Maykeye
commited on
Commit
·
4d5aebb
1
Parent(s):
61e27ee
Initial commit
Browse files- README.md +28 -0
- backup/do_backup.py +21 -0
- backup/step-1-10300.bin +3 -0
- config.json +22 -0
- demo.py +15 -0
- generation_config.json +7 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +31 -0
- train.ipynb +777 -0
- valid.py +52 -0
README.md
CHANGED
|
@@ -1,3 +1,31 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
| 4 |
+
This is a first version of recreating roneneldan/TinyStories-1M but using Llama architecture.
|
| 5 |
+
|
| 6 |
+
* Full training process is included in the notebook train.ipynb. Recreating it as simple as downloading
|
| 7 |
+
TinyStoriesV2-GPT4-train.txt and TinyStoriesV2-GPT4-valid.txt in the same folder with the notebook and running
|
| 8 |
+
the cells. Validation content is not used by the script so you put anythin in
|
| 9 |
+
|
| 10 |
+
* Backup directory has a script do_backup that I used to copy weights from remote machine to local.
|
| 11 |
+
Weight are generated too quickly, so by the time script copied weihgt N+1
|
| 12 |
+
|
| 13 |
+
* This is extremely PoC version. Training truncates stories that are longer than context size and doesn't use
|
| 14 |
+
any sliding window to train story not from the start
|
| 15 |
+
|
| 16 |
+
* Training took approximately 9 hours (3 hours per epoch) on 40GB A100. ~30GB VRAM was used
|
| 17 |
+
|
| 18 |
+
* I use tokenizer from open_llama_3b. However I had troubles with it locally(https://github.com/openlm-research/open_llama/issues/69).
|
| 19 |
+
I had no troubles on the cloud machine with preninstalled libraries.
|
| 20 |
+
|
| 21 |
+
* Demo script is demo.py
|
| 22 |
+
|
| 23 |
+
* Validation script is provided: valid.py. use it like `python valid.py path/to/TinyStoriesV2-GPT4-valid.txt [optional-model-id-or-path]`:
|
| 24 |
+
After training I decided that it's not necessary to beat validation into chunks
|
| 25 |
+
|
| 26 |
+
* Also this version uses very stupid caching mechinsm to shuffle stories for training: it keeps cache of N recently loaded chunks
|
| 27 |
+
so if random shuffle asks for a story, it may use cache or load chunk.
|
| 28 |
+
Training dataset is too small, so in next versions I will get rid of it.
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
backup/do_backup.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import shutil
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
import time
|
| 4 |
+
|
| 5 |
+
copied = []
|
| 6 |
+
while True:
|
| 7 |
+
existing = [x.name for x in Path(".").glob("*.bin")]
|
| 8 |
+
copy_from = [x for x in Path("/home/fella/mnt/selectel/tiny-llama/").glob("*.bin")]
|
| 9 |
+
for file in copy_from:
|
| 10 |
+
if file.name not in existing:
|
| 11 |
+
print(file)
|
| 12 |
+
try:
|
| 13 |
+
shutil.copy(file, file.name)
|
| 14 |
+
copied.append(file.name)
|
| 15 |
+
if len(copied) > 6:
|
| 16 |
+
delete_me = copied.pop(0)
|
| 17 |
+
Path(delete_me).unlink()
|
| 18 |
+
except Exception as e:
|
| 19 |
+
print(f"Skipping {file.name}: {e}")
|
| 20 |
+
pass
|
| 21 |
+
time.sleep(15)
|
backup/step-1-10300.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b6ec1c440a393eb0cce4c215de321efa232fb77a549cc85bd98e64a635ca28d9
|
| 3 |
+
size 9275989
|
config.json
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"LlamaForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"bos_token_id": 1,
|
| 6 |
+
"eos_token_id": 2,
|
| 7 |
+
"hidden_act": "silu",
|
| 8 |
+
"hidden_size": 64,
|
| 9 |
+
"initializer_range": 0.02,
|
| 10 |
+
"intermediate_size": 256,
|
| 11 |
+
"max_position_embeddings": 2048,
|
| 12 |
+
"model_type": "llama",
|
| 13 |
+
"num_attention_heads": 16,
|
| 14 |
+
"num_hidden_layers": 8,
|
| 15 |
+
"pad_token_id": 0,
|
| 16 |
+
"rms_norm_eps": 1e-06,
|
| 17 |
+
"tie_word_embeddings": false,
|
| 18 |
+
"torch_dtype": "bfloat16",
|
| 19 |
+
"transformers_version": "4.30.2",
|
| 20 |
+
"use_cache": true,
|
| 21 |
+
"vocab_size": 32000
|
| 22 |
+
}
|
demo.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
+
import sys
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
model_id = os.getcwd()
|
| 6 |
+
if len(sys.argv) > 1:
|
| 7 |
+
model_id = sys.argv[1]
|
| 8 |
+
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(model_id).cuda().bfloat16()
|
| 11 |
+
prompt = "Lily picked up a flower."
