.n_threads = std::thread::hardware_concurrency(); |
|
|
} |
|
|
} |
|
|
).set_env("LLAMA_ARG_THREADS")); |
|
|
add_opt(common_arg( |
|
|
{"-tb", "--threads-batch"}, "N", |
|
|
"number of threads to use during batch and prompt processing (default: same as --threads)", |
|
|
[](common_params & params, int value) { |
|
|
params.cpuparams_batch.n_threads = value; |
|
|
if (params.cpuparams_batch.n_threads <= 0) { |
|
|
params.cpuparams_batch.n_threads = std::thread::hardware_concurrency(); |
|
|
} |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"-C", "--cpu-mask"}, "M", |
|
|
"CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")", |
|
|
[](common_params & params, const std::string & mask) { |
|
|
params.cpuparams.mask_valid = true; |
|
|
if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) { |
|
|
throw std::invalid_argument("invalid cpumask"); |
|
|
} |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"-Cr", "--cpu-range"}, "lo-hi", |
|
|
"range of CPUs for affinity. Complements --cpu-mask", |
|
|
[](common_params & params, const std::string & range) { |
|
|
params.cpuparams.mask_valid = true; |
|
|
if (!parse_cpu_range(range, params.cpuparams.cpumask)) { |
|
|
throw std::invalid_argument("invalid range"); |
|
|
} |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--cpu-strict"}, "<0|1>", |
|
|
string_format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.cpuparams.strict_cpu = std::stoul(value); |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--prio"}, "N", |
|
|
string_format("set process/thread priority : low(-1), normal(0), medium(1), high(2), realtime(3) (default: %d)\n", params.cpuparams.priority), |
|
|
[](common_params & params, int prio) { |
|
|
if (prio < GGML_SCHED_PRIO_LOW || prio > GGML_SCHED_PRIO_REALTIME) { |
|
|
throw std::invalid_argument("invalid value"); |
|
|
} |
|
|
params.cpuparams.priority = (enum ggml_sched_priority) prio; |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--poll"}, "<0...100>", |
|
|
string_format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.cpuparams.poll = std::stoul(value); |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"-Cb", "--cpu-mask-batch"}, "M", |
|
|
"CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)", |
|
|
[](common_params & params, const std::string & mask) { |
|
|
params.cpuparams_batch.mask_valid = true; |
|
|
if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) { |
|
|
throw std::invalid_argument("invalid cpumask"); |
|
|
} |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"-Crb", "--cpu-range-batch"}, "lo-hi", |
|
|
"ranges of CPUs for affinity. Complements --cpu-mask-batch", |
|
|
[](common_params & params, const std::string & range) { |
|
|
params.cpuparams_batch.mask_valid = true; |
|
|
if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) { |
|
|
throw std::invalid_argument("invalid range"); |
|
|
} |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--cpu-strict-batch"}, "<0|1>", |
|
|
"use strict CPU placement (default: same as --cpu-strict)", |
|
|
[](common_params & params, int value) { |
|
|
params.cpuparams_batch.strict_cpu = value; |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--prio-batch"}, "N", |
|
|
string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority), |
|
|
[](common_params & params, int prio) { |
|
|
if (prio < 0 || prio > 3) { |
|
|
throw std::invalid_argument("invalid value"); |
|
|
} |
|
|
params.cpuparams_batch.priority = (enum ggml_sched_priority) prio; |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--poll-batch"}, "<0|1>", |
|
|
"use polling to wait for work (default: same as --poll)", |
|
|
[](common_params & params, int value) { |
|
|
params.cpuparams_batch.poll = value; |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"-lcs", "--lookup-cache-static"}, "FNAME", |
|
|
"path to static lookup cache to use for lookup decoding (not updated by generation)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.lookup_cache_static = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_LOOKUP})); |
|
|
add_opt(common_arg( |
|
|
{"-lcd", "--lookup-cache-dynamic"}, "FNAME", |
|
|
"path to dynamic lookup cache to use for lookup decoding (updated by generation)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.lookup_cache_dynamic = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_LOOKUP})); |
|
|
add_opt(common_arg( |
|
|
{"-c", "--ctx-size"}, "N", |
|
|
string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx), |
|
|
[](common_params & params, int value) { |
|
|
params.n_ctx = value; |
|
|
} |
|
|
).set_env("LLAMA_ARG_CTX_SIZE")); |
|
|
add_opt(common_arg( |
|
|
{"-n", "--predict", "--n-predict"}, "N", |
|
|
string_format( |
|
|
ex == LLAMA_EXAMPLE_MAIN |
|
|
? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)" |
|
|
: "number of tokens to predict (default: %d, -1 = infinity)", |
|
|
params.n_predict), |
|
|
[](common_params & params, int value) { |
|
|
params.n_predict = value; |
|
|
} |
|
|
).set_env("LLAMA_ARG_N_PREDICT")); |
|
|
add_opt(common_arg( |
|
|
{"-b", "--batch-size"}, "N", |
|
|
string_format("logical maximum batch size (default: %d)", params.n_batch), |
|
|
[](common_params & params, int value) { |
|
|
params.n_batch = value; |
|
|
} |
|
|
).set_env("LLAMA_ARG_BATCH")); |
|
|
add_opt(common_arg( |
|
|
{"-ub", "--ubatch-size"}, "N", |
|
|
string_format("physical maximum batch size (default: %d)", params.n_ubatch), |
|
|
[](common_params & params, int value) { |
|
|
params.n_ubatch = value; |
|
|
} |
|
|
).set_env("LLAMA_ARG_UBATCH")); |
|
|
add_opt(common_arg( |
|
|
{"--keep"}, "N", |
|
|
string_format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep), |
|
|
[](common_params & params, int value) { |
|
|
params.n_keep = value; |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--swa-full"}, |
|
|
string_format("use full-size SWA cache (default: %s)\n" |
|
|
"[(more info)](https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)", params.swa_full ? "true" : "false"), |
|
|
[](common_params & params) { |
|
|
params.swa_full = true; |
|
|
} |
|
|
).set_env("LLAMA_ARG_SWA_FULL")); |
|
|
add_opt(common_arg( |
|
|
{"--ctx-checkpoints", "--swa-checkpoints"}, "N", |
|
|
string_format("max number of context checkpoints to create per slot (default: %d)\n" |
|
|
"[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)", params.n_ctx_checkpoints), |
|
|
[](common_params & params, int value) { |
|
|
params.n_ctx_checkpoints = value; |
|
|
} |
|
|
).set_env("LLAMA_ARG_CTX_CHECKPOINTS").set_examples({LLAMA_EXAMPLE_SERVER})); |
|
|
add_opt(common_arg( |
|
|
{"--kv-unified", "-kvu"}, |
|
|
string_format("use single unified KV buffer for the KV cache of all sequences (default: %s)\n" |
|
|
"[(more info)](https://github.com/ggml-org/llama.cpp/pull/14363)", params.kv_unified ? "true" : "false"), |
|
|
[](common_params & params) { |
|
|
params.kv_unified = true; |
|
|
} |
|
|
).set_env("LLAMA_ARG_KV_SPLIT")); |
|
|
add_opt(common_arg( |
|
|
{"--no-context-shift"}, |
|
|
string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"), |
|
|
[](common_params & params) { |
|
|
params.ctx_shift = false; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT")); |
|
|
add_opt(common_arg( |
|
|
{"--context-shift"}, |
|
|
string_format("enables context shift on infinite text generation (default: %s)", params.ctx_shift ? "enabled" : "disabled"), |
|
|
[](common_params & params) { |
|
|
params.ctx_shift = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_CONTEXT_SHIFT")); |
|
|
add_opt(common_arg( |
|
|
{"--chunks"}, "N", |
|
|
string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks), |
|
|
[](common_params & params, int value) { |
|
|
params.n_chunks = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL})); |
|
|
add_opt(common_arg({ "-fa", "--flash-attn" }, "[on|off|auto]", |
|
|
string_format("set Flash Attention use ('on', 'off', or 'auto', default: '%s')", |
|
|
llama_flash_attn_type_name(params.flash_attn_type)), |
|
|
[](common_params & params, const std::string & value) { |
|
|
if (is_truthy(value)) { |
|
|
params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_ENABLED; |
|
|
} else if (is_falsey(value)) { |
|
|
params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_DISABLED; |
|
|
} else if (is_autoy(value)) { |
|
|
params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO; |
|
|
} else { |
|
|
throw std::runtime_error( |
|
|
string_format("error: unkown value for --flash-attn: '%s'\n", value.c_str())); |
|
|
} |
|
|
}).set_env("LLAMA_ARG_FLASH_ATTN")); |
|
|
add_opt(common_arg( |
|
|
{"-p", "--prompt"}, "PROMPT", |
|
|
"prompt to start generation with; for system message, use -sys", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.prompt = value; |
|
|
} |
|
|
).set_excludes({LLAMA_EXAMPLE_SERVER})); |
|
|
add_opt(common_arg( |
|
|
{"-sys", "--system-prompt"}, "PROMPT", |
|
|
"system prompt to use with model (if applicable, depending on chat template)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.system_prompt = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_DIFFUSION})); |
|
|
add_opt(common_arg( |
|
|
{"--no-perf"}, |
|
|
string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"), |
|
|
[](common_params & params) { |
|
|
params.no_perf = true; |
|
|
params.sampling.no_perf = true; |
|
|
} |
|
|
).set_env("LLAMA_ARG_NO_PERF")); |
|
|
add_opt(common_arg( |
|
|
{"-f", "--file"}, "FNAME", |
|
|
"a file containing the prompt (default: none)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.prompt = read_file(value); |
|
|
|
|
|
params.prompt_file = value; |
|
|
if (!params.prompt.empty() && params.prompt.back() == '\n') { |
|
|
params.prompt.pop_back(); |
|
|
} |
|
|
} |
|
|
).set_excludes({LLAMA_EXAMPLE_SERVER})); |
|
|
add_opt(common_arg( |
|
|
{"-sysf", "--system-prompt-file"}, "FNAME", |
|
|
"a file containing the system prompt (default: none)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.system_prompt = read_file(value); |
|
|
if (!params.system_prompt.empty() && params.system_prompt.back() == '\n') { |
|
|
params.system_prompt.pop_back(); |
|
|
} |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN})); |
|
|
add_opt(common_arg( |
|
|
{"--in-file"}, "FNAME", |
|
|
"an input file (repeat to specify multiple files)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
std::ifstream file(value); |
|
|
if (!file) { |
|
|
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); |
|
|
} |
|
|
params.in_files.push_back(value); |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_IMATRIX})); |
|
|
add_opt(common_arg( |
|
|
{"-bf", "--binary-file"}, "FNAME", |
|
|
"binary file containing the prompt (default: none)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
std::ifstream file(value, std::ios::binary); |
|
|
if (!file) { |
|
|
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); |
|
|
} |
|
|
|
|
|
params.prompt_file = value; |
|
|
std::ostringstream ss; |
|
|
ss << file.rdbuf(); |
|
|
params.prompt = ss.str(); |
|
|
fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str()); |
|
|
} |
|
|
).set_excludes({LLAMA_EXAMPLE_SERVER})); |
|
|
add_opt(common_arg( |
|
|
{"-e", "--escape"}, |
|
|
string_format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"), |
|
|
[](common_params & params) { |
|
|
params.escape = true; |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--no-escape"}, |
|
|
"do not process escape sequences", |
|
|
[](common_params & params) { |
|
|
