update mlx-deploy-guide
Browse files- README.md +5 -74
- docs/mlx_deploy_guide.md +73 -0
README.md
CHANGED
|
@@ -167,80 +167,6 @@ We look forward to your feedback and to collaborating with developers and resear
|
|
| 167 |
|
| 168 |
Download the model from HuggingFace repository: https://huggingface.co/MiniMaxAI/MiniMax-M2. We recommend using the following inference frameworks (listed alphabetically) to serve the model:
|
| 169 |
|
| 170 |
-
Here's an improved, polished, and professional version of your documentation with better structure, clarity, grammar, accuracy, and usability:
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
### MLX
|
| 174 |
-
|
| 175 |
-
Run, serve, and fine-tune **MiniMax-M2** locally on your Mac using the **MLX** framework. This guide gets you up and running quickly.
|
| 176 |
-
|
| 177 |
-
> **Requirements**
|
| 178 |
-
> - Apple Silicon Mac (M3 Ultra or later)
|
| 179 |
-
> - **At least 256GB of unified memory (RAM)**
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
**Installation**
|
| 183 |
-
|
| 184 |
-
Install the `mlx-lm` package via pip:
|
| 185 |
-
|
| 186 |
-
```bash
|
| 187 |
-
pip install mlx-lm
|
| 188 |
-
```
|
| 189 |
-
|
| 190 |
-
**CLI**
|
| 191 |
-
|
| 192 |
-
Generate text directly from the terminal:
|
| 193 |
-
|
| 194 |
-
```bash
|
| 195 |
-
mlx_lm.generate \
|
| 196 |
-
--model mlx-community/MiniMax-M2-4bit \
|
| 197 |
-
--prompt "How tall is Mount Everest?"
|
| 198 |
-
```
|
| 199 |
-
|
| 200 |
-
> Add `--max-tokens 256` to control response length, or `--temp 0.7` for creativity.
|
| 201 |
-
|
| 202 |
-
**Python Script Example**
|
| 203 |
-
|
| 204 |
-
Use `mlx-lm` in your own Python scripts:
|
| 205 |
-
|
| 206 |
-
```python
|
| 207 |
-
from mlx_lm import load, generate
|
| 208 |
-
|
| 209 |
-
# Load the quantized model
|
| 210 |
-
model, tokenizer = load("mlx-community/MiniMax-M2-4bit")
|
| 211 |
-
|
| 212 |
-
prompt = "Hello, how are you?"
|
| 213 |
-
|
| 214 |
-
# Apply chat template if available (recommended for chat models)
|
| 215 |
-
if tokenizer.chat_template is not None:
|
| 216 |
-
messages = [{"role": "user", "content": prompt}]
|
| 217 |
-
prompt = tokenizer.apply_chat_template(
|
| 218 |
-
messages,
|
| 219 |
-
tokenize=False,
|
| 220 |
-
add_generation_prompt=True
|
| 221 |
-
)
|
| 222 |
-
|
| 223 |
-
# Generate response
|
| 224 |
-
response = generate(
|
| 225 |
-
model,
|
| 226 |
-
tokenizer,
|
| 227 |
-
prompt=prompt,
|
| 228 |
-
max_tokens=256,
|
| 229 |
-
temp=0.7,
|
| 230 |
-
verbose=True
|
| 231 |
-
)
|
| 232 |
-
|
| 233 |
-
print(response)
|
| 234 |
-
```
|
| 235 |
-
|
| 236 |
-
**Tips**
|
| 237 |
-
- **Model variants**: Check [Hugging Face](https://huggingface.co/collections/mlx-community/minimax-m2) for `MiniMax-M2-4bit`, `6bit`, `8bit`, or `bfloat16` versions.
|
| 238 |
-
- **Fine-tuning**: Use `mlx-lm.lora` for efficient parameter-efficient fine-tuning (PEFT).
|
| 239 |
-
|
| 240 |
-
**Resources**
|
| 241 |
-
- GitHub: [https://github.com/ml-explore/mlx-lm](https://github.com/ml-explore/mlx-lm)
|
| 242 |
-
- Models: [https://huggingface.co/mlx-community](https://huggingface.co/mlx-community)
|
| 243 |
-
|
| 244 |
### SGLang
|
| 245 |
|
| 246 |
We recommend using [SGLang](https://docs.sglang.ai/) to serve MiniMax-M2. SGLang provides solid day-0 support for MiniMax-M2 model. Please refer to our [SGLang Deployment Guide](https://huggingface.co/MiniMaxAI/MiniMax-M2/blob/main/docs/sglang_deploy_guide.md) for more details, and thanks so much for our collaboration with the SGLang team.
|
|
@@ -249,6 +175,11 @@ We recommend using [SGLang](https://docs.sglang.ai/) to serve MiniMax-M2. SGLang
|
|
| 249 |
|
| 250 |
We recommend using [vLLM](https://docs.vllm.ai/en/stable/) to serve MiniMax-M2. vLLM provides efficient day-0 support of MiniMax-M2 model, check https://docs.vllm.ai/projects/recipes/en/latest/MiniMax/MiniMax-M2.html for latest deployment guide. We also provide our [vLLM Deployment Guide](https://huggingface.co/MiniMaxAI/MiniMax-M2/blob/main/docs/vllm_deploy_guide.md).
|
| 251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
### Inference Parameters
|
| 253 |
We recommend using the following parameters for best performance: `temperature=1.0`, `top_p = 0.95`, `top_k = 40`.
