Upload 3 files
Browse files
scripts/evaluate_en_mteb/model_for_evaluate.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import functools
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from typing import Sequence, Any
|
| 5 |
+
from mteb.encoder_interface import PromptType
|
| 6 |
+
from mteb import Encoder
|
| 7 |
+
from sentence_transformers import SentenceTransformer
|
| 8 |
+
from mteb_utils import get_task_def_by_task_name_and_type, get_detailed_instruct, get_task_type_en
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def jasper_vl_forward(self, features: dict[str, torch.Tensor], **kwargs) -> dict[str, torch.Tensor]:
|
| 12 |
+
trans_features = {"input_ids": features["input_ids"], "attention_mask": features["attention_mask"]}
|
| 13 |
+
if "pixel_values" in features:
|
| 14 |
+
trans_features["pixel_values"] = features["pixel_values"]
|
| 15 |
+
sentence_embedding = self.auto_model(**trans_features, **kwargs)["sentence_embedding"]
|
| 16 |
+
features.update({"sentence_embedding": sentence_embedding})
|
| 17 |
+
return features
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class MTEB_Sentence_Transformer(Encoder):
|
| 21 |
+
def __init__(
|
| 22 |
+
self,
|
| 23 |
+
model_path_or_name: str,
|
| 24 |
+
lang: str,
|
| 25 |
+
batch_size: int,
|
| 26 |
+
max_length: int,
|
| 27 |
+
device: str | None = None
|
| 28 |
+
) -> None:
|
| 29 |
+
super().__init__(device=device)
|
| 30 |
+
model = SentenceTransformer(
|
| 31 |
+
model_path_or_name,
|
| 32 |
+
trust_remote_code=True,
|
| 33 |
+
device="cpu",
|
| 34 |
+
model_kwargs={
|
| 35 |
+
"torch_dtype": torch.bfloat16,
|
| 36 |
+
"attn_implementation": "sdpa"
|
| 37 |
+
},
|
| 38 |
+
config_kwargs={"is_text_encoder": True, "vector_dim": 12288},
|
| 39 |
+
tokenizer_kwargs={"padding_side": "right"}
|
| 40 |
+
)
|
| 41 |
+
model._first_module().forward = functools.partial(jasper_vl_forward, model._first_module())
|
| 42 |
+
self.model = model
|
| 43 |
+
|
| 44 |
+
self.pool = self.model.start_multi_process_pool()
|
| 45 |
+
self.lang = lang
|
| 46 |
+
self.batch_size = batch_size
|
| 47 |
+
self.model.max_seq_length = max_length
|
| 48 |
+
|
| 49 |
+
def encode(
|
| 50 |
+
self,
|
| 51 |
+
sentences: Sequence[str],
|
| 52 |
+
*,
|
| 53 |
+
task_name: str,
|
| 54 |
+
prompt_type: PromptType | None = None,
|
| 55 |
+
**kwargs: Any,
|
| 56 |
+
) -> np.ndarray:
|
| 57 |
+
task_type = get_task_type_en(task_name)
|
| 58 |
+
do_normalize = True
|
| 59 |
+
instruction = get_detailed_instruct(get_task_def_by_task_name_and_type(task_name, task_type))
|
| 60 |
+
if task_type == "Retrieval":
|
| 61 |
+
if prompt_type == "query":
|
| 62 |
+
# print(instruction)
|
| 63 |
+
