Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -1,3 +1,44 @@ | |
| 1 | 
            -
            ---
         | 
| 2 | 
            -
             | 
| 3 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            language: en
         | 
| 3 | 
            +
            license: apache-2.0
         | 
| 4 | 
            +
            tags:
         | 
| 5 | 
            +
            - fashion
         | 
| 6 | 
            +
            - ecommerce
         | 
| 7 | 
            +
            - product-description
         | 
| 8 | 
            +
            - roman-urdu
         | 
| 9 | 
            +
            - watches
         | 
| 10 | 
            +
            - opalhours
         | 
| 11 | 
            +
            datasets:
         | 
| 12 | 
            +
            - nvidia/Llama-Nemotron-Post-Training-Dataset
         | 
| 13 | 
            +
            metrics:
         | 
| 14 | 
            +
            - accuracy
         | 
| 15 | 
            +
            base_model:
         | 
| 16 | 
            +
            - MuzammilKhosa/opalhours-ai
         | 
| 17 | 
            +
            new_version: deepseek-ai/DeepSeek-R1
         | 
| 18 | 
            +
            pipeline_tag: text-classification
         | 
| 19 | 
            +
            library_name: adapter-transformers
         | 
| 20 | 
            +
            ---
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            # OpalHours AI
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            **OpalHours AI** is a lightweight language model designed to assist with watch-related e-commerce content. It helps generate product descriptions, respond to customer queries, and maintain a consistent brand tone—especially for businesses communicating in both English and Roman Urdu.
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            ## Model Capabilities
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            - Create elegant product descriptions for wristwatches  
         | 
| 29 | 
            +
            - Generate quick replies for customer messages (WhatsApp-style)  
         | 
| 30 | 
            +
            - Suggest taglines, captions, and headlines  
         | 
| 31 | 
            +
            - Supports basic Roman Urdu generation (e.g., "yeh watch classy aur modern lagti hai")
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            ## Example Usage
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            ```python
         | 
| 36 | 
            +
            from transformers import AutoTokenizer, AutoModelForCausalLM
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            tokenizer = AutoTokenizer.from_pretrained("opalhours/opalhours-ai")
         | 
| 39 | 
            +
            model = AutoModelForCausalLM.from_pretrained("opalhours/opalhours-ai")
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            prompt = "Describe a minimal silver dial men's watch with a black leather strap."
         | 
| 42 | 
            +
            inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 43 | 
            +
            outputs = model.generate(**inputs, max_new_tokens=100)
         | 
| 44 | 
            +
            print(tokenizer.decode(outputs[0], skip_special_tokens=True))
         |