|
| 254 |
|
|
|
|
| 167 |
|
| 168 |
Download the model from HuggingFace repository: https://huggingface.co/MiniMaxAI/MiniMax-M2. We recommend using the following inference frameworks (listed alphabetically) to serve the model:
|
| 169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
### SGLang
|
| 171 |
|
| 172 |
We recommend using [SGLang](https://docs.sglang.ai/) to serve MiniMax-M2. SGLang provides solid day-0 support for MiniMax-M2 model. Please refer to our [SGLang Deployment Guide](https://huggingface.co/MiniMaxAI/MiniMax-M2/blob/main/docs/sglang_deploy_guide.md) for more details, and thanks so much for our collaboration with the SGLang team.
|
|
|
|
| 175 |
|
| 176 |
We recommend using [vLLM](https://docs.vllm.ai/en/stable/) to serve MiniMax-M2. vLLM provides efficient day-0 support of MiniMax-M2 model, check https://docs.vllm.ai/projects/recipes/en/latest/MiniMax/MiniMax-M2.html for latest deployment guide. We also provide our [vLLM Deployment Guide](https://huggingface.co/MiniMaxAI/MiniMax-M2/blob/main/docs/vllm_deploy_guide.md).
|
| 177 |
|
| 178 |
+
### MLX
|
| 179 |
+
|
| 180 |
+
We recommend using [MLX-LM](https://github.com/ml-explore/mlx-lm) to serve MiniMax-M2. Please refer to our [MLX Deployment Guide](https://huggingface.co/MiniMaxAI/MiniMax-M2/blob/main/docs/mlx_deploy_guide.md) for more details.
|
| 181 |
+
|
| 182 |
+
|
| 183 |
### Inference Parameters
|
| 184 |
We recommend using the following parameters for best performance: `temperature=1.0`, `top_p = 0.95`, `top_k = 40`.
|
| 185 |
|
docs/mlx_deploy_guide.md
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Here's an improved, polished, and professional version of your documentation with better structure, clarity, grammar, accuracy, and usability:
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
### MLX
|
| 5 |
+
|
| 6 |
+
Run, serve, and fine-tune [**MiniMax-M2**](https://huggingface.co/MiniMaxAI/MiniMax-M2) locally on your Mac using the **MLX** framework. This guide gets you up and running quickly.
|
| 7 |
+
|
| 8 |
+
> **Requirements**
|
| 9 |
+
> - Apple Silicon Mac (M3 Ultra or later)
|
| 10 |
+
> - **At least 256GB of unified memory (RAM)**
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
**Installation**
|
| 14 |
+
|
| 15 |
+
Install the `mlx-lm` package via pip:
|
| 16 |
+
|
| 17 |
+
```bash
|
| 18 |
+
pip install mlx-lm
|
| 19 |
+
```
|
| 20 |
+
|
| 21 |
+
**CLI**
|
| 22 |
+
|
| 23 |
+
Generate text directly from the terminal:
|
| 24 |
+
|
| 25 |
+
```bash
|
| 26 |
+
mlx_lm.generate \
|
| 27 |
+
--model mlx-community/MiniMax-M2-4bit \
|
| 28 |
+
--prompt "How tall is Mount Everest?"
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
> Add `--max-tokens 256` to control response length, or `--temp 0.7` for creativity.
|
| 32 |
+
|
| 33 |
+
**Python Script Example**
|
| 34 |
+
|
| 35 |
+
Use `mlx-lm` in your own Python scripts:
|
| 36 |
+
|
| 37 |
+
```python
|
| 38 |
+
from mlx_lm import load, generate
|
| 39 |
+
|
| 40 |
+
# Load the quantized model
|
| 41 |
+
model, tokenizer = load("mlx-community/MiniMax-M2-4bit")
|
| 42 |
+
|
| 43 |
+
prompt = "Hello, how are you?"
|
| 44 |
+
|
| 45 |
+
# Apply chat template if available (recommended for chat models)
|
| 46 |
+
if tokenizer.chat_template is not None:
|
| 47 |
+
messages = [{"role": "user", "content": prompt}]
|
| 48 |
+
prompt = tokenizer.apply_chat_template(
|
| 49 |
+
messages,
|
| 50 |
+
tokenize=False,
|
| 51 |
+
add_generation_prompt=True
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
# Generate response
|
| 55 |
+
response = generate(
|
| 56 |
+
model,
|
| 57 |
+
tokenizer,
|
| 58 |
+
prompt=prompt,
|
| 59 |
+
max_tokens=256,
|
| 60 |
+
temp=0.7,
|
| 61 |
+
verbose=True
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
print(response)
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
**Tips**
|
| 68 |
+
- **Model variants**: Check [Hugging Face](https://huggingface.co/collections/mlx-community/minimax-m2) for `MiniMax-M2-4bit`, `6bit`, `8bit`, or `bfloat16` versions.
|
| 69 |
+
- **Fine-tuning**: Use `mlx-lm.lora` for efficient parameter-efficient fine-tuning (PEFT).
|
| 70 |
+
|
| 71 |
+
**Resources**
|
| 72 |
+
- GitHub: [https://github.com/ml-explore/mlx-lm](https://github.com/ml-explore/mlx-lm)
|
| 73 |
+
- Models: [https://huggingface.co/mlx-community](https://huggingface.co/mlx-community)
|