sentences = [instruction + sen for sen in sentences]
|
| 64 |
+
elif prompt_type == "passage":
|
| 65 |
+
pass
|
| 66 |
+
else:
|
| 67 |
+
raise ValueError(f"unknown prompt_type:{prompt_type}")
|
| 68 |
+
else:
|
| 69 |
+
sentences = [instruction + sen for sen in sentences]
|
| 70 |
+
# process white space data
|
| 71 |
+
sentences = [i if i.strip() else "<|endoftext|>" for i in sentences]
|
| 72 |
+
# print("First text: ", sentences[0])
|
| 73 |
+
vectors = self.model.encode_multi_process(
|
| 74 |
+
sentences=sentences,
|
| 75 |
+
pool=self.pool,
|
| 76 |
+
batch_size=self.batch_size,
|
| 77 |
+
show_progress_bar=True,
|
| 78 |
+
normalize_embeddings=do_normalize
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
vectors = vectors.astype(dtype=np.float32)
|
| 82 |
+
print("vectors.shape", vectors.shape)
|
| 83 |
+
return vectors
|
scripts/evaluate_en_mteb/mteb_utils.py
ADDED
|
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict
|
| 2 |
+
|
| 3 |
+
LONG_TIME_TASK_NAMES = [
|
| 4 |
+
"MSMARCO",
|
| 5 |
+
"FEVER",
|
| 6 |
+
"HotpotQA",
|
| 7 |
+
"ClimateFEVER",
|
| 8 |
+
"DBPedia",
|
| 9 |
+
"NQ",
|
| 10 |
+
"ArxivClusteringP2P",
|
| 11 |
+
"ArxivClusteringS2S",
|
| 12 |
+
"RedditClusteringP2P",
|
| 13 |
+
"RedditClustering",
|
| 14 |
+
"QuoraRetrieval",
|
| 15 |
+
"StackExchangeClustering",
|
| 16 |
+
"Touche2020",
|
| 17 |
+
"MindSmallReranking",
|
| 18 |
+
"AmazonPolarityClassification",
|
| 19 |
+
"BiorxivClusteringP2P",
|
| 20 |
+
"StackExchangeClusteringP2P",
|
| 21 |
+
"TRECCOVID"
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
SHORT_TIME_TASK_NAMES = [
|
| 25 |
+
"BIOSSES",
|
| 26 |
+
"STS17",
|
| 27 |
+
"STS16",
|
| 28 |
+
"AskUbuntuDupQuestions",
|
| 29 |
+
"SummEval",
|
| 30 |
+
"SciFact",
|
| 31 |
+
"TweetSentimentExtractionClassification",
|
| 32 |
+
"EmotionClassification",
|
| 33 |
+
"SprintDuplicateQuestions"
|
| 34 |
+
]
|
| 35 |
+
MID_TIME_TASK_NAMES = ['BIOSSES', 'STS17', 'STS22', 'STS16', 'STSBenchmark', 'STS13', 'STS15', 'STS12', 'STS14',
|
| 36 |
+
'AskUbuntuDupQuestions', 'TwitterSemEval2015', 'SummEval', 'SICK-R', 'NFCorpus', 'SciFact',
|
| 37 |
+
'CQADupstackWebmastersRetrieval', 'TwitterURLCorpus', 'SprintDuplicateQuestions',
|
| 38 |
+
'CQADupstackAndroidRetrieval', 'CQADupstackMathematicaRetrieval', 'ArguAna',
|
| 39 |
+
'CQADupstackProgrammersRetrieval', 'SCIDOCS', 'StackOverflowDupQuestions',
|
| 40 |
+
'EmotionClassification', 'TweetSentimentExtractionClassification', 'CQADupstackStatsRetrieval',
|
| 41 |
+
'CQADupstackGisRetrieval', 'CQADupstackWordpressRetrieval', 'CQADupstackEnglishRetrieval',
|
| 42 |
+
'CQADupstackPhysicsRetrieval', 'CQADupstackGamingRetrieval', 'SciDocsRR', 'FiQA2018',