|
| 12 |
+
inputs = tokenizer(prompt, return_tensors="pt", return_token_type_ids=False).to('cuda')
|
| 13 |
+
out = model.generate(**inputs, max_new_tokens=80).ravel()
|
| 14 |
+
out = tokenizer.decode(out)
|
| 15 |
+
print(out)
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"pad_token_id": 0,
|
| 6 |
+
"transformers_version": "4.30.2"
|
| 7 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ae959aaff509d66f9dd85c53f16481463286950a21e0349c7793f8412fc4a094
|
| 3 |
+
size 9269994
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": true,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": true,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"unk_token": {
|
| 17 |
+
"content": "<unk>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": true,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
}
|
| 23 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ab1b681ec7fc02fed5edd3026687d7a692a918c4dd8e150ca2e3994a6229843b
|
| 3 |
+
size 534194
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"__type": "AddedToken",
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": true,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false
|
| 9 |
+
},
|
| 10 |
+
"clean_up_tokenization_spaces": false,
|
| 11 |
+
"eos_token": {
|
| 12 |
+
"__type": "AddedToken",
|
| 13 |
+
"content": "</s>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": true,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false
|
| 18 |
+
},
|
| 19 |
+
"model_max_length": 2048,
|
| 20 |
+
"pad_token": null,
|
| 21 |
+
"sp_model_kwargs": {},
|
| 22 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"__type": "AddedToken",
|
| 25 |
+
"content": "<unk>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": true,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
train.ipynb
ADDED
|
@@ -0,0 +1,777 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "f41486ad",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [
|
| 9 |
+
{
|
| 10 |
+
"name": "stdout",
|
| 11 |
+
"output_type": "stream",
|
| 12 |
+
"text": [
|
| 13 |
+
"NVIDIA A100-PCIE-40GB\n"
|
| 14 |
+
]
|
| 15 |
+
}
|
| 16 |
+
],
|
| 17 |
+
"source": [
|
| 18 |
+
"# step 0. Preliminary\n",
|
| 19 |
+
"import torch\n",
|
| 20 |
+
"# check that cuda doesn't crash on us\n",
|
| 21 |
+
"print(torch.cuda.get_device_name())\n",
|
| 22 |
+
"# check that transformers installed\n",
|
| 23 |
+
"import transformers"
|
| 24 |
+
]
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"cell_type": "code",
|
| 28 |
+
"execution_count": 2,
|
| 29 |
+
"id": "ffd19cfb",
|
| 30 |
+
"metadata": {},
|
| 31 |
+
"outputs": [],
|
| 32 |
+
"source": [
|
| 33 |
+
"EPOCHS=3"
|
| 34 |
+
]
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"cell_type": "code",
|
| 38 |
+
"execution_count": 3,
|
| 39 |
+