params.escape = false; |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"-ptc", "--print-token-count"}, "N", |
|
|
string_format("print token count every N tokens (default: %d)", params.n_print), |
|
|
[](common_params & params, int value) { |
|
|
params.n_print = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN})); |
|
|
add_opt(common_arg( |
|
|
{"--prompt-cache"}, "FNAME", |
|
|
"file to cache prompt state for faster startup (default: none)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.path_prompt_cache = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN})); |
|
|
add_opt(common_arg( |
|
|
{"--prompt-cache-all"}, |
|
|
"if specified, saves user input and generations to cache as well\n", |
|
|
[](common_params & params) { |
|
|
params.prompt_cache_all = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN})); |
|
|
add_opt(common_arg( |
|
|
{"--prompt-cache-ro"}, |
|
|
"if specified, uses the prompt cache but does not update it", |
|
|
[](common_params & params) { |
|
|
params.prompt_cache_ro = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN})); |
|
|
add_opt(common_arg( |
|
|
{"-r", "--reverse-prompt"}, "PROMPT", |
|
|
"halt generation at PROMPT, return control in interactive mode\n", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.antiprompt.emplace_back(value); |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER})); |
|
|
add_opt(common_arg( |
|
|
{"-sp", "--special"}, |
|
|
string_format("special tokens output enabled (default: %s)", params.special ? "true" : "false"), |
|
|
[](common_params & params) { |
|
|
params.special = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER})); |
|
|
add_opt(common_arg( |
|
|
{"-cnv", "--conversation"}, |
|
|
"run in conversation mode:\n" |
|
|
"- does not print special tokens and suffix/prefix\n" |
|
|
"- interactive mode is also enabled\n" |
|
|
"(default: auto enabled if chat template is available)", |
|
|
[](common_params & params) { |
|
|
params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN})); |
|
|
add_opt(common_arg( |
|
|
{"-no-cnv", "--no-conversation"}, |
|
|
"force disable conversation mode (default: false)", |
|
|
[](common_params & params) { |
|
|
params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN})); |
|
|
add_opt(common_arg( |
|
|
{"-st", "--single-turn"}, |
|
|
"run conversation for a single turn only, then exit when done\n" |
|
|
"will not be interactive if first turn is predefined with --prompt\n" |
|
|
"(default: false)", |
|
|
[](common_params & params) { |
|
|
params.single_turn = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN})); |
|
|
add_opt(common_arg( |
|
|
{"-i", "--interactive"}, |
|
|
string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"), |
|
|
[](common_params & params) { |
|
|
params.interactive = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN})); |
|
|
add_opt(common_arg( |
|
|
{"-if", "--interactive-first"}, |
|
|
string_format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"), |
|
|
[](common_params & params) { |
|
|
params.interactive_first = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN})); |
|
|
add_opt(common_arg( |
|
|
{"-mli", "--multiline-input"}, |
|
|
"allows you to write or paste multiple lines without ending each in '\\'", |
|
|
[](common_params & params) { |
|
|
params.multiline_input = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN})); |
|
|
add_opt(common_arg( |
|
|
{"--in-prefix-bos"}, |
|
|
"prefix BOS to user inputs, preceding the `--in-prefix` string", |
|
|
[](common_params & params) { |
|
|
params.input_prefix_bos = true; |
|
|
params.enable_chat_template = false; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN})); |
|
|
add_opt(common_arg( |
|
|
{"--in-prefix"}, "STRING", |
|
|
"string to prefix user inputs with (default: empty)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.input_prefix = value; |
|
|
params.enable_chat_template = false; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN})); |
|
|
add_opt(common_arg( |
|
|
{"--in-suffix"}, "STRING", |
|
|
"string to suffix after user inputs with (default: empty)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.input_suffix = value; |
|
|
params.enable_chat_template = false; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN})); |
|
|
add_opt(common_arg( |
|
|
{"--no-warmup"}, |
|
|
"skip warming up the model with an empty run", |
|
|
[](common_params & params) { |
|
|
params.warmup = false; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY})); |
|
|
add_opt(common_arg( |
|
|
{"--spm-infill"}, |
|
|
string_format( |
|
|
"use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)", |
|
|
params.spm_infill ? "enabled" : "disabled" |
|
|
), |
|
|
[](common_params & params) { |
|
|
params.spm_infill = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER})); |
|
|
add_opt(common_arg( |
|
|
{"--samplers"}, "SAMPLERS", |
|
|
string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()), |
|
|
[](common_params & params, const std::string & value) { |
|
|
const auto sampler_names = string_split<std::string>(value, ';'); |
|
|
params.sampling.samplers = common_sampler_types_from_names(sampler_names, true); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"-s", "--seed"}, "SEED", |
|
|
string_format("RNG seed (default: %d, use random seed for %d)", params.sampling.seed, LLAMA_DEFAULT_SEED), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.seed = std::stoul(value); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--sampling-seq", "--sampler-seq"}, "SEQUENCE", |
|
|
string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.samplers = common_sampler_types_from_chars(value); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--ignore-eos"}, |
|
|
"ignore end of stream token and continue generating (implies --logit-bias EOS-inf)", |
|
|
[](common_params & params) { |
|
|
params.sampling.ignore_eos = true; |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--temp"}, "N", |
|
|
string_format("temperature (default: %.1f)", (double)params.sampling.temp), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.temp = std::stof(value); |
|
|
params.sampling.temp = std::max(params.sampling.temp, 0.0f); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--top-k"}, "N", |
|
|
string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k), |
|
|
[](common_params & params, int value) { |
|
|
params.sampling.top_k = value; |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--top-p"}, "N", |
|
|
string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.top_p = std::stof(value); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--min-p"}, "N", |
|
|
string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.min_p = std::stof(value); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--top-nsigma"}, "N", |
|
|
string_format("top-n-sigma sampling (default: %.1f, -1.0 = disabled)", params.sampling.top_n_sigma), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.top_n_sigma = std::stof(value); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--xtc-probability"}, "N", |
|
|
string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.xtc_probability = std::stof(value); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--xtc-threshold"}, "N", |
|
|
string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.xtc_threshold = std::stof(value); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--typical"}, "N", |
|
|
string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sampling.typ_p), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.typ_p = std::stof(value); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--repeat-last-n"}, "N", |
|
|
string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sampling.penalty_last_n), |
|
|
[](common_params & params, int value) { |
|
|
if (value < -1) { |
|
|
throw std::runtime_error(string_format("error: invalid repeat-last-n = %d\n", value)); |
|
|
} |
|
|
params.sampling.penalty_last_n = value; |
|
|
params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--repeat-penalty"}, "N", |
|
|
string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.penalty_repeat = std::stof(value); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--presence-penalty"}, "N", |
|
|
string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_present), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.penalty_present = std::stof(value); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--frequency-penalty"}, "N", |
|
|
string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_freq), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.penalty_freq = std::stof(value); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--dry-multiplier"}, "N", |
|
|
string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sampling.dry_multiplier), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.dry_multiplier = std::stof(value); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--dry-base"}, "N", |
|
|
string_format("set DRY sampling base value (default: %.2f)", (double)params.sampling.dry_base), |
|
|
[](common_params & params, const std::string & value) { |
|
|
float potential_base = std::stof(value); |
|
|
if (potential_base >= 1.0f) |
|
|
{ |
|
|
params.sampling.dry_base = potential_base; |
|
|
} |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--dry-allowed-length"}, "N", |
|
|
string_format("set allowed length for DRY sampling (default: %d)", params.sampling.dry_allowed_length), |
|
|
[](common_params & params, int value) { |
|
|
params.sampling.dry_allowed_length = value; |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--dry-penalty-last-n"}, "N", |
|
|
string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sampling.dry_penalty_last_n), |
|
|
[](common_params & params, int value) { |
|
|
if (value < -1) { |
|
|
throw std::runtime_error(string_format("error: invalid dry-penalty-last-n = %d\n", value)); |
|
|
} |
|
|
params.sampling.dry_penalty_last_n = value; |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--dry-sequence-breaker"}, "STRING", |
|
|
string_format("add sequence breaker for DRY sampling, clearing out default breakers (%s) in the process; use \"none\" to not use any sequence breakers\n", |
|
|
params.sampling.dry_sequence_breakers.empty() ? "none" : |
|
|
std::accumulate(std::next(params.sampling.dry_sequence_breakers.begin()), |
|
|
params.sampling.dry_sequence_breakers.end(), |
|
|
std::string("'") + (params.sampling.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sampling.dry_sequence_breakers[0]) + "'", |
|
|
[](const std::string& a, const std::string& b) { |
|
|
std::string formatted_b = (b == "\n") ? "\\n" : b; |
|
|
return a + ", '" + formatted_b + "'"; |
|
|
}).c_str()), |
|
|
[](common_params & params, const std::string & value) { |
|
|
static bool defaults_cleared = false; |
|
|
|
|
|
if (!defaults_cleared) { |
|
|
params.sampling.dry_sequence_breakers.clear(); |
|
|
defaults_cleared = true; |
|
|
} |
|
|
|
|
|
if (value == "none") { |
|
|
params.sampling.dry_sequence_breakers.clear(); |
|
|
} else { |
|
|
params.sampling.dry_sequence_breakers.emplace_back(value); |
|
|
} |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--dynatemp-range"}, "N", |
|
|
string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sampling.dynatemp_range), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.dynatemp_range = std::stof(value); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--dynatemp-exp"}, "N", |
|
|