|
| 43 |
+
'CQADupstackUnixRetrieval', 'ToxicConversationsClassification', 'Banking77Classification',
|
| 44 |
+
'TwentyNewsgroupsClustering', 'MedrxivClusteringS2S', 'ImdbClassification',
|
| 45 |
+
'MTOPDomainClassification', 'BiorxivClusteringS2S', 'AmazonCounterfactualClassification',
|
| 46 |
+
'MassiveScenarioClassification', 'MedrxivClusteringP2P', 'MTOPIntentClassification',
|
| 47 |
+
'MassiveIntentClassification', 'CQADupstackTexRetrieval', 'AmazonReviewsClassification',
|
| 48 |
+
'TRECCOVID', 'BiorxivClusteringP2P', 'StackExchangeClusteringP2P', 'StackExchangeClustering']
|
| 49 |
+
|
| 50 |
+
CMTEB_TASK_LIST = ['TNews', 'IFlyTek', 'MultilingualSentiment', 'JDReview', 'OnlineShopping', 'Waimai',
|
| 51 |
+
'AmazonReviewsClassification', 'MassiveIntentClassification', 'MassiveScenarioClassification',
|
| 52 |
+
'MultilingualSentiment',
|
| 53 |
+
'CLSClusteringS2S', 'CLSClusteringP2P', 'ThuNewsClusteringS2S', 'ThuNewsClusteringP2P',
|
| 54 |
+
'Ocnli', 'Cmnli',
|
| 55 |
+
'T2Reranking', 'MmarcoReranking', 'CMedQAv1', 'CMedQAv2',
|
| 56 |
+
'T2Retrieval', 'MMarcoRetrieval', 'DuRetrieval', 'CovidRetrieval', 'CmedqaRetrieval',
|
| 57 |
+
'EcomRetrieval', 'MedicalRetrieval', 'VideoRetrieval',
|
| 58 |
+
'ATEC', 'BQ', 'LCQMC', 'PAWSX', 'STSB', 'AFQMC', 'QBQTC', 'STS22']
|
| 59 |
+
|
| 60 |
+
TASK_LIST_CLASSIFICATION = [
|
| 61 |
+
"AmazonCounterfactualClassification",
|
| 62 |
+
"AmazonPolarityClassification",
|
| 63 |
+
"AmazonReviewsClassification",
|
| 64 |
+
"Banking77Classification",
|
| 65 |
+
"EmotionClassification",
|
| 66 |
+
"ImdbClassification",
|
| 67 |
+
"MassiveIntentClassification",
|
| 68 |
+
"MassiveScenarioClassification",
|
| 69 |
+
"MTOPDomainClassification",
|
| 70 |
+
"MTOPIntentClassification",
|
| 71 |
+
"ToxicConversationsClassification",
|
| 72 |
+
"TweetSentimentExtractionClassification",
|
| 73 |
+
]
|
| 74 |
+
|
| 75 |
+
TASK_LIST_CLUSTERING = [
|
| 76 |
+
"ArxivClusteringP2P",
|
| 77 |
+
"ArxivClusteringS2S",
|
| 78 |
+
"BiorxivClusteringP2P",
|
| 79 |
+
"BiorxivClusteringS2S",
|
| 80 |
+
"MedrxivClusteringP2P",
|
| 81 |
+
"MedrxivClusteringS2S",
|
| 82 |
+
"RedditClustering",
|
| 83 |
+
"RedditClusteringP2P",
|
| 84 |
+
"StackExchangeClustering",
|
| 85 |
+
"StackExchangeClusteringP2P",
|
| 86 |
+
"TwentyNewsgroupsClustering",
|
| 87 |
+
]
|
| 88 |
+
|
| 89 |
+
TASK_LIST_PAIR_CLASSIFICATION = [
|
| 90 |
+
"SprintDuplicateQuestions",
|
| 91 |
+
"TwitterSemEval2015",
|
| 92 |
+
"TwitterURLCorpus",
|
| 93 |
+
]
|
| 94 |
+
|
| 95 |
+
TASK_LIST_RERANKING = [
|
| 96 |
+
"AskUbuntuDupQuestions",
|
| 97 |
+
"MindSmallReranking",
|
| 98 |
+
"SciDocsRR",
|
| 99 |
+
"StackOverflowDupQuestions",
|
| 100 |
+