"id": "3a91ef1f",
|
| 40 |
+
"metadata": {},
|
| 41 |
+
"outputs": [],
|
| 42 |
+
"source": [
|
| 43 |
+
"# Step 1. Preparing the training\n",
|
| 44 |
+
"# First ensure that required files are here\n",
|
| 45 |
+
"from pathlib import Path\n",
|
| 46 |
+
"assert Path(\"TinyStoriesV2-GPT4-train.txt\").exists()\n",
|
| 47 |
+
"assert Path(\"TinyStoriesV2-GPT4-valid.txt\").exists()"
|
| 48 |
+
]
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"cell_type": "code",
|
| 52 |
+
"execution_count": 4,
|
| 53 |
+
"id": "56b046d5",
|
| 54 |
+
"metadata": {},
|
| 55 |
+
"outputs": [],
|
| 56 |
+
"source": [
|
| 57 |
+
"# Then prepare directories\n",
|
| 58 |
+
"Path(\"chunks.txt/train\").mkdir(parents=True, exist_ok=True)\n",
|
| 59 |
+
"Path(\"chunks.tensors/train\").mkdir(parents=True, exist_ok=True)\n",
|
| 60 |
+
"Path(\"chunks.txt/valid\").mkdir(parents=True, exist_ok=True)\n",
|
| 61 |
+
"Path(\"chunks.tensors/valid\").mkdir(parents=True, exist_ok=True)"
|
| 62 |
+
]
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"cell_type": "code",
|
| 66 |
+
"execution_count": 5,
|
| 67 |
+
"id": "1bddb2ee",
|
| 68 |
+
"metadata": {},
|
| 69 |
+
"outputs": [],
|
| 70 |
+
"source": [
|
| 71 |
+
"# Then prepare method to split one text to several\n",
|
| 72 |
+
"from multiprocessing.pool import Pool\n",
|
| 73 |
+
"from tqdm.contrib.concurrent import process_map\n",
|
| 74 |
+
"import os\n",
|
| 75 |
+
"_chunk_me = None\n",
|
| 76 |
+
"def extract_chunk(chunk):\n",
|
| 77 |
+
" split, i, chunk_from, chunk_to = chunk\n",
|
| 78 |
+
" chunk = _chunk_me[chunk_from:chunk_to].strip() \n",
|
| 79 |
+
" name = f\"chunks.txt/{split}/chunk-{i+1}.txt\"\n",
|
| 80 |
+
" with open(name, \"w\") as f:\n",
|
| 81 |
+
" f.write(chunk)\n",
|
| 82 |
+
" return name\n",
|
| 83 |
+
"\n",
|
| 84 |
+
"def split_to_text_chunks(split:str, chunk_size = 16*1024*1024, max_workers=None):\n",
|
| 85 |
+
" global _chunk_me #text is too chunky to pass as argument. storing as global so fork() can take care of it\n",
|
| 86 |
+
" print(f\"reading {split}\")\n",
|
| 87 |
+
" text = _chunk_me = Path(f\"./TinyStoriesV2-GPT4-{split}.txt\").read_text()\n",
|
| 88 |
+
" offsets = [] \n",
|
| 89 |
+
" delimiter = \"<|endoftext|>\"\n",
|
| 90 |
+
" i=0\n",
|
| 91 |
+
" while i < len(text): \n",
|
| 92 |
+
" offsets.append(i)\n",
|
| 93 |
+
" i += chunk_size\n",
|
| 94 |
+
" i = text.find(delimiter, i)\n",
|
| 95 |
+
" if i < 0:\n",
|
| 96 |
+
" break\n",
|
| 97 |
+
" i += len(delimiter)\n",
|
| 98 |
+
" offsets.append(len(text))\n",
|
| 99 |
+
" chunks = [(split, i, start,end) for (i, (start, end)) in enumerate(zip(offsets[:-1], offsets[1:]))]\n",
|
| 100 |
+
" \n",
|
| 101 |
+
" print(\"writing\")\n",
|
| 102 |
+
" process_map(extract_chunk, chunks, max_workers=max_workers)\n",