string_format("dynamic temperature exponent (default: %.1f)", (double)params.sampling.dynatemp_exponent), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.dynatemp_exponent = std::stof(value); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--mirostat"}, "N", |
|
|
string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n" |
|
|
"(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat), |
|
|
[](common_params & params, int value) { |
|
|
params.sampling.mirostat = value; |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--mirostat-lr"}, "N", |
|
|
string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.mirostat_eta = std::stof(value); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--mirostat-ent"}, "N", |
|
|
string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.mirostat_tau = std::stof(value); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS", |
|
|
"modifies the likelihood of token appearing in the completion,\n" |
|
|
"i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n" |
|
|
"or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'", |
|
|
[](common_params & params, const std::string & value) { |
|
|
std::stringstream ss(value); |
|
|
llama_token key; |
|
|
char sign; |
|
|
std::string value_str; |
|
|
try { |
|
|
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) { |
|
|
const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f); |
|
|
params.sampling.logit_bias.push_back({key, bias}); |
|
|
} else { |
|
|
throw std::invalid_argument("invalid input format"); |
|
|
} |
|
|
} catch (const std::exception&) { |
|
|
throw std::invalid_argument("invalid input format"); |
|
|
} |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--grammar"}, "GRAMMAR", |
|
|
string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sampling.grammar.c_str()), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.grammar = value; |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--grammar-file"}, "FNAME", |
|
|
"file to read grammar from", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.grammar = read_file(value); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"-j", "--json-schema"}, "SCHEMA", |
|
|
"JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.sampling.grammar = json_schema_to_grammar(json::parse(value)); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"-jf", "--json-schema-file"}, "FILE", |
|
|
"File containing a JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead", |
|
|
[](common_params & params, const std::string & value) { |
|
|
std::ifstream file(value); |
|
|
if (!file) { |
|
|
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); |
|
|
} |
|
|
std::string schema; |
|
|
std::copy( |
|
|
std::istreambuf_iterator<char>(file), |
|
|
std::istreambuf_iterator<char>(), |
|
|
std::back_inserter(schema) |
|
|
); |
|
|
params.sampling.grammar = json_schema_to_grammar(json::parse(schema)); |
|
|
} |
|
|
).set_sparam()); |
|
|
add_opt(common_arg( |
|
|
{"--pooling"}, "{none,mean,cls,last,rank}", |
|
|
"pooling type for embeddings, use model default if unspecified", |
|
|
[](common_params & params, const std::string & value) { |
|
|
if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; } |
|
|
else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; } |
|
|
else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; } |
|
|
else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; } |
|
|
else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; } |
|
|
else { throw std::invalid_argument("invalid value"); } |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING")); |
|
|
add_opt(common_arg( |
|
|
{"--attention"}, "{causal,non-causal}", |
|
|
"attention type for embeddings, use model default if unspecified", |
|
|
[](common_params & params, const std::string & value) { |
|
|
if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; } |
|
|
else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; } |
|
|
else { throw std::invalid_argument("invalid value"); } |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_EMBEDDING})); |
|
|
add_opt(common_arg( |
|
|
{"--rope-scaling"}, "{none,linear,yarn}", |
|
|
"RoPE frequency scaling method, defaults to linear unless specified by the model", |
|
|
[](common_params & params, const std::string & value) { |
|
|
if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; } |
|
|
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; } |
|
|
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; } |
|
|
else { throw std::invalid_argument("invalid value"); } |
|
|
} |
|
|
).set_env("LLAMA_ARG_ROPE_SCALING_TYPE")); |
|
|
add_opt(common_arg( |
|
|
{"--rope-scale"}, "N", |
|
|
"RoPE context scaling factor, expands context by a factor of N", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.rope_freq_scale = 1.0f / std::stof(value); |
|
|
} |
|
|
).set_env("LLAMA_ARG_ROPE_SCALE")); |
|
|
add_opt(common_arg( |
|
|
{"--rope-freq-base"}, "N", |
|
|
"RoPE base frequency, used by NTK-aware scaling (default: loaded from model)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.rope_freq_base = std::stof(value); |
|
|
} |
|
|
).set_env("LLAMA_ARG_ROPE_FREQ_BASE")); |
|
|
add_opt(common_arg( |
|
|
{"--rope-freq-scale"}, "N", |
|
|
"RoPE frequency scaling factor, expands context by a factor of 1/N", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.rope_freq_scale = std::stof(value); |
|
|
} |
|
|
).set_env("LLAMA_ARG_ROPE_FREQ_SCALE")); |
|
|
add_opt(common_arg( |
|
|
{"--yarn-orig-ctx"}, "N", |
|
|
string_format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx), |
|
|
[](common_params & params, int value) { |
|
|
params.yarn_orig_ctx = value; |
|
|
} |
|
|
).set_env("LLAMA_ARG_YARN_ORIG_CTX")); |
|
|
add_opt(common_arg( |
|
|
{"--yarn-ext-factor"}, "N", |
|
|
string_format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.yarn_ext_factor = std::stof(value); |
|
|
} |
|
|
).set_env("LLAMA_ARG_YARN_EXT_FACTOR")); |
|
|
add_opt(common_arg( |
|
|
{"--yarn-attn-factor"}, "N", |
|
|
string_format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.yarn_attn_factor = std::stof(value); |
|
|
} |
|
|
).set_env("LLAMA_ARG_YARN_ATTN_FACTOR")); |
|
|
add_opt(common_arg( |
|
|
{"--yarn-beta-slow"}, "N", |
|
|
string_format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.yarn_beta_slow = std::stof(value); |
|
|
} |
|
|
).set_env("LLAMA_ARG_YARN_BETA_SLOW")); |
|
|
add_opt(common_arg( |
|
|
{"--yarn-beta-fast"}, "N", |
|
|
string_format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.yarn_beta_fast = std::stof(value); |
|
|
} |
|
|
).set_env("LLAMA_ARG_YARN_BETA_FAST")); |
|
|
add_opt(common_arg( |
|
|
{"-gan", "--grp-attn-n"}, "N", |
|
|
string_format("group-attention factor (default: %d)", params.grp_attn_n), |
|
|
[](common_params & params, int value) { |
|
|
params.grp_attn_n = value; |
|
|
} |
|
|
).set_env("LLAMA_ARG_GRP_ATTN_N").set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_PASSKEY})); |
|
|
add_opt(common_arg( |
|
|
{"-gaw", "--grp-attn-w"}, "N", |
|
|
string_format("group-attention width (default: %d)", params.grp_attn_w), |
|
|
[](common_params & params, int value) { |
|
|
params.grp_attn_w = value; |
|
|
} |
|
|
).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_MAIN})); |
|
|
add_opt(common_arg( |
|
|
{"-nkvo", "--no-kv-offload"}, |
|
|
"disable KV offload", |
|
|
[](common_params & params) { |
|
|
params.no_kv_offload = true; |
|
|
} |
|
|
).set_env("LLAMA_ARG_NO_KV_OFFLOAD")); |
|
|
add_opt(common_arg( |
|
|
{"-nr", "--no-repack"}, |
|
|
"disable weight repacking", |
|
|
[](common_params & params) { |
|
|
params.no_extra_bufts = true; |
|
|
} |
|
|
).set_env("LLAMA_ARG_NO_REPACK")); |
|
|
add_opt(common_arg( |
|
|
{"-ctk", "--cache-type-k"}, "TYPE", |
|
|
string_format( |
|
|
"KV cache data type for K\n" |
|
|
"allowed values: %s\n" |
|
|
"(default: %s)", |
|
|
get_all_kv_cache_types().c_str(), |
|
|
ggml_type_name(params.cache_type_k) |
|
|
), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.cache_type_k = kv_cache_type_from_str(value); |
|
|
} |
|
|
).set_env("LLAMA_ARG_CACHE_TYPE_K")); |
|
|
add_opt(common_arg( |
|
|
{"-ctv", "--cache-type-v"}, "TYPE", |
|
|
string_format( |
|
|
"KV cache data type for V\n" |
|
|
"allowed values: %s\n" |
|
|
"(default: %s)", |
|
|
get_all_kv_cache_types().c_str(), |
|
|
ggml_type_name(params.cache_type_v) |
|
|
), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.cache_type_v = kv_cache_type_from_str(value); |
|
|
} |
|
|
).set_env("LLAMA_ARG_CACHE_TYPE_V")); |
|
|
add_opt(common_arg( |
|
|
{"--hellaswag"}, |
|
|
"compute HellaSwag score over random tasks from datafile supplied with -f", |
|
|
[](common_params & params) { |
|
|
params.hellaswag = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); |
|
|
add_opt(common_arg( |
|
|
{"--hellaswag-tasks"}, "N", |
|
|
string_format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks), |
|
|
[](common_params & params, int value) { |
|
|
params.hellaswag_tasks = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); |
|
|
add_opt(common_arg( |
|
|
{"--winogrande"}, |
|
|
"compute Winogrande score over random tasks from datafile supplied with -f", |
|
|
[](common_params & params) { |
|
|
params.winogrande = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); |
|
|
add_opt(common_arg( |
|
|
{"--winogrande-tasks"}, "N", |
|
|
string_format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks), |
|
|
[](common_params & params, int value) { |
|
|
params.winogrande_tasks = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); |
|
|
add_opt(common_arg( |
|
|
{"--multiple-choice"}, |
|
|
"compute multiple choice score over random tasks from datafile supplied with -f", |
|
|
[](common_params & params) { |
|
|
params.multiple_choice = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); |
|
|
add_opt(common_arg( |
|
|
{"--multiple-choice-tasks"}, "N", |
|
|
string_format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks), |
|
|
[](common_params & params, int value) { |
|
|
params.multiple_choice_tasks = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); |
|
|
add_opt(common_arg( |
|
|
{"--kl-divergence"}, |
|
|
"computes KL-divergence to logits provided via --kl-divergence-base", |
|
|
[](common_params & params) { |
|
|
params.kl_divergence = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); |
|
|
add_opt(common_arg( |
|
|
{"--save-all-logits", "--kl-divergence-base"}, "FNAME", |
|
|
"set logits file", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.logits_file = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); |
|
|
add_opt(common_arg( |
|
|
{"--ppl-stride"}, "N", |
|
|
string_format("stride for perplexity calculation (default: %d)", params.ppl_stride), |
|
|
[](common_params & params, int value) { |
|
|
params.ppl_stride = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); |
|
|
add_opt(common_arg( |
|
|
{"--ppl-output-type"}, "<0|1>", |
|
|
string_format("output type for perplexity calculation (default: %d)", params.ppl_output_type), |
|
|
[](common_params & params, int value) { |
|
|
params.ppl_output_type = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); |
|
|
add_opt(common_arg( |
|
|
{"-dt", "--defrag-thold"}, "N", |
|
|
string_format("KV cache defragmentation threshold (DEPRECATED)"), |
|
|
[](common_params & params, const std::string & value) { |
|
|
GGML_UNUSED(params); |
|
|
GGML_UNUSED(value); |
|
|
LOG_WRN("DEPRECATED: --defrag-thold is deprecated and no longer necessary to specify\n"); |