]
|
| 101 |
+
|
| 102 |
+
TASK_LIST_RETRIEVAL = [
|
| 103 |
+
"ArguAna",
|
| 104 |
+
"CQADupstackAndroidRetrieval",
|
| 105 |
+
"CQADupstackEnglishRetrieval",
|
| 106 |
+
"CQADupstackGamingRetrieval",
|
| 107 |
+
"CQADupstackGisRetrieval",
|
| 108 |
+
"CQADupstackMathematicaRetrieval",
|
| 109 |
+
"CQADupstackPhysicsRetrieval",
|
| 110 |
+
"CQADupstackProgrammersRetrieval",
|
| 111 |
+
"CQADupstackStatsRetrieval",
|
| 112 |
+
"CQADupstackTexRetrieval",
|
| 113 |
+
"CQADupstackUnixRetrieval",
|
| 114 |
+
"CQADupstackWebmastersRetrieval",
|
| 115 |
+
"CQADupstackWordpressRetrieval",
|
| 116 |
+
"DBPedia",
|
| 117 |
+
"FEVER",
|
| 118 |
+
"FiQA2018",
|
| 119 |
+
"NFCorpus",
|
| 120 |
+
"NQ",
|
| 121 |
+
"QuoraRetrieval",
|
| 122 |
+
"SCIDOCS",
|
| 123 |
+
"SciFact",
|
| 124 |
+
"Touche2020",
|
| 125 |
+
"TRECCOVID",
|
| 126 |
+
"ClimateFEVER",
|
| 127 |
+
"HotpotQA",
|
| 128 |
+
"MSMARCO",
|
| 129 |
+
]
|
| 130 |
+
|
| 131 |
+
TASK_LIST_STS = [
|
| 132 |
+
"BIOSSES",
|
| 133 |
+
"SICK-R",
|
| 134 |
+
"STS12",
|
| 135 |
+
"STS13",
|
| 136 |
+
"STS14",
|
| 137 |
+
"STS15",
|
| 138 |
+
"STS16",
|
| 139 |
+
"STS17",
|
| 140 |
+
"STS22",
|
| 141 |
+
"STSBenchmark",
|
| 142 |
+
"SummEval",
|
| 143 |
+
]
|
| 144 |
+
|
| 145 |
+
MTEB_TASK_LIST = (
|
| 146 |
+
TASK_LIST_CLASSIFICATION
|
| 147 |
+
+ TASK_LIST_CLUSTERING
|
| 148 |
+
+ TASK_LIST_PAIR_CLASSIFICATION
|
| 149 |
+
+ TASK_LIST_RERANKING
|
| 150 |
+
+ TASK_LIST_STS
|
| 151 |
+
+ TASK_LIST_RETRIEVAL
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def get_task_type_en(task_name: str):
|
| 156 |
+
if task_name == "SummEval":
|
| 157 |
+
return "Summarization"
|
| 158 |
+
if task_name in TASK_LIST_CLASSIFICATION:
|
| 159 |
+
return "Classification"
|
| 160 |
+
if task_name in TASK_LIST_CLUSTERING:
|
| 161 |
+
return "Clustering"
|
| 162 |
+
if task_name in TASK_LIST_PAIR_CLASSIFICATION:
|
| 163 |
+
return "PairClassification"
|
| 164 |
+
if task_name in TASK_LIST_RERANKING:
|
| 165 |
+
return "Reranking"
|
| 166 |
+
if task_name in TASK_LIST_STS:
|
| 167 |
+
return "STS"
|
| 168 |
+
if task_name in TASK_LIST_RETRIEVAL:
|
| 169 |
+
return "Retrieval"
|
| 170 |
+
raise ValueError(f"unknown task name:{task_name}")
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def get_task_def_by_task_name_and_type(task_name: str, task_type: str) -> str:
|
| 174 |
+
if task_type in ['STS']:
|
| 175 |
+
return "Retrieve semantically similar text."
|
| 176 |
+
|
| 177 |
+
if task_type in ['Summarization']:
|
| 178 |
+
return "Given a news summary, retrieve other semantically similar summaries"
|
| 179 |
+
|
| 180 |
+
if task_type in ['BitextMining']:
|
| 181 |
+
return "Retrieve parallel sentences."