|
| 103 |
+
" "
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"cell_type": "code",
|
| 108 |
+
"execution_count": 7,
|
| 109 |
+
"id": "e60017ee",
|
| 110 |
+
"metadata": {},
|
| 111 |
+
"outputs": [
|
| 112 |
+
{
|
| 113 |
+
"name": "stdout",
|
| 114 |
+
"output_type": "stream",
|
| 115 |
+
"text": [
|
| 116 |
+
"Assuming split has finished already\n"
|
| 117 |
+
]
|
| 118 |
+
}
|
| 119 |
+
],
|
| 120 |
+
"source": [
|
| 121 |
+
"# Prepare text of train split\n",
|
| 122 |
+
"if not Path(\"chunks.txt/train/chunk-133.txt\").exists():\n",
|
| 123 |
+
" split_to_text_chunks(\"train\")\n",
|
| 124 |
+
"else:\n",
|
| 125 |
+
" print(\"Assuming split has finished already\")"
|
| 126 |
+
]
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"cell_type": "code",
|
| 130 |
+
"execution_count": 9,
|
| 131 |
+
"id": "e9b7effe",
|
| 132 |
+
"metadata": {},
|
| 133 |
+
"outputs": [
|
| 134 |
+
{
|
| 135 |
+
"name": "stdout",
|
| 136 |
+
"output_type": "stream",
|
| 137 |
+
"text": [
|
| 138 |
+
"Assuming split has finished already\n"
|
| 139 |
+
]
|
| 140 |
+
}
|
| 141 |
+
],
|
| 142 |
+
"source": [
|
| 143 |
+
"# Prepare text of valid split\n",
|
| 144 |
+
"if not Path(\"chunks.txt/valid/chunk-2.txt\").exists():\n",
|
| 145 |
+
" split_to_text_chunks(\"valid\") \n",
|
| 146 |
+
"else:\n",
|
| 147 |
+
" print(\"Assuming split has finished already\")"
|
| 148 |
+
]
|
| 149 |
+
},
|
| 150 |
+
{
|
| 151 |
+
"cell_type": "code",
|
| 152 |
+
"execution_count": 10,
|
| 153 |
+
"id": "b4706f24",
|
| 154 |
+
"metadata": {},
|
| 155 |
+
"outputs": [],
|
| 156 |
+
"source": [
|
| 157 |
+
"# Step 2. Prepare OpenLLAMA tokenizer. \n",
|
| 158 |
+
"#Needed to be done once(TODO: add code to load tokenizer?)\n",
|
| 159 |
+
"from transformers import AutoTokenizer\n",
|
| 160 |
+
"import os\n",
|
| 161 |
+
"if not Path('tokenizer.json').exists(): \n",
|
| 162 |
+
" try:\n",
|
| 163 |
+
" tokenizer = AutoTokenizer.from_pretrained(\"openlm-research/open_llama_3b\")\n",
|
| 164 |
+
" except:\n",
|
| 165 |
+
" os.environ[\"PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION\"]=\"python\" \n",
|
| 166 |
+
" tokenizer = AutoTokenizer.from_pretrained(\"openlm-research/open_llama_3b\")\n",
|
| 167 |
+
" tokenizer.save_pretrained(\".\")\n",
|
| 168 |
+
" del os.environ[\"PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION\"]\n",
|
| 169 |
+
"tokenizer = AutoTokenizer.from_pretrained(\".\")"
|
| 170 |
+
]
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"cell_type": "code",
|
| 174 |
+
"execution_count": 11,
|
| 175 |
+
"id": "f9c935b0",
|
| 176 |
+
"metadata": {},
|
| 177 |
+
"outputs": [],
|
| 178 |
+
"source": [
|
| 179 |
+
"# Step 3. Preparing to tokenize each text chunk\n",
|
| 180 |
+
"from tqdm.contrib.concurrent import process_map\n",