|
|
} |
|
|
).set_env("LLAMA_ARG_DEFRAG_THOLD")); |
|
|
add_opt(common_arg( |
|
|
{"-np", "--parallel"}, "N", |
|
|
string_format("number of parallel sequences to decode (default: %d)", params.n_parallel), |
|
|
[](common_params & params, int value) { |
|
|
params.n_parallel = value; |
|
|
} |
|
|
).set_env("LLAMA_ARG_N_PARALLEL")); |
|
|
add_opt(common_arg( |
|
|
{"-ns", "--sequences"}, "N", |
|
|
string_format("number of sequences to decode (default: %d)", params.n_sequences), |
|
|
[](common_params & params, int value) { |
|
|
params.n_sequences = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_PARALLEL})); |
|
|
add_opt(common_arg( |
|
|
{"-cb", "--cont-batching"}, |
|
|
string_format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"), |
|
|
[](common_params & params) { |
|
|
params.cont_batching = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING")); |
|
|
add_opt(common_arg( |
|
|
{"-nocb", "--no-cont-batching"}, |
|
|
"disable continuous batching", |
|
|
[](common_params & params) { |
|
|
params.cont_batching = false; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING")); |
|
|
add_opt(common_arg( |
|
|
{"--mmproj"}, "FILE", |
|
|
"path to a multimodal projector file. see tools/mtmd/README.md\n" |
|
|
"note: if -hf is used, this argument can be omitted", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.mmproj.path = value; |
|
|
} |
|
|
).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ")); |
|
|
add_opt(common_arg( |
|
|
{"--mmproj-url"}, "URL", |
|
|
"URL to a multimodal projector file. see tools/mtmd/README.md", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.mmproj.url = value; |
|
|
} |
|
|
).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_URL")); |
|
|
add_opt(common_arg( |
|
|
{"--no-mmproj"}, |
|
|
"explicitly disable multimodal projector, useful when using -hf", |
|
|
[](common_params & params) { |
|
|
params.no_mmproj = true; |
|
|
} |
|
|
).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ")); |
|
|
add_opt(common_arg( |
|
|
{"--no-mmproj-offload"}, |
|
|
"do not offload multimodal projector to GPU", |
|
|
[](common_params & params) { |
|
|
params.mmproj_use_gpu = false; |
|
|
} |
|
|
).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ_OFFLOAD")); |
|
|
add_opt(common_arg( |
|
|
{"--image", "--audio"}, "FILE", |
|
|
"path to an image or audio file. use with multimodal models, can be repeated if you have multiple files\n", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.image.emplace_back(value); |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MTMD})); |
|
|
if (llama_supports_rpc()) { |
|
|
add_opt(common_arg( |
|
|
{"--rpc"}, "SERVERS", |
|
|
"comma separated list of RPC servers", |
|
|
[](common_params & params, const std::string & value) { |
|
|
add_rpc_devices(value); |
|
|
GGML_UNUSED(params); |
|
|
} |
|
|
).set_env("LLAMA_ARG_RPC")); |
|
|
} |
|
|
add_opt(common_arg( |
|
|
{"--mlock"}, |
|
|
"force system to keep model in RAM rather than swapping or compressing", |
|
|
[](common_params & params) { |
|
|
params.use_mlock = true; |
|
|
} |
|
|
).set_env("LLAMA_ARG_MLOCK")); |
|
|
add_opt(common_arg( |
|
|
{"--no-mmap"}, |
|
|
"do not memory-map model (slower load but may reduce pageouts if not using mlock)", |
|
|
[](common_params & params) { |
|
|
params.use_mmap = false; |
|
|
} |
|
|
).set_env("LLAMA_ARG_NO_MMAP")); |
|
|
add_opt(common_arg( |
|
|
{"--numa"}, "TYPE", |
|
|
"attempt optimizations that help on some NUMA systems\n" |
|
|
"- distribute: spread execution evenly over all nodes\n" |
|
|
"- isolate: only spawn threads on CPUs on the node that execution started on\n" |
|
|
"- numactl: use the CPU map provided by numactl\n" |
|
|
"if run without this previously, it is recommended to drop the system page cache before using this\n" |
|
|
"see https://github.com/ggml-org/llama.cpp/issues/1437", |
|
|
[](common_params & params, const std::string & value) { |
|
|
if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; } |
|
|
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; } |
|
|
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; } |
|
|
else { throw std::invalid_argument("invalid value"); } |
|
|
} |
|
|
).set_env("LLAMA_ARG_NUMA")); |
|
|
add_opt(common_arg( |
|
|
{"-dev", "--device"}, "<dev1,dev2,..>", |
|
|
"comma-separated list of devices to use for offloading (none = don't offload)\n" |
|
|
"use --list-devices to see a list of available devices", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.devices = parse_device_list(value); |
|
|
} |
|
|
).set_env("LLAMA_ARG_DEVICE")); |
|
|
add_opt(common_arg( |
|
|
{"--list-devices"}, |
|
|
"print list of available devices and exit", |
|
|
[](common_params &) { |
|
|
std::vector<ggml_backend_dev_t> devices; |
|
|
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { |
|
|
auto * dev = ggml_backend_dev_get(i); |
|
|
if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU) { |
|
|
devices.push_back(dev); |
|
|
} |
|
|
} |
|
|
printf("Available devices:\n"); |
|
|
for (auto * dev : devices) { |
|
|
size_t free, total; |
|
|
ggml_backend_dev_memory(dev, &free, &total); |
|
|
printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024); |
|
|
} |
|
|
exit(0); |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...", |
|
|
"override tensor buffer type", [](common_params & params, const std::string & value) { |
|
|
parse_tensor_buffer_overrides(value, params.tensor_buft_overrides); |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--override-tensor-draft", "-otd"}, "<tensor name pattern>=<buffer type>,...", |
|
|
"override tensor buffer type for draft model", [](common_params & params, const std::string & value) { |
|
|
parse_tensor_buffer_overrides(value, params.speculative.tensor_buft_overrides); |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER})); |
|
|
add_opt(common_arg( |
|
|
{"--cpu-moe", "-cmoe"}, |
|
|
"keep all Mixture of Experts (MoE) weights in the CPU", |
|
|
[](common_params & params) { |
|
|
params.tensor_buft_overrides.push_back(llm_ffn_exps_cpu_override()); |
|
|
} |
|
|
).set_env("LLAMA_ARG_CPU_MOE")); |
|
|
add_opt(common_arg( |
|
|
{"--n-cpu-moe", "-ncmoe"}, "N", |
|
|
"keep the Mixture of Experts (MoE) weights of the first N layers in the CPU", |
|
|
[](common_params & params, int value) { |
|
|
if (value < 0) { |
|
|
throw std::invalid_argument("invalid value"); |
|
|
} |
|
|
for (int i = 0; i < value; ++i) { |
|
|
|
|
|
static std::list<std::string> buft_overrides; |
|
|
buft_overrides.push_back(llm_ffn_exps_block_regex(i)); |
|
|
params.tensor_buft_overrides.push_back({buft_overrides.back().c_str(), ggml_backend_cpu_buffer_type()}); |
|
|
} |
|
|
} |
|
|
).set_env("LLAMA_ARG_N_CPU_MOE")); |
|
|
add_opt(common_arg( |
|
|
{"--cpu-moe-draft", "-cmoed"}, |
|
|
"keep all Mixture of Experts (MoE) weights in the CPU for the draft model", |
|
|
[](common_params & params) { |
|
|
params.speculative.tensor_buft_overrides.push_back(llm_ffn_exps_cpu_override()); |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CPU_MOE_DRAFT")); |
|
|
add_opt(common_arg( |
|
|
{"--n-cpu-moe-draft", "-ncmoed"}, "N", |
|
|
"keep the Mixture of Experts (MoE) weights of the first N layers in the CPU for the draft model", |
|
|
[](common_params & params, int value) { |
|
|
if (value < 0) { |
|
|
throw std::invalid_argument("invalid value"); |
|
|
} |
|
|
for (int i = 0; i < value; ++i) { |
|
|
static std::list<std::string> buft_overrides_draft; |
|
|
buft_overrides_draft.push_back(llm_ffn_exps_block_regex(i)); |
|
|
params.speculative.tensor_buft_overrides.push_back({buft_overrides_draft.back().c_str(), ggml_backend_cpu_buffer_type()}); |
|
|
} |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_CPU_MOE_DRAFT")); |
|
|
add_opt(common_arg( |
|
|
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N", |
|
|
string_format("max. number of layers to store in VRAM (default: %d)", params.n_gpu_layers), |
|
|
[](common_params & params, int value) { |
|
|
params.n_gpu_layers = value; |
|
|
if (!llama_supports_gpu_offload()) { |
|
|
fprintf(stderr, "warning: no usable GPU found, --gpu-layers option will be ignored\n"); |
|
|
fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n"); |
|
|
fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n"); |
|
|
} |
|
|
} |
|
|
).set_env("LLAMA_ARG_N_GPU_LAYERS")); |
|
|
add_opt(common_arg( |
|
|
{"-sm", "--split-mode"}, "{none,layer,row}", |
|
|
"how to split the model across multiple GPUs, one of:\n" |
|
|
"- none: use one GPU only\n" |
|
|
"- layer (default): split layers and KV across GPUs\n" |
|
|
"- row: split rows across GPUs", |
|
|
[](common_params & params, const std::string & value) { |
|
|
std::string arg_next = value; |
|
|
if (arg_next == "none") { |
|
|
params.split_mode = LLAMA_SPLIT_MODE_NONE; |
|
|
} else if (arg_next == "layer") { |
|
|
params.split_mode = LLAMA_SPLIT_MODE_LAYER; |
|
|
} else if (arg_next == "row") { |
|
|
params.split_mode = LLAMA_SPLIT_MODE_ROW; |
|
|
} else { |
|
|
throw std::invalid_argument("invalid value"); |
|
|
} |
|
|
if (!llama_supports_gpu_offload()) { |
|
|
fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n"); |
|
|
} |
|
|
} |
|
|
).set_env("LLAMA_ARG_SPLIT_MODE")); |
|
|
add_opt(common_arg( |
|
|
{"-ts", "--tensor-split"}, "N0,N1,N2,...", |
|
|
"fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1", |
|
|
[](common_params & params, const std::string & value) { |
|
|
std::string arg_next = value; |
|
|
|
|
|
|
|
|
const std::regex regex{ R"([,/]+)" }; |
|
|
std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 }; |
|
|
std::vector<std::string> split_arg{ it, {} }; |
|
|
if (split_arg.size() >= llama_max_devices()) { |
|
|
throw std::invalid_argument( |
|
|
string_format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices()) |
|
|
); |
|
|
} |
|
|
for (size_t i = 0; i < llama_max_devices(); ++i) { |
|
|
if (i < split_arg.size()) { |
|
|
params.tensor_split[i] = std::stof(split_arg[i]); |
|
|
} else { |
|
|
params.tensor_split[i] = 0.0f; |
|
|
} |
|
|
} |
|
|
if (!llama_supports_gpu_offload()) { |
|
|
fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n"); |
|
|
} |
|
|
} |
|
|
).set_env("LLAMA_ARG_TENSOR_SPLIT")); |
|
|
add_opt(common_arg( |
|
|
{"-mg", "--main-gpu"}, "INDEX", |
|
|
string_format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu), |
|
|
[](common_params & params, int value) { |
|
|
params.main_gpu = value; |
|
|
if (!llama_supports_gpu_offload()) { |
|
|
fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n"); |
|
|
} |
|
|
} |
|
|
).set_env("LLAMA_ARG_MAIN_GPU")); |
|
|
add_opt(common_arg( |
|
|
{"--check-tensors"}, |
|
|
string_format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"), |
|
|
[](common_params & params) { |
|
|
params.check_tensors = true; |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--override-kv"}, "KEY=TYPE:VALUE", |
|
|
"advanced option to override model metadata by key. may be specified multiple times.\n" |
|
|
"types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false", |
|
|
[](common_params & params, const std::string & value) { |
|
|
if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) { |
|
|
throw std::runtime_error(string_format("error: Invalid type for KV override: %s\n", value.c_str())); |
|
|
} |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--no-op-offload"}, |
|
|
string_format("disable offloading host tensor operations to device (default: %s)", params.no_op_offload ? "true" : "false"), |
