Add pipeline tag and library name (#1)
Browse files- Add pipeline tag and library name (4c75624ee4274fa8463895bd117242f5cbf89a8e)
Co-authored-by: Niels Rogge <[email protected]>
    	
        README.md
    CHANGED
    
    | @@ -1,8 +1,10 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
            -
            license: apache-2.0
         | 
| 3 | 
             
            datasets:
         | 
| 4 | 
             
            - HuggingFaceFW/fineweb-edu
         | 
| 5 | 
             
            - yahma/alpaca-cleaned
         | 
|  | |
|  | |
|  | |
| 6 | 
             
            ---
         | 
| 7 |  | 
| 8 | 
             
            # DMaS-LLaMa-Lite-step-43.5k-instruct
         | 
| @@ -53,7 +55,10 @@ tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| 53 | 
             
            model = AutoModelForCausalLM.from_pretrained(model_name)
         | 
| 54 |  | 
| 55 | 
             
            # Define the prompt in Vicuna 1.1 format
         | 
| 56 | 
            -
            prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions | 
|  | |
|  | |
|  | |
| 57 | 
             
            inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 58 | 
             
            outputs = model.generate(**inputs, max_length=100)
         | 
| 59 |  | 
|  | |
| 1 | 
             
            ---
         | 
|  | |
| 2 | 
             
            datasets:
         | 
| 3 | 
             
            - HuggingFaceFW/fineweb-edu
         | 
| 4 | 
             
            - yahma/alpaca-cleaned
         | 
| 5 | 
            +
            license: apache-2.0
         | 
| 6 | 
            +
            pipeline_tag: text-generation
         | 
| 7 | 
            +
            library_name: transformers
         | 
| 8 | 
             
            ---
         | 
| 9 |  | 
| 10 | 
             
            # DMaS-LLaMa-Lite-step-43.5k-instruct
         | 
|  | |
| 55 | 
             
            model = AutoModelForCausalLM.from_pretrained(model_name)
         | 
| 56 |  | 
| 57 | 
             
            # Define the prompt in Vicuna 1.1 format
         | 
| 58 | 
            +
            prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            USER: What are the Pyramids of Giza known for?
         | 
| 61 | 
            +
            ASSISTANT:"
         | 
| 62 | 
             
            inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 63 | 
             
            outputs = model.generate(**inputs, max_length=100)
         | 
| 64 |  | 