|
| 181 |
+
"def tokenize_file(filename:Path):\n",
|
| 182 |
+
" text = Path.read_text(filename)\n",
|
| 183 |
+
" stories = text.split(\"<|endoftext|>\")\n",
|
| 184 |
+
" result = []\n",
|
| 185 |
+
" while stories:\n",
|
| 186 |
+
" story = stories.pop(0).strip()\n",
|
| 187 |
+
" tokenized = tokenizer(story, max_length=None).input_ids\n",
|
| 188 |
+
" tokenized.append(tokenizer.eos_token_id)\n",
|
| 189 |
+
" result.append(torch.tensor(tokenized))\n",
|
| 190 |
+
" output_name = str(filename).replace(\".txt\", \".tensors\")\n",
|
| 191 |
+
" torch.save(result, output_name)\n",
|
| 192 |
+
"\n",
|
| 193 |
+
"def tokenize_split(split, max_workers=None):\n",
|
| 194 |
+
" to_process = list(Path(f\"chunks.txt/{split}\").glob(\"*\")) \n",
|
| 195 |
+
" process_map(tokenize_file, to_process, max_workers=max_workers)\n",
|
| 196 |
+
" "
|
| 197 |
+
]
|
| 198 |
+
},
|
| 199 |
+
{
|
| 200 |
+
"cell_type": "code",
|
| 201 |
+
"execution_count": 12,
|
| 202 |
+
"id": "95257f12",
|
| 203 |
+
"metadata": {},
|
| 204 |
+
"outputs": [
|
| 205 |
+
{
|
| 206 |
+
"name": "stdout",
|
| 207 |
+
"output_type": "stream",
|
| 208 |
+
"text": [
|
| 209 |
+
"Assuming train was tokenized already\n"
|
| 210 |
+
]
|
| 211 |
+
}
|
| 212 |
+
],
|
| 213 |
+
"source": [
|
| 214 |
+
"# processing train(this can take several minutes)\n",
|
| 215 |
+
"if not Path(\"chunks.tensors/train/chunk-133.tensors\").exists():\n",
|
| 216 |
+
" tokenize_split(\"train\")\n",
|
| 217 |
+
"else:\n",
|
| 218 |
+
" print(\"Assuming train was tokenized already\")"
|
| 219 |
+
]
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"cell_type": "code",
|
| 223 |
+
"execution_count": 13,
|
| 224 |
+
"id": "bbbe4599",
|
| 225 |
+
"metadata": {},
|
| 226 |
+
"outputs": [
|
| 227 |
+
{
|
| 228 |
+
"name": "stdout",
|
| 229 |
+
"output_type": "stream",
|
| 230 |
+
"text": [
|
| 231 |
+
"Assuming valid was tokenized already\n"
|
| 232 |
+
]
|
| 233 |
+
}
|
| 234 |
+
],
|
| 235 |
+
"source": [
|
| 236 |
+
"# processing valid(this can take one minutes)\n",
|
| 237 |
+
"if not Path(\"chunks.tensors/valid/chunk-2.tensors\").exists():\n",
|
| 238 |
+
" tokenize_split(\"valid\")\n",
|
| 239 |
+
"else:\n",
|
| 240 |
+
" print(\"Assuming valid was tokenized already\")"
|
| 241 |
+
]
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"cell_type": "code",
|
| 245 |
+
"execution_count": 14,
|
| 246 |
+
"id": "a31a4aa7",
|
| 247 |
+
"metadata": {},
|
| 248 |
+
"outputs": [
|
| 249 |
+
{
|
| 250 |
+
"name": "stdout",
|
| 251 |
+
"output_type": "stream",
|
| 252 |
+
"text": [
|
| 253 |
+
"Resetting [PAD] to [EOS]\n"
|
| 254 |
+
]
|
| 255 |
+
}
|
| 256 |
+
],
|
| 257 |
+
"source": [
|
| 258 |
+
"# Step 4. Training. \n",
|
| 259 |
+
"# Step 4.1 Preparing tokenizer and setting pad token if it is not set(it is not set)\n",