|
|
[](common_params & params) { |
|
|
params.no_op_offload = true; |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--lora"}, "FNAME", |
|
|
"path to LoRA adapter (can be repeated to use multiple adapters)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.lora_adapters.push_back({ std::string(value), 1.0, "", "", nullptr }); |
|
|
} |
|
|
|
|
|
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA})); |
|
|
add_opt(common_arg( |
|
|
{"--lora-scaled"}, "FNAME", "SCALE", |
|
|
"path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)", |
|
|
[](common_params & params, const std::string & fname, const std::string & scale) { |
|
|
params.lora_adapters.push_back({ fname, std::stof(scale), "", "", nullptr }); |
|
|
} |
|
|
|
|
|
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA})); |
|
|
add_opt(common_arg( |
|
|
{"--control-vector"}, "FNAME", |
|
|
"add a control vector\nnote: this argument can be repeated to add multiple control vectors", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.control_vectors.push_back({ 1.0f, value, }); |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--control-vector-scaled"}, "FNAME", "SCALE", |
|
|
"add a control vector with user defined scaling SCALE\n" |
|
|
"note: this argument can be repeated to add multiple scaled control vectors", |
|
|
[](common_params & params, const std::string & fname, const std::string & scale) { |
|
|
params.control_vectors.push_back({ std::stof(scale), fname }); |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--control-vector-layer-range"}, "START", "END", |
|
|
"layer range to apply the control vector(s) to, start and end inclusive", |
|
|
[](common_params & params, const std::string & start, const std::string & end) { |
|
|
params.control_vector_layer_start = std::stoi(start); |
|
|
params.control_vector_layer_end = std::stoi(end); |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"-a", "--alias"}, "STRING", |
|
|
"set alias for model name (to be used by REST API)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.model_alias = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS")); |
|
|
add_opt(common_arg( |
|
|
{"-m", "--model"}, "FNAME", |
|
|
ex == LLAMA_EXAMPLE_EXPORT_LORA |
|
|
? std::string("model path from which to load base model") |
|
|
: string_format( |
|
|
"model path (default: `models/$filename` with filename from `--hf-file` " |
|
|
"or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH |
|
|
), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.model.path = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL")); |
|
|
add_opt(common_arg( |
|
|
{"-mu", "--model-url"}, "MODEL_URL", |
|
|
"model download url (default: unused)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.model.url = value; |
|
|
} |
|
|
).set_env("LLAMA_ARG_MODEL_URL")); |
|
|
add_opt(common_arg( |
|
|
{ "-dr", "--docker-repo" }, "[<repo>/]<model>[:quant]", |
|
|
"Docker Hub model repository. repo is optional, default to ai/. quant is optional, default to :latest.\n" |
|
|
"example: gemma3\n" |
|
|
"(default: unused)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.model.docker_repo = value; |
|
|
} |
|
|
).set_env("LLAMA_ARG_DOCKER_REPO")); |
|
|
add_opt(common_arg( |
|
|
{"-hf", "-hfr", "--hf-repo"}, "<user>/<model>[:quant]", |
|
|
"Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.\n" |
|
|
"mmproj is also downloaded automatically if available. to disable, add --no-mmproj\n" |
|
|
"example: unsloth/phi-4-GGUF:q4_k_m\n" |
|
|
"(default: unused)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.model.hf_repo = value; |
|
|
} |
|
|
).set_env("LLAMA_ARG_HF_REPO")); |
|
|
add_opt(common_arg( |
|
|
{"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]", |
|
|
"Same as --hf-repo, but for the draft model (default: unused)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.speculative.model.hf_repo = value; |
|
|
} |
|
|
).set_env("LLAMA_ARG_HFD_REPO")); |
|
|
add_opt(common_arg( |
|
|
{"-hff", "--hf-file"}, "FILE", |
|
|
"Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.model.hf_file = value; |
|
|
} |
|
|
).set_env("LLAMA_ARG_HF_FILE")); |
|
|
add_opt(common_arg( |
|
|
{"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]", |
|
|
"Hugging Face model repository for the vocoder model (default: unused)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.vocoder.model.hf_repo = value; |
|
|
} |
|
|
).set_env("LLAMA_ARG_HF_REPO_V")); |
|
|
add_opt(common_arg( |
|
|
{"-hffv", "--hf-file-v"}, "FILE", |
|
|
"Hugging Face model file for the vocoder model (default: unused)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.vocoder.model.hf_file = value; |
|
|
} |
|
|
).set_env("LLAMA_ARG_HF_FILE_V")); |
|
|
add_opt(common_arg( |
|
|
{"-hft", "--hf-token"}, "TOKEN", |
|
|
"Hugging Face access token (default: value from HF_TOKEN environment variable)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.hf_token = value; |
|
|
} |
|
|
).set_env("HF_TOKEN")); |
|
|
add_opt(common_arg( |
|
|
{"--context-file"}, "FNAME", |
|
|
"file to load context from (repeat to specify multiple files)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
std::ifstream file(value, std::ios::binary); |
|
|
if (!file) { |
|
|
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); |
|
|
} |
|
|
params.context_files.push_back(value); |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_RETRIEVAL})); |
|
|
add_opt(common_arg( |
|
|
{"--chunk-size"}, "N", |
|
|
string_format("minimum length of embedded text chunks (default: %d)", params.chunk_size), |
|
|
[](common_params & params, int value) { |
|
|
params.chunk_size = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_RETRIEVAL})); |
|
|
add_opt(common_arg( |
|
|
{"--chunk-separator"}, "STRING", |
|
|
string_format("separator between chunks (default: '%s')", params.chunk_separator.c_str()), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.chunk_separator = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_RETRIEVAL})); |
|
|
add_opt(common_arg( |
|
|
{"--junk"}, "N", |
|
|
string_format("number of times to repeat the junk text (default: %d)", params.n_junk), |
|
|
[](common_params & params, int value) { |
|
|
params.n_junk = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_PASSKEY, LLAMA_EXAMPLE_PARALLEL})); |
|
|
add_opt(common_arg( |
|
|
{"--pos"}, "N", |
|
|
string_format("position of the passkey in the junk text (default: %d)", params.i_pos), |
|
|
[](common_params & params, int value) { |
|
|
params.i_pos = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_PASSKEY})); |
|
|
add_opt(common_arg( |
|
|
{"-o", "--output", "--output-file"}, "FNAME", |
|
|
string_format("output file (default: '%s')", params.out_file.c_str()), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.out_file = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_FINETUNE})); |
|
|
add_opt(common_arg( |
|
|
{"-ofreq", "--output-frequency"}, "N", |
|
|
string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq), |
|
|
[](common_params & params, int value) { |
|
|
params.n_out_freq = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_IMATRIX})); |
|
|
add_opt(common_arg( |
|
|
{"--output-format"}, "{gguf,dat}", |
|
|
string_format("output format for imatrix file (default: %s)", params.imat_dat > 0 ? "dat" : "gguf"), |
|
|
[](common_params & params, const std::string & value) { |
|
|
if (value == "gguf") { params.imat_dat = -1; } |
|
|
else if (value == "dat") { params.imat_dat = 1; } |
|
|
else { throw std::invalid_argument("invalid output format"); } |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_IMATRIX})); |
|
|
add_opt(common_arg( |
|
|
{"--save-frequency"}, "N", |
|
|
string_format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq), |
|
|
[](common_params & params, int value) { |
|
|
params.n_save_freq = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_IMATRIX})); |
|
|
add_opt(common_arg( |
|
|
{"--process-output"}, |
|
|
string_format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"), |
|
|
[](common_params & params) { |
|
|
params.process_output = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_IMATRIX})); |
|
|
add_opt(common_arg( |
|
|
{"--no-ppl"}, |
|
|
string_format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"), |
|
|
[](common_params & params) { |
|
|
params.compute_ppl = false; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_IMATRIX})); |
|
|
add_opt(common_arg( |
|
|
{"--chunk", "--from-chunk"}, "N", |
|
|
string_format("start processing the input from chunk N (default: %d)", params.i_chunk), |
|
|
[](common_params & params, int value) { |
|
|
params.i_chunk = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_IMATRIX})); |
|
|
add_opt(common_arg( |
|
|
{"--show-statistics"}, |
|
|
string_format("show imatrix statistics and then exit (default: %s)", params.show_statistics ? "true" : "false"), |
|
|
[](common_params & params) { |
|
|
params.show_statistics = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_IMATRIX})); |
|
|
add_opt(common_arg( |
|
|
{"--parse-special"}, |
|
|
string_format("prase special tokens (chat, tool, etc) (default: %s)", params.parse_special ? "true" : "false"), |
|
|
[](common_params & params) { |
|
|
params.parse_special = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_IMATRIX})); |
|
|
add_opt(common_arg( |
|
|
{"-pps"}, |
|
|
string_format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"), |
|
|
[](common_params & params) { |
|
|
params.is_pp_shared = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_BENCH, LLAMA_EXAMPLE_PARALLEL})); |
|
|
add_opt(common_arg( |
|
|
{"-npp"}, "n0,n1,...", |
|
|
"number of prompt tokens", |
|
|
[](common_params & params, const std::string & value) { |
|
|
auto p = string_split<int>(value, ','); |
|
|
params.n_pp.insert(params.n_pp.end(), p.begin(), p.end()); |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_BENCH})); |
|
|
add_opt(common_arg( |
|
|
{"-ntg"}, "n0,n1,...", |
|
|
"number of text generation tokens", |
|
|
[](common_params & params, const std::string & value) { |
|
|
auto p = string_split<int>(value, ','); |
|
|
params.n_tg.insert(params.n_tg.end(), p.begin(), p.end()); |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_BENCH})); |
|
|
add_opt(common_arg( |
|
|
{"-npl"}, "n0,n1,...", |
|
|
"number of parallel prompts", |
|
|
[](common_params & params, const std::string & value) { |
|
|
auto p = string_split<int>(value, ','); |
|
|
params.n_pl.insert(params.n_pl.end(), p.begin(), p.end()); |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_BENCH})); |
|
|
add_opt(common_arg( |
|
|
{"--embd-normalize"}, "N", |
|
|
string_format("normalisation for embeddings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize), |
|
|
[](common_params & params, int value) { |
|
|
params.embd_normalize = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_EMBEDDING})); |
|
|
add_opt(common_arg( |
|
|
{"--embd-output-format"}, "FORMAT", |
|
|
"empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.embd_out = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_EMBEDDING})); |
|
|
add_opt(common_arg( |
|
|
{"--embd-separator"}, "STRING", |
|
|
"separator of embeddings (default \\n) for example \"<#sep#>\"", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.embd_sep = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_EMBEDDING})); |
|
|
add_opt(common_arg( |
|
|
{"--cls-separator"}, "STRING", |
|
|