|
| 182 |
+
|
| 183 |
+
if task_type in ['Classification']:
|
| 184 |
+
task_name_to_instruct: Dict[str, str] = {
|
| 185 |
+
'AmazonCounterfactualClassification': 'Classify a given Amazon customer review text as either counterfactual or not-counterfactual',
|
| 186 |
+
'AmazonPolarityClassification': 'Classify Amazon reviews into positive or negative sentiment',
|
| 187 |
+
'AmazonReviewsClassification': 'Classify the given Amazon review into its appropriate rating category',
|
| 188 |
+
'Banking77Classification': 'Given a online banking query, find the corresponding intents',
|
| 189 |
+
'EmotionClassification': 'Classify the emotion expressed in the given Twitter message into one of the six emotions: anger, fear, joy, love, sadness, and surprise',
|
| 190 |
+
'ImdbClassification': 'Classify the sentiment expressed in the given movie review text from the IMDB dataset',
|
| 191 |
+
'MassiveIntentClassification': 'Given a user utterance as query, find the user intents',
|
| 192 |
+
'MassiveScenarioClassification': 'Given a user utterance as query, find the user scenarios',
|
| 193 |
+
'MTOPDomainClassification': 'Classify the intent domain of the given utterance in task-oriented conversation',
|
| 194 |
+
'MTOPIntentClassification': 'Classify the intent of the given utterance in task-oriented conversation',
|
| 195 |
+
'ToxicConversationsClassification': 'Classify the given comments as either toxic or not toxic',
|
| 196 |
+
'TweetSentimentExtractionClassification': 'Classify the sentiment of a given tweet as either positive, negative, or neutral',
|
| 197 |
+
# C-MTEB eval instructions
|
| 198 |
+
'TNews': 'Classify the fine-grained category of the given news title',
|
| 199 |
+
'IFlyTek': 'Given an App description text, find the appropriate fine-grained category',
|
| 200 |
+
'MultilingualSentiment': 'Classify sentiment of the customer review into positive, neutral, or negative',
|
| 201 |
+
'JDReview': 'Classify the customer review for iPhone on e-commerce platform into positive or negative',
|
| 202 |
+
'OnlineShopping': 'Classify the customer review for online shopping into positive or negative',
|
| 203 |
+
'Waimai': 'Classify the customer review from a food takeaway platform into positive or negative',
|
| 204 |
+
}
|
| 205 |
+
return task_name_to_instruct[task_name]
|
| 206 |
+
|
| 207 |
+
if task_type in ['Clustering']:
|
| 208 |
+
task_name_to_instruct: Dict[str, str] = {
|
| 209 |
+
'ArxivClusteringP2P': 'Identify the main and secondary category of Arxiv papers based on the titles and abstracts',
|
| 210 |
+
'ArxivClusteringS2S': 'Identify the main and secondary category of Arxiv papers based on the titles',
|
| 211 |
+
'BiorxivClusteringP2P': 'Identify the main category of Biorxiv papers based on the titles and abstracts',
|
| 212 |
+
'BiorxivClusteringS2S': 'Identify the main category of Biorxiv papers based on the titles',
|
| 213 |
+
'MedrxivClusteringP2P': 'Identify the main category of Medrxiv papers based on the titles and abstracts',
|
| 214 |
+
'MedrxivClusteringS2S': 'Identify the main category of Medrxiv papers based on the titles',
|
| 215 |
+
'RedditClustering': 'Identify the topic or theme of Reddit posts based on the titles',
|
| 216 |
+
'RedditClusteringP2P': 'Identify the topic or theme of Reddit posts based on the titles and posts',
|
| 217 |
+
'StackExchangeClustering': 'Identify the topic or theme of StackExchange posts based on the titles',
|
| 218 |
+
'StackExchangeClusteringP2P': 'Identify the topic or theme of StackExchange posts based on the given paragraphs',
|
| 219 |
+
