MuzammilKhosa commited on
Commit
600c09c
·
verified ·
1 Parent(s): 257305a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -3
README.md CHANGED
@@ -1,3 +1,44 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: apache-2.0
4
+ tags:
5
+ - fashion
6
+ - ecommerce
7
+ - product-description
8
+ - roman-urdu
9
+ - watches
10
+ - opalhours
11
+ datasets:
12
+ - nvidia/Llama-Nemotron-Post-Training-Dataset
13
+ metrics:
14
+ - accuracy
15
+ base_model:
16
+ - MuzammilKhosa/opalhours-ai
17
+ new_version: deepseek-ai/DeepSeek-R1
18
+ pipeline_tag: text-classification
19
+ library_name: adapter-transformers
20
+ ---
21
+
22
+ # OpalHours AI
23
+
24
+ **OpalHours AI** is a lightweight language model designed to assist with watch-related e-commerce content. It helps generate product descriptions, respond to customer queries, and maintain a consistent brand tone—especially for businesses communicating in both English and Roman Urdu.
25
+
26
+ ## Model Capabilities
27
+
28
+ - Create elegant product descriptions for wristwatches
29
+ - Generate quick replies for customer messages (WhatsApp-style)
30
+ - Suggest taglines, captions, and headlines
31
+ - Supports basic Roman Urdu generation (e.g., "yeh watch classy aur modern lagti hai")
32
+
33
+ ## Example Usage
34
+
35
+ ```python
36
+ from transformers import AutoTokenizer, AutoModelForCausalLM
37
+
38
+ tokenizer = AutoTokenizer.from_pretrained("opalhours/opalhours-ai")
39
+ model = AutoModelForCausalLM.from_pretrained("opalhours/opalhours-ai")
40
+
41
+ prompt = "Describe a minimal silver dial men's watch with a black leather strap."
42
+ inputs = tokenizer(prompt, return_tensors="pt")
43
+ outputs = model.generate(**inputs, max_new_tokens=100)
44
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))