"separator of classification sequences (default \\t) for example \"<#seq#>\"", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.cls_sep = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_EMBEDDING})); |
|
|
add_opt(common_arg( |
|
|
{"--host"}, "HOST", |
|
|
string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.hostname = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST")); |
|
|
add_opt(common_arg( |
|
|
{"--port"}, "PORT", |
|
|
string_format("port to listen (default: %d)", params.port), |
|
|
[](common_params & params, int value) { |
|
|
params.port = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT")); |
|
|
add_opt(common_arg( |
|
|
{"--path"}, "PATH", |
|
|
string_format("path to serve static files from (default: %s)", params.public_path.c_str()), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.public_path = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH")); |
|
|
add_opt(common_arg( |
|
|
{"--api-prefix"}, "PREFIX", |
|
|
string_format("prefix path the server serves from, without the trailing slash (default: %s)", params.api_prefix.c_str()), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.api_prefix = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_API_PREFIX")); |
|
|
add_opt(common_arg( |
|
|
{"--no-webui"}, |
|
|
string_format("Disable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"), |
|
|
[](common_params & params) { |
|
|
params.webui = false; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_WEBUI")); |
|
|
add_opt(common_arg( |
|
|
{"--embedding", "--embeddings"}, |
|
|
string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"), |
|
|
[](common_params & params) { |
|
|
params.embedding = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS")); |
|
|
add_opt(common_arg( |
|
|
{"--reranking", "--rerank"}, |
|
|
string_format("enable reranking endpoint on server (default: %s)", "disabled"), |
|
|
[](common_params & params) { |
|
|
params.embedding = true; |
|
|
params.pooling_type = LLAMA_POOLING_TYPE_RANK; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING")); |
|
|
add_opt(common_arg( |
|
|
{"--api-key"}, "KEY", |
|
|
"API key to use for authentication (default: none)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.api_keys.push_back(value); |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY")); |
|
|
add_opt(common_arg( |
|
|
{"--api-key-file"}, "FNAME", |
|
|
"path to file containing API keys (default: none)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
std::ifstream key_file(value); |
|
|
if (!key_file) { |
|
|
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); |
|
|
} |
|
|
std::string key; |
|
|
while (std::getline(key_file, key)) { |
|
|
if (!key.empty()) { |
|
|
params.api_keys.push_back(key); |
|
|
} |
|
|
} |
|
|
key_file.close(); |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER})); |
|
|
add_opt(common_arg( |
|
|
{"--ssl-key-file"}, "FNAME", |
|
|
"path to file a PEM-encoded SSL private key", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.ssl_file_key = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE")); |
|
|
add_opt(common_arg( |
|
|
{"--ssl-cert-file"}, "FNAME", |
|
|
"path to file a PEM-encoded SSL certificate", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.ssl_file_cert = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE")); |
|
|
add_opt(common_arg( |
|
|
{"--chat-template-kwargs"}, "STRING", |
|
|
string_format("sets additional params for the json template parser"), |
|
|
[](common_params & params, const std::string & value) { |
|
|
auto parsed = json::parse(value); |
|
|
for (const auto & item : parsed.items()) { |
|
|
params.default_template_kwargs[item.key()] = item.value().dump(); |
|
|
} |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_CHAT_TEMPLATE_KWARGS")); |
|
|
add_opt(common_arg( |
|
|
{"-to", "--timeout"}, "N", |
|
|
string_format("server read/write timeout in seconds (default: %d)", params.timeout_read), |
|
|
[](common_params & params, int value) { |
|
|
params.timeout_read = value; |
|
|
params.timeout_write = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT")); |
|
|
add_opt(common_arg( |
|
|
{"--threads-http"}, "N", |
|
|
string_format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http), |
|
|
[](common_params & params, int value) { |
|
|
params.n_threads_http = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP")); |
|
|
add_opt(common_arg( |
|
|
{"--cache-reuse"}, "N", |
|
|
string_format( |
|
|
"min chunk size to attempt reusing from the cache via KV shifting (default: %d)\n" |
|
|
"[(card)](https://ggml.ai/f0.png)", params.n_cache_reuse |
|
|
), |
|
|
[](common_params & params, int value) { |
|
|
params.n_cache_reuse = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CACHE_REUSE")); |
|
|
add_opt(common_arg( |
|
|
{"--metrics"}, |
|
|
string_format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"), |
|
|
[](common_params & params) { |
|
|
params.endpoint_metrics = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS")); |
|
|
add_opt(common_arg( |
|
|
{"--props"}, |
|
|
string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"), |
|
|
[](common_params & params) { |
|
|
params.endpoint_props = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS")); |
|
|
add_opt(common_arg( |
|
|
{"--slots"}, |
|
|
string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"), |
|
|
[](common_params & params) { |
|
|
params.endpoint_slots = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS")); |
|
|
add_opt(common_arg( |
|
|
{"--no-slots"}, |
|
|
"disables slots monitoring endpoint", |
|
|
[](common_params & params) { |
|
|
params.endpoint_slots = false; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS")); |
|
|
add_opt(common_arg( |
|
|
{"--slot-save-path"}, "PATH", |
|
|
"path to save slot kv cache (default: disabled)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.slot_save_path = value; |
|
|
|
|
|
if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) { |
|
|
params.slot_save_path += DIRECTORY_SEPARATOR; |
|
|
} |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER})); |
|
|
add_opt(common_arg( |
|
|
{"--jinja"}, |
|
|
"use jinja template for chat (default: disabled)", |
|
|
[](common_params & params) { |
|
|
params.use_jinja = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_JINJA")); |
|
|
add_opt(common_arg( |
|
|
{"--reasoning-format"}, "FORMAT", |
|
|
"controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n" |
|
|
"- none: leaves thoughts unparsed in `message.content`\n" |
|
|
"- deepseek: puts thoughts in `message.reasoning_content` (except in streaming mode, which behaves as `none`)\n" |
|
|
"(default: auto)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.reasoning_format = common_reasoning_format_from_name(value); |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK")); |
|
|
add_opt(common_arg( |
|
|
{"--reasoning-budget"}, "N", |
|
|
"controls the amount of thinking allowed; currently only one of: -1 for unrestricted thinking budget, or 0 to disable thinking (default: -1)", |
|
|
[](common_params & params, int value) { |
|
|
if (value != 0 && value != -1) { throw std::invalid_argument("invalid value"); } |
|
|
params.reasoning_budget = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK_BUDGET")); |
|
|
add_opt(common_arg( |
|
|
{"--chat-template"}, "JINJA_TEMPLATE", |
|
|
string_format( |
|
|
"set custom jinja chat template (default: template taken from model's metadata)\n" |
|
|
"if suffix/prefix are specified, template will be disabled\n" |
|
|
"only commonly used templates are accepted (unless --jinja is set before this flag):\n" |
|
|
"list of built-in templates:\n%s", list_builtin_chat_templates().c_str() |
|
|
), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.chat_template = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_CHAT_TEMPLATE")); |
|
|
add_opt(common_arg( |
|
|
{"--chat-template-file"}, "JINJA_TEMPLATE_FILE", |
|
|
string_format( |
|
|
"set custom jinja chat template file (default: template taken from model's metadata)\n" |
|
|
"if suffix/prefix are specified, template will be disabled\n" |
|
|
"only commonly used templates are accepted (unless --jinja is set before this flag):\n" |
|
|
"list of built-in templates:\n%s", list_builtin_chat_templates().c_str() |
|
|
), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.chat_template = read_file(value); |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE")); |
|
|
add_opt(common_arg( |
|
|
{"--no-prefill-assistant"}, |
|
|
string_format( |
|
|
"whether to prefill the assistant's response if the last message is an assistant message (default: prefill enabled)\n" |
|
|
"when this flag is set, if the last message is an assistant message then it will be treated as a full message and not prefilled\n" |
|
|
), |
|
|
[](common_params & params) { |
|
|
params.prefill_assistant = false; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_PREFILL_ASSISTANT")); |
|
|
add_opt(common_arg( |
|
|
{"-sps", "--slot-prompt-similarity"}, "SIMILARITY", |
|
|
string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.slot_prompt_similarity = std::stof(value); |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER})); |
|
|
add_opt(common_arg( |
|
|
{"--lora-init-without-apply"}, |
|
|
string_format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"), |
|
|
[](common_params & params) { |
|
|
params.lora_init_without_apply = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER})); |
|
|
add_opt(common_arg( |
|
|
{"--simple-io"}, |
|
|
"use basic IO for better compatibility in subprocesses and limited consoles", |
|
|
[](common_params & params) { |
|
|
params.simple_io = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_MAIN})); |
|
|
add_opt(common_arg( |
|
|
{"--positive-file"}, "FNAME", |
|
|
string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.cvector_positive_file = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); |
|
|
add_opt(common_arg( |
|
|
{"--negative-file"}, "FNAME", |
|
|
string_format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.cvector_negative_file = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); |
|
|
add_opt(common_arg( |
|
|
{"--pca-batch"}, "N", |
|
|
string_format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch), |
|
|
[](common_params & params, int value) { |
|
|
params.n_pca_batch = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); |
|
|
add_opt(common_arg( |
|
|
{"--pca-iter"}, "N", |
|
|
string_format("number of iterations used for PCA (default: %d)", params.n_pca_iterations), |
|
|
[](common_params & params, int value) { |
|
|
params.n_pca_iterations = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); |
|
|
add_opt(common_arg( |
|
|
{"--method"}, "{pca, mean}", |
|
|
"dimensionality reduction method to be used (default: pca)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; } |
|
|
else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; } |
|
|
else { throw std::invalid_argument("invalid value"); } |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); |
|
|
add_opt(common_arg( |
|
|
{"--output-format"}, "{md,jsonl}", |
|
|
"output format for batched-bench results (default: md)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
if (value == "jsonl") { params.batched_bench_output_jsonl = true; } |
|
|
else if (value == "md") { params.batched_bench_output_jsonl = false; } |
|
|
else { throw std::invalid_argument("invalid value"); } |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_BENCH})); |
|
|
add_opt(common_arg( |