|
| 260 |
+
"tokenizer = AutoTokenizer.from_pretrained(\".\")\n",
|
| 261 |
+
"if not tokenizer.pad_token_id:\n",
|
| 262 |
+
" tokenizer.pad_token_id = tokenizer.eos_token_id\n",
|
| 263 |
+
" print(\"Resetting [PAD] to [EOS]\")"
|
| 264 |
+
]
|
| 265 |
+
},
|
| 266 |
+
{
|
| 267 |
+
"cell_type": "code",
|
| 268 |
+
"execution_count": 18,
|
| 269 |
+
"id": "f677c9c0",
|
| 270 |
+
"metadata": {
|
| 271 |
+
"scrolled": true
|
| 272 |
+
},
|
| 273 |
+
"outputs": [],
|
| 274 |
+
"source": [
|
| 275 |
+
"# Step 4.2. Preparing model\n",
|
| 276 |
+
"from transformers.models.llama.modeling_llama import LlamaConfig, LlamaForCausalLM\n",
|
| 277 |
+
"\n",
|
| 278 |
+
"tiny_llama = LlamaConfig(\n",
|
| 279 |
+
" hidden_size=64, \n",
|
| 280 |
+
" vocab_size=tokenizer.vocab_size,\n",
|
| 281 |
+
" intermediate_size=256, \n",
|
| 282 |
+
" num_attention_heads=16, \n",
|
| 283 |
+
" num_hidden_layers=8)\n",
|
| 284 |
+
"\n",
|
| 285 |
+
"torch.manual_seed(11010)\n",
|
| 286 |
+
"torch.cuda.manual_seed(11010)\n",
|
| 287 |
+
"model = LlamaForCausalLM(tiny_llama).cuda().bfloat16()"
|
| 288 |
+
]
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"cell_type": "code",
|
| 292 |
+
"execution_count": 16,
|
| 293 |
+
"id": "aad9620b",
|
| 294 |
+
"metadata": {},
|
| 295 |
+
"outputs": [],
|
| 296 |
+
"source": [
|
| 297 |
+
"import functools\n",
|
| 298 |
+
"import torch.nn.functional as F\n",
|
| 299 |
+
"from tqdm.contrib.concurrent import process_map\n",
|
| 300 |
+
"from tqdm.auto import tqdm\n",
|
| 301 |
+
"\n",
|
| 302 |
+
"# Step 4.3 Preparing dataset class\n",
|
| 303 |
+
"def get_file_data_len(filename):\n",
|
| 304 |
+
" data = torch.load(filename)\n",
|
| 305 |
+
" return (filename, len(data))\n",
|
| 306 |
+
"from datasets import Dataset\n",
|
| 307 |
+
"\n",
|
| 308 |
+
"CACHE_SIZE = 2000 # There are ~150 train splits. We can fit them in memory, so let's do it\n",
|
| 309 |
+
"\n",
|
| 310 |
+
"class TinyDataset(Dataset):\n",
|
| 311 |
+
" def __init__(self, split: str, populate_cache=True):\n",
|
| 312 |
+
" print(f\"Reading dataset {split} data\")\n",
|
| 313 |
+
" self.file_lens = process_map(\n",
|
| 314 |
+
" get_file_data_len,\n",
|
| 315 |
+
" list(Path(f\"chunks.tensors/{split}\").glob(\"*\")))\n",
|
| 316 |
+
" self.file_lens.sort()\n",
|
| 317 |
+
" if populate_cache:\n",
|
| 318 |
+
" print(\"Populating a cache\")\n",
|
| 319 |
+
" for filename, _ in tqdm(self.file_lens):\n",
|
| 320 |
+
" self.load_tensor_file(filename)\n",
|
| 321 |
+
"\n",
|
| 322 |
+
" @functools.lru_cache(maxsize=CACHE_SIZE)\n",
|
| 323 |
+
" def load_tensor_file(self, filename):\n",
|
| 324 |
+
" return torch.load(filename)\n",
|
| 325 |
+
"\n",
|
| 326 |
+
" def __len__(self):\n",
|
| 327 |
+