'TwentyNewsgroupsClustering': 'Identify the topic or theme of the given news articles',
|
| 220 |
+
# C-MTEB eval instructions
|
| 221 |
+
'CLSClusteringS2S': 'Identify the main category of scholar papers based on the titles',
|
| 222 |
+
'CLSClusteringP2P': 'Identify the main category of scholar papers based on the titles and abstracts',
|
| 223 |
+
'ThuNewsClusteringS2S': 'Identify the topic or theme of the given news articles based on the titles',
|
| 224 |
+
'ThuNewsClusteringP2P': 'Identify the topic or theme of the given news articles based on the titles and contents',
|
| 225 |
+
}
|
| 226 |
+
return task_name_to_instruct[task_name]
|
| 227 |
+
|
| 228 |
+
if task_type in ['Reranking', 'PairClassification']:
|
| 229 |
+
task_name_to_instruct: Dict[str, str] = {
|
| 230 |
+
'AskUbuntuDupQuestions': 'Retrieve duplicate questions from AskUbuntu forum',
|
| 231 |
+
'MindSmallReranking': 'Retrieve relevant news articles based on user browsing history',
|
| 232 |
+
'SciDocsRR': 'Given a title of a scientific paper, retrieve the titles of other relevant papers',
|
| 233 |
+
'StackOverflowDupQuestions': 'Retrieve duplicate questions from StackOverflow forum',
|
| 234 |
+
'SprintDuplicateQuestions': 'Retrieve duplicate questions from Sprint forum',
|
| 235 |
+
'TwitterSemEval2015': 'Retrieve tweets that are semantically similar to the given tweet',
|
| 236 |
+
'TwitterURLCorpus': 'Retrieve tweets that are semantically similar to the given tweet',
|
| 237 |
+
# C-MTEB eval instructions
|
| 238 |
+
'T2Reranking': 'Given a Chinese search query, retrieve web passages that answer the question',
|
| 239 |
+
'MMarcoReranking': 'Given a Chinese search query, retrieve web passages that answer the question',
|
| 240 |
+
'CMedQAv1': 'Given a Chinese community medical question, retrieve replies that best answer the question',
|
| 241 |
+
'CMedQAv2': 'Given a Chinese community medical question, retrieve replies that best answer the question',
|
| 242 |
+
'Ocnli': 'Retrieve semantically similar text.',
|
| 243 |
+
'Cmnli': 'Retrieve semantically similar text.',
|
| 244 |
+
}
|
| 245 |
+
return task_name_to_instruct[task_name]
|
| 246 |
+
|
| 247 |
+
if task_type in ['Retrieval']:
|
| 248 |
+
if task_name.lower().startswith('cqadupstack'):
|
| 249 |
+
return 'Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question'
|
| 250 |
+
|
| 251 |
+
task_name_to_instruct: Dict[str, str] = {
|
| 252 |
+
'ArguAna': 'Given a claim, find documents that refute the claim',
|
| 253 |
+
'ClimateFEVER': 'Given a claim about climate change, retrieve documents that support or refute the claim',
|
| 254 |
+
'DBPedia': 'Given a query, retrieve relevant entity descriptions from DBPedia',
|
| 255 |
+
'FEVER': 'Given a claim, retrieve documents that support or refute the claim',
|
| 256 |
+
'FiQA2018': 'Given a financial question, retrieve user replies that best answer the question',
|
| 257 |
+
'HotpotQA': 'Given a multi-hop question, retrieve documents that can help answer the question',
|
| 258 |
+
'MSMARCO': 'Given a web search query, retrieve relevant passages that answer the query.',
|
| 259 |
+
'NFCorpus': 'Given a question, retrieve relevant documents that best answer the question',
|
| 260 |
+
'NQ': 'Given a question, retrieve Wikipedia passages that answer the question',
|
| 261 |
+
'QuoraRetrieval': 'Given a question, retrieve questions that are semantically equivalent to the given question',
|
| 262 |
+
'SCIDOCS': 'Given a scientific paper title, retrieve paper abstracts that are cited by the given paper',
|
| 263 |
+
'SciFact': 'Given a scientific claim, retrieve documents that support or refute the claim',