|
|
{"--log-disable"}, |
|
|
"Log disable", |
|
|
[](common_params &) { |
|
|
common_log_pause(common_log_main()); |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--log-file"}, "FNAME", |
|
|
"Log to file", |
|
|
[](common_params &, const std::string & value) { |
|
|
common_log_set_file(common_log_main(), value.c_str()); |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg({ "--log-colors" }, "[on|off|auto]", |
|
|
"Set colored logging ('on', 'off', or 'auto', default: 'auto')\n" |
|
|
"'auto' enables colors when output is to a terminal", |
|
|
[](common_params &, const std::string & value) { |
|
|
if (is_truthy(value)) { |
|
|
common_log_set_colors(common_log_main(), LOG_COLORS_ENABLED); |
|
|
} else if (is_falsey(value)) { |
|
|
common_log_set_colors(common_log_main(), LOG_COLORS_DISABLED); |
|
|
} else if (is_autoy(value)) { |
|
|
common_log_set_colors(common_log_main(), LOG_COLORS_AUTO); |
|
|
} else { |
|
|
throw std::invalid_argument( |
|
|
string_format("error: unkown value for --log-colors: '%s'\n", value.c_str())); |
|
|
} |
|
|
}).set_env("LLAMA_LOG_COLORS")); |
|
|
add_opt(common_arg( |
|
|
{"-v", "--verbose", "--log-verbose"}, |
|
|
"Set verbosity level to infinity (i.e. log all messages, useful for debugging)", |
|
|
[](common_params & params) { |
|
|
params.verbosity = INT_MAX; |
|
|
common_log_set_verbosity_thold(INT_MAX); |
|
|
} |
|
|
)); |
|
|
add_opt(common_arg( |
|
|
{"--offline"}, |
|
|
"Offline mode: forces use of cache, prevents network access", |
|
|
[](common_params & params) { |
|
|
params.offline = true; |
|
|
} |
|
|
).set_env("LLAMA_OFFLINE")); |
|
|
add_opt(common_arg( |
|
|
{"-lv", "--verbosity", "--log-verbosity"}, "N", |
|
|
"Set the verbosity threshold. Messages with a higher verbosity will be ignored.", |
|
|
[](common_params & params, int value) { |
|
|
params.verbosity = value; |
|
|
common_log_set_verbosity_thold(value); |
|
|
} |
|
|
).set_env("LLAMA_LOG_VERBOSITY")); |
|
|
add_opt(common_arg( |
|
|
{"--log-prefix"}, |
|
|
"Enable prefix in log messages", |
|
|
[](common_params &) { |
|
|
common_log_set_prefix(common_log_main(), true); |
|
|
} |
|
|
).set_env("LLAMA_LOG_PREFIX")); |
|
|
add_opt(common_arg( |
|
|
{"--log-timestamps"}, |
|
|
"Enable timestamps in log messages", |
|
|
[](common_params &) { |
|
|
common_log_set_timestamps(common_log_main(), true); |
|
|
} |
|
|
).set_env("LLAMA_LOG_TIMESTAMPS")); |
|
|
|
|
|
|
|
|
add_opt(common_arg( |
|
|
{"-td", "--threads-draft"}, "N", |
|
|
"number of threads to use during generation (default: same as --threads)", |
|
|
[](common_params & params, int value) { |
|
|
params.speculative.cpuparams.n_threads = value; |
|
|
if (params.speculative.cpuparams.n_threads <= 0) { |
|
|
params.speculative.cpuparams.n_threads = std::thread::hardware_concurrency(); |
|
|
} |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER})); |
|
|
add_opt(common_arg( |
|
|
{"-tbd", "--threads-batch-draft"}, "N", |
|
|
"number of threads to use during batch and prompt processing (default: same as --threads-draft)", |
|
|
[](common_params & params, int value) { |
|
|
params.speculative.cpuparams_batch.n_threads = value; |
|
|
if (params.speculative.cpuparams_batch.n_threads <= 0) { |
|
|
params.speculative.cpuparams_batch.n_threads = std::thread::hardware_concurrency(); |
|
|
} |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER})); |
|
|
add_opt(common_arg( |
|
|
{"-Cd", "--cpu-mask-draft"}, "M", |
|
|
"Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)", |
|
|
[](common_params & params, const std::string & mask) { |
|
|
params.speculative.cpuparams.mask_valid = true; |
|
|
if (!parse_cpu_mask(mask, params.speculative.cpuparams.cpumask)) { |
|
|
throw std::invalid_argument("invalid cpumask"); |
|
|
} |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); |
|
|
add_opt(common_arg( |
|
|
{"-Crd", "--cpu-range-draft"}, "lo-hi", |
|
|
"Ranges of CPUs for affinity. Complements --cpu-mask-draft", |
|
|
[](common_params & params, const std::string & range) { |
|
|
params.speculative.cpuparams.mask_valid = true; |
|
|
if (!parse_cpu_range(range, params.speculative.cpuparams.cpumask)) { |
|
|
throw std::invalid_argument("invalid range"); |
|
|
} |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); |
|
|
add_opt(common_arg( |
|
|
{"--cpu-strict-draft"}, "<0|1>", |
|
|
"Use strict CPU placement for draft model (default: same as --cpu-strict)", |
|
|
[](common_params & params, int value) { |
|
|
params.speculative.cpuparams.strict_cpu = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); |
|
|
add_opt(common_arg( |
|
|
{"--prio-draft"}, "N", |
|
|
string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams.priority), |
|
|
[](common_params & params, int prio) { |
|
|
if (prio < 0 || prio > 3) { |
|
|
throw std::invalid_argument("invalid value"); |
|
|
} |
|
|
params.speculative.cpuparams.priority = (enum ggml_sched_priority) prio; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); |
|
|
add_opt(common_arg( |
|
|
{"--poll-draft"}, "<0|1>", |
|
|
"Use polling to wait for draft model work (default: same as --poll])", |
|
|
[](common_params & params, int value) { |
|
|
params.speculative.cpuparams.poll = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); |
|
|
add_opt(common_arg( |
|
|
{"-Cbd", "--cpu-mask-batch-draft"}, "M", |
|
|
"Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)", |
|
|
[](common_params & params, const std::string & mask) { |
|
|
params.speculative.cpuparams_batch.mask_valid = true; |
|
|
if (!parse_cpu_mask(mask, params.speculative.cpuparams_batch.cpumask)) { |
|
|
throw std::invalid_argument("invalid cpumask"); |
|
|
} |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); |
|
|
add_opt(common_arg( |
|
|
{"-Crbd", "--cpu-range-batch-draft"}, "lo-hi", |
|
|
"Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)", |
|
|
[](common_params & params, const std::string & range) { |
|
|
params.speculative.cpuparams_batch.mask_valid = true; |
|
|
if (!parse_cpu_range(range, params.speculative.cpuparams_batch.cpumask)) { |
|
|
throw std::invalid_argument("invalid cpumask"); |
|
|
} |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); |
|
|
add_opt(common_arg( |
|
|
{"--cpu-strict-batch-draft"}, "<0|1>", |
|
|
"Use strict CPU placement for draft model (default: --cpu-strict-draft)", |
|
|
[](common_params & params, int value) { |
|
|
params.speculative.cpuparams_batch.strict_cpu = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); |
|
|
add_opt(common_arg( |
|
|
{"--prio-batch-draft"}, "N", |
|
|
string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams_batch.priority), |
|
|
[](common_params & params, int prio) { |
|
|
if (prio < 0 || prio > 3) { |
|
|
throw std::invalid_argument("invalid value"); |
|
|
} |
|
|
params.speculative.cpuparams_batch.priority = (enum ggml_sched_priority) prio; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); |
|
|
add_opt(common_arg( |
|
|
{"--poll-batch-draft"}, "<0|1>", |
|
|
"Use polling to wait for draft model work (default: --poll-draft)", |
|
|
[](common_params & params, int value) { |
|
|
params.speculative.cpuparams_batch.poll = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); |
|
|
add_opt(common_arg( |
|
|
{"--draft-max", "--draft", "--draft-n"}, "N", |
|
|
string_format("number of tokens to draft for speculative decoding (default: %d)", params.speculative.n_max), |
|
|
[](common_params & params, int value) { |
|
|
params.speculative.n_max = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MAX")); |
|
|
add_opt(common_arg( |
|
|
{"--draft-min", "--draft-n-min"}, "N", |
|
|
string_format("minimum number of draft tokens to use for speculative decoding (default: %d)", params.speculative.n_min), |
|
|
[](common_params & params, int value) { |
|
|
params.speculative.n_min = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MIN")); |
|
|
add_opt(common_arg( |
|
|
{"--draft-p-split"}, "P", |
|
|
string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.speculative.p_split = std::stof(value); |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}).set_env("LLAMA_ARG_DRAFT_P_SPLIT")); |
|
|
add_opt(common_arg( |
|
|
{"--draft-p-min"}, "P", |
|
|
string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.speculative.p_min = std::stof(value); |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_P_MIN")); |
|
|
add_opt(common_arg( |
|
|
{"-cd", "--ctx-size-draft"}, "N", |
|
|
string_format("size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.speculative.n_ctx), |
|
|
[](common_params & params, int value) { |
|
|
params.speculative.n_ctx = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CTX_SIZE_DRAFT")); |
|
|
add_opt(common_arg( |
|
|
{"-devd", "--device-draft"}, "<dev1,dev2,..>", |
|
|
"comma-separated list of devices to use for offloading the draft model (none = don't offload)\n" |
|
|
"use --list-devices to see a list of available devices", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.speculative.devices = parse_device_list(value); |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER})); |
|
|
add_opt(common_arg( |
|
|
{"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N", |
|
|
"number of layers to store in VRAM for the draft model", |
|
|
[](common_params & params, int value) { |
|
|
params.speculative.n_gpu_layers = value; |
|
|
if (!llama_supports_gpu_offload()) { |
|
|
fprintf(stderr, "warning: no usable GPU found, --gpu-layers-draft option will be ignored\n"); |
|
|
fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n"); |
|
|
fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n"); |
|
|
} |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_GPU_LAYERS_DRAFT")); |
|
|
add_opt(common_arg( |
|
|
{"-md", "--model-draft"}, "FNAME", |
|
|
"draft model for speculative decoding (default: unused)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.speculative.model.path = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT")); |
|
|
add_opt(common_arg( |
|
|
{"--spec-replace"}, "TARGET", "DRAFT", |
|
|
"translate the string in TARGET into DRAFT if the draft model and main model are not compatible", |
|
|
[](common_params & params, const std::string & tgt, const std::string & dft) { |
|
|
params.speculative.replacements.push_back({ tgt, dft }); |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER})); |
|
|
add_opt(common_arg( |
|
|
{"-ctkd", "--cache-type-k-draft"}, "TYPE", |
|
|
string_format( |
|
|
"KV cache data type for K for the draft model\n" |
|
|
"allowed values: %s\n" |
|
|
"(default: %s)", |
|
|
get_all_kv_cache_types().c_str(), |
|
|
ggml_type_name(params.speculative.cache_type_k) |
|
|
), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.speculative.cache_type_k = kv_cache_type_from_str(value); |
|
|
} |
|
|
).set_env("LLAMA_ARG_CACHE_TYPE_K_DRAFT")); |
|
|
add_opt(common_arg( |
|
|
{"-ctvd", "--cache-type-v-draft"}, "TYPE", |
|
|
string_format( |
|
|
"KV cache data type for V for the draft model\n" |
|
|
"allowed values: %s\n" |
|
|
"(default: %s)", |
|
|
get_all_kv_cache_types().c_str(), |
|
|
ggml_type_name(params.speculative.cache_type_v) |
|
|
), |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.speculative.cache_type_v = kv_cache_type_from_str(value); |
|
|
} |
|
|
).set_env("LLAMA_ARG_CACHE_TYPE_V_DRAFT")); |
|
|
|
|
|
add_opt(common_arg( |
|
|
{"-mv", "--model-vocoder"}, "FNAME", |
|
|
"vocoder model for audio generation (default: unused)", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.vocoder.model.path = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER})); |
|
|
add_opt(common_arg( |
|
|
{"--tts-use-guide-tokens"}, |
|
|
"Use guide tokens to improve TTS word recall", |
|
|
[](common_params & params) { |
|
|
params.vocoder.use_guide_tokens = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER})); |
|
|
add_opt(common_arg( |
|
|
{"--tts-speaker-file"}, "FNAME", |
|
|
"speaker file path for audio generation", |
|
|
[](common_params & params, const std::string & value) { |
|
|
params.vocoder.speaker_file = value; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_TTS})); |
|
|
|
|
|
|
|
|
add_opt(common_arg( |
|
|
{"--tts-oute-default"}, |
|
|
string_format("use default OuteTTS models (note: can download weights from the internet)"), |
|
|
[](common_params & params) { |
|
|
params.model.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF"; |
|
|
params.model.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf"; |
|
|
params.vocoder.model.hf_repo = "ggml-org/WavTokenizer"; |
|
|
params.vocoder.model.hf_file = "WavTokenizer-Large-75-F16.gguf"; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_TTS})); |
|
|
|
|
|
add_opt(common_arg( |
|
|
{"--embd-bge-small-en-default"}, |
|
|
string_format("use default bge-small-en-v1.5 model (note: can download weights from the internet)"), |
|
|
[](common_params & params) { |
|
|
params.model.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF"; |
|
|
params.model.hf_file = "bge-small-en-v1.5-q8_0.gguf"; |
|
|
params.pooling_type = LLAMA_POOLING_TYPE_NONE; |
|
|
params.embd_normalize = 2; |
|
|
params.n_ctx = 512; |
|
|
params.verbose_prompt = true; |
|
|
params.embedding = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER})); |
|
|
|
|
|
add_opt(common_arg( |
|
|
{"--embd-e5-small-en-default"}, |
|
|
string_format("use default e5-small-v2 model (note: can download weights from the internet)"), |
|
|
[](common_params & params) { |
|
|
params.model.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF"; |
|
|
params.model.hf_file = "e5-small-v2-q8_0.gguf"; |
|
|
params.pooling_type = LLAMA_POOLING_TYPE_NONE; |
|
|
params.embd_normalize = 2; |
|
|
params.n_ctx = 512; |
|
|
params.verbose_prompt = true; |
|
|
params.embedding = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER})); |
|
|
|
|
|
add_opt(common_arg( |
|
|
{"--embd-gte-small-default"}, |
|
|
string_format("use default gte-small model (note: can download weights from the internet)"), |
|
|
[](common_params & params) { |
|
|
params.model.hf_repo = "ggml-org/gte-small-Q8_0-GGUF"; |
|
|
params.model.hf_file = "gte-small-q8_0.gguf"; |
|
|
params.pooling_type = LLAMA_POOLING_TYPE_NONE; |
|
|
params.embd_normalize = 2; |
|
|
params.n_ctx = 512; |
|
|
params.verbose_prompt = true; |
|
|
params.embedding = true; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER})); |
|
|
|
|
|
add_opt(common_arg( |
|
|
{"--fim-qwen-1.5b-default"}, |
|
|
string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"), |
|
|
[](common_params & params) { |
|
|
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF"; |
|
|
params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf"; |
|
|
params.port = 8012; |
|
|
params.n_ubatch = 1024; |
|
|
params.n_batch = 1024; |
|
|
params.n_ctx = 0; |
|
|
params.n_cache_reuse = 256; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER})); |
|
|
|
|
|
add_opt(common_arg( |
|
|
{"--fim-qwen-3b-default"}, |
|
|
string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"), |
|
|
[](common_params & params) { |
|
|
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF"; |
|
|
params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf"; |
|
|
params.port = 8012; |
|
|
params.n_ubatch = 1024; |
|
|
params.n_batch = 1024; |
|
|
params.n_ctx = 0; |
|
|
params.n_cache_reuse = 256; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER})); |
|
|
|
|
|
add_opt(common_arg( |
|
|
{"--fim-qwen-7b-default"}, |
|
|
string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"), |
|
|
[](common_params & params) { |
|
|
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF"; |
|
|
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf"; |
|
|
params.port = 8012; |
|
|
params.n_ubatch = 1024; |
|
|
params.n_batch = 1024; |
|
|
params.n_ctx = 0; |
|
|
params.n_cache_reuse = 256; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER})); |
|
|
|
|
|
add_opt(common_arg( |
|
|
{"--fim-qwen-7b-spec"}, |
|
|
string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"), |
|
|
[](common_params & params) { |
|
|
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF"; |
|
|
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf"; |
|
|
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF"; |
|
|
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf"; |
|
|
params.port = 8012; |
|
|
params.n_ubatch = 1024; |
|
|
params.n_batch = 1024; |
|
|
params.n_ctx = 0; |
|
|
params.n_cache_reuse = 256; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER})); |
|
|
|
|
|
add_opt(common_arg( |
|
|
{"--fim-qwen-14b-spec"}, |
|
|
string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"), |
|
|
[](common_params & params) { |
|
|
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF"; |
|
|
params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf"; |
|
|
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF"; |
|
|
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf"; |
|
|
params.port = 8012; |
|
|
params.n_ubatch = 1024; |
|
|
params.n_batch = 1024; |
|
|
params.n_ctx = 0; |
|
|
params.n_cache_reuse = 256; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER})); |
|
|
|
|
|
add_opt(common_arg( |
|
|
{"--fim-qwen-30b-default"}, |
|
|
string_format("use default Qwen 3 Coder 30B A3B Instruct (note: can download weights from the internet)"), |
|
|
[](common_params & params) { |
|
|
params.model.hf_repo = "ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF"; |
|
|
params.model.hf_file = "qwen3-coder-30b-a3b-instruct-q8_0.gguf"; |
|
|
params.port = 8012; |
|
|
params.n_ubatch = 1024; |
|
|
params.n_batch = 1024; |
|
|
params.n_ctx = 0; |
|
|
params.n_cache_reuse = 256; |
|
|
} |
|
|
).set_examples({LLAMA_EXAMPLE_SERVER})); |
|
|
|
|
|
add_opt(common_arg( |
|
|
{ "--diffusion-steps" }, "N", |
|
|
string_format("number of diffusion steps (default: %d)", params.diffusion.steps), |
|
|
[](common_params & params, int value) { params.diffusion.steps = value; } |
|
|
).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); |
|
|
add_opt(common_arg( |
|
|
{ "--diffusion-visual" }, |
|
|
string_format("enable visual diffusion mode (show progressive generation) (default: %s)", |
|
|
params.diffusion.visual_mode ? "true" : "false"), |
|
|
[](common_params & params) { params.diffusion.visual_mode = true; } |
|
|
).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); |
|
|
|
|
|
add_opt(common_arg( |
|
|
{ "--diffusion-eps" }, "F", |
|
|
string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps), |
|
|
[](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); } |
|
|
).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); |
|
|
add_opt(common_arg( |
|
|
{ "--diffusion-algorithm" }, "N", |
|
|
string_format("diffusion algorithm: 0=ORIGIN, 1=ENTROPY_BASED, 2=MARGIN_BASED, 3=RANDOM, 4=LOW_CONFIDENCE (default: %d)", |
|
|
params.diffusion.algorithm), |
|
|
[](common_params & params, int value) { params.diffusion.algorithm = value; } |
|
|
).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); |
|
|
add_opt(common_arg( |
|
|
{ "--diffusion-alg-temp" }, "F", |
|
|
string_format("dream algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp), |
|
|
[](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); } |
|
|
).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); |
|
|
|
|
|
add_opt(common_arg( |
|
|
{ "--diffusion-block-length" }, "N", |
|
|
string_format("llada block length for generation (default: %d)", params.diffusion.block_length), |
|
|
[](common_params & params, int value) { params.diffusion.block_length = value; } |
|
|
).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); |
|
|
add_opt(common_arg( |
|
|
{ "--diffusion-cfg-scale" }, "F", |
|
|
string_format("llada classifier-free guidance scale (default: %.3f)", (double) params.diffusion.cfg_scale), |
|
|
[](common_params & params, const std::string & value) { params.diffusion.cfg_scale = std::stof(value); } |
|
|
).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); |
|
|
add_opt(common_arg( |
|
|
{ "--diffusion-add-gumbel-noise" }, "F", |
|
|
string_format("add gumbel noise to the logits if temp > 0.0 (default: %s)", params.diffusion.add_gumbel_noise ? "true" : "false"), |
|
|
[](common_params & params, const std::string & value) { params.diffusion.add_gumbel_noise = std::stof(value); } |
|
|
).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); |
|
|
|
|
|
|
|
|
add_opt( |
|
|
common_arg({ "-lr", "--learning-rate" }, "ALPHA", |
|
|
string_format( |
|
|
"adamw or sgd optimizer alpha (default: %.2g); note: sgd alpha recommended ~10x (no momentum)", |
|
|
(double) params.lr.lr0), |
|
|
[](common_params & params, const std::string & value) { params.lr.lr0 = std::stof(value); }) |
|
|
.set_examples({ LLAMA_EXAMPLE_FINETUNE })); |
|
|
add_opt( |
|
|
common_arg({ "-lr-min", "--learning-rate-min" }, "ALPHA", |
|
|
string_format( |
|
|
"(if >0) final learning rate after decay (if -decay-epochs is set, default=%.2g)", |
|
|
(double) params.lr.lr_min), |
|
|
[](common_params & params, const std::string & value) { params.lr.lr_min = std::stof(value); }) |
|
|
.set_examples({ LLAMA_EXAMPLE_FINETUNE })); |
|
|
add_opt( |
|
|
common_arg({ "-decay-epochs", "--learning-rate-decay-epochs" }, "ALPHA", |
|
|
string_format( |
|
|
"(if >0) decay learning rate to -lr-min after this many epochs (exponential decay, default=%.2g)", |
|
|
(double) params.lr.decay_epochs), |
|
|
[](common_params & params, const std::string & value) { params.lr.decay_epochs = std::stof(value); }) |
|
|
.set_examples({ LLAMA_EXAMPLE_FINETUNE })); |
|
|
add_opt(common_arg( |
|
|
{ "-wd", "--weight-decay" }, "WD", |
|
|
string_format( |
|
|
"adamw or sgd optimizer weight decay (0 is off; recommend very small e.g. 1e-9) (default: %.2g).", |
|
|
(double) params.lr.wd), |
|
|
[](common_params & params, const std::string & value) { params.lr.wd = std::stof(value); }) |
|
|
.set_examples({ LLAMA_EXAMPLE_FINETUNE })); |
|
|
add_opt(common_arg({ "-val-split", "--val-split" }, "FRACTION", |
|
|
string_format("fraction of data to use as validation set for training (default: %.2g).", |
|
|
(double) params.val_split), |
|
|
[](common_params & params, const std::string & value) { params.val_split = std::stof(value); }) |
|
|
.set_examples({ LLAMA_EXAMPLE_FINETUNE })); |
|
|
add_opt(common_arg({ "-epochs", "--epochs" }, "N", |
|
|
string_format("optimizer max # of epochs (default: %d)", params.lr.epochs), |
|
|
[](common_params & params, int epochs) { params.lr.epochs = epochs; }) |
|
|
.set_examples({ LLAMA_EXAMPLE_FINETUNE })); |
|
|
add_opt(common_arg({ "-opt", "--optimizer" }, "sgd|adamw", "adamw or sgd", |
|
|
[](common_params & params, const std::string & name) { |
|
|
params.optimizer = common_opt_get_optimizer(name.c_str()); |
|
|
if (params.optimizer == GGML_OPT_OPTIMIZER_TYPE_COUNT) { |
|
|
throw std::invalid_argument("invalid --optimizer, valid options: adamw, sgd"); |
|
|
} |
|
|
}) |
|
|
.set_examples({ LLAMA_EXAMPLE_FINETUNE })); |
|
|
|
|
|
return ctx_arg; |
|
|
} |
|
|
|