|
| 264 |
+
'Touche2020': 'Given a question, retrieve detailed and persuasive arguments that answer the question',
|
| 265 |
+
'TRECCOVID': 'Given a query on COVID-19, retrieve documents that answer the query',
|
| 266 |
+
# C-MTEB eval instructions
|
| 267 |
+
'T2Retrieval': 'Given a Chinese search query, retrieve web passages that answer the question',
|
| 268 |
+
'MMarcoRetrieval': 'Given a web search query, retrieve relevant passages that answer the query',
|
| 269 |
+
'DuRetrieval': 'Given a Chinese search query, retrieve web passages that answer the question',
|
| 270 |
+
'CovidRetrieval': 'Given a question on COVID-19, retrieve news articles that answer the question',
|
| 271 |
+
'CmedqaRetrieval': 'Given a Chinese community medical question, retrieve replies that best answer the question',
|
| 272 |
+
'EcomRetrieval': 'Given a user query from an e-commerce website, retrieve description sentences of relevant products',
|
| 273 |
+
'MedicalRetrieval': 'Given a medical question, retrieve user replies that best answer the question',
|
| 274 |
+
'VideoRetrieval': 'Given a video search query, retrieve the titles of relevant videos',
|
| 275 |
+
}
|
| 276 |
+
|
| 277 |
+
# add lower case keys to match some beir names
|
| 278 |
+
task_name_to_instruct.update({k.lower(): v for k, v in task_name_to_instruct.items()})
|
| 279 |
+
# other cases where lower case match still doesn't work
|
| 280 |
+
task_name_to_instruct['trec-covid'] = task_name_to_instruct['TRECCOVID']
|
| 281 |
+
task_name_to_instruct['climate-fever'] = task_name_to_instruct['ClimateFEVER']
|
| 282 |
+
task_name_to_instruct['dbpedia-entity'] = task_name_to_instruct['DBPedia']
|
| 283 |
+
task_name_to_instruct['webis-touche2020'] = task_name_to_instruct['Touche2020']
|
| 284 |
+
task_name_to_instruct['fiqa'] = task_name_to_instruct['FiQA2018']
|
| 285 |
+
task_name_to_instruct['quora'] = task_name_to_instruct['QuoraRetrieval']
|
| 286 |
+
|
| 287 |
+
# for miracl evaluation
|
| 288 |
+
task_name_to_instruct['miracl'] = 'Given a question, retrieve Wikipedia passages that answer the question'
|
| 289 |
+
|
| 290 |
+
return task_name_to_instruct[task_name]
|
| 291 |
+
|
| 292 |
+
raise ValueError(f"No instruction config for task {task_name} with type {task_type}")
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
def get_detailed_instruct(task_description: str) -> str:
|
| 296 |
+
if not task_description:
|
| 297 |
+
return ''
|
| 298 |
+
|
| 299 |
+
return 'Instruct: {}\nQuery: '.format(task_description)
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
if __name__ == "__main__":
|
| 303 |
+
print(len(MTEB_TASK_LIST))
|
scripts/evaluate_en_mteb/run_evaluate_mteb.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
# Please comment the following line of code according to the actual situation
|
| 3 |
+
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
|
| 4 |
+
|
| 5 |
+
import mteb
|
| 6 |
+
from model_for_evaluate import MTEB_Sentence_Transformer
|
| 7 |
+
|
| 8 |
+
if __name__ == "__main__":
|
| 9 |
+
model_name = "valid_jasper"
|
| 10 |
+
model = MTEB_Sentence_Transformer(
|
| 11 |
+
model_path_or_name="infgrad/jasper_en_vision_language_v1",
|
| 12 |
+
lang="en",
|
| 13 |
+
batch_size=27,
|
| 14 |
+
max_length=400,
|
| 15 |
+
)
|
| 16 |
+
tasks = list(mteb.get_benchmark("MTEB(eng, classic)"))
|
| 17 |
+
evaluation = mteb.MTEB(tasks=tasks)
|
| 18 |
+
evaluation.run(
|
| 19 |
+
model,
|
| 20 |
+
output_folder=f"./en_results/{model_name}",
|
| 21 |
+
overwrite_results=False,
|
| 22 |
+
verbosity=3
|
| 23 |
+
)
|
| 24 |
+
model.model.stop_multi_process_pool(model.pool)
|