" return sum(x[1] for x in self.file_lens)\n",
|
| 328 |
+
"\n",
|
| 329 |
+
" def global_index_to_local(self, i):\n",
|
| 330 |
+
" for (file, length) in self.file_lens:\n",
|
| 331 |
+
" if i < length:\n",
|
| 332 |
+
" return (file, i)\n",
|
| 333 |
+
" i -= length\n",
|
| 334 |
+
" raise IndexError(f\"{i} is out-of-bonds, have {len(self)} sample\")\n",
|
| 335 |
+
"\n",
|
| 336 |
+
" def __getitem__(self, index):\n",
|
| 337 |
+
" if torch.is_tensor(index):\n",
|
| 338 |
+
" index = index.tolist()\n",
|
| 339 |
+
" if isinstance(index, int):\n",
|
| 340 |
+
" filename, local_index = self.global_index_to_local(index)\n",
|
| 341 |
+
" tensors = self.load_tensor_file(filename)\n",
|
| 342 |
+
" return {\n",
|
| 343 |
+
" 'input_ids': tensors[local_index]\n",
|
| 344 |
+
" }\n",
|
| 345 |
+
" if isinstance(index, list):\n",
|
| 346 |
+
" data = []\n",
|
| 347 |
+
" indices = index\n",
|
| 348 |
+
" for index in indices:\n",
|
| 349 |
+
" filename, local_index = self.global_index_to_local(index)\n",
|
| 350 |
+
" tensors = self.load_tensor_file(filename)\n",
|
| 351 |
+
" data.append(tensors[local_index])\n",
|
| 352 |
+
"\n",
|
| 353 |
+
" return {'input_ids': data}\n",
|
| 354 |
+
"\n",
|
| 355 |
+
" raise TypeError(f'Invaldi index type {type(index)}')\n",
|
| 356 |
+
" \n",
|
| 357 |
+
"def batch_collate(data: list[torch.Tensor]):\n",
|
| 358 |
+
" max_len = max(len(datum[\"input_ids\"]) for datum in data)\n",
|
| 359 |
+
" inputs = []\n",
|
| 360 |
+
" attentions = []\n",
|
| 361 |
+
" for row in data:\n",
|
| 362 |
+
" input_ids = row[\"input_ids\"]\n",
|
| 363 |
+
" attention_mask = torch.ones_like(input_ids)\n",
|
| 364 |
+
" attention_mask[-1] = 0 # don't care about EOS\n",
|
| 365 |
+
" # Manual padding\n",
|
| 366 |
+
" to_pad = max_len - len(input_ids)\n",
|
| 367 |
+
" is_left_pad = tokenizer.padding_side == \"left\"\n",
|
| 368 |
+
" padding = (is_left_pad * to_pad, (1 - is_left_pad) * to_pad)\n",
|
| 369 |
+
" input_ids = F.pad(input_ids, padding, value=tokenizer.pad_token_id)\n",
|
| 370 |
+
" attention_mask = F.pad(attention_mask, padding, value=0)\n",
|
| 371 |
+
" inputs.append(input_ids)\n",
|
| 372 |
+
" attentions.append(attention_mask)\n",
|
| 373 |
+
"\n",
|
| 374 |
+
" attention_masks = torch.stack(attentions)\n",
|
| 375 |
+
" input_ids = torch.stack(inputs)\n",
|
| 376 |
+
" labels = input_ids.clone()\n",
|
| 377 |
+
"\n",
|
| 378 |
+
" # disable prediction of the padding\n",
|
| 379 |
+
" labels[attention_masks == 0] = -100\n",
|
| 380 |
+
" # enable prediction of an actual EOS\n",
|
| 381 |
+
" labels[:, -1] = tokenizer.eos_token_id\n",
|
| 382 |
+
"\n",
|
| 383 |
+
" return {\n",
|
| 384 |
+
" 'input_ids': input_ids,\n",
|
| 385 |
+
" 'attention_mask': attention_masks,\n",
|
| 386 |
+
" 'labels': labels\n",
|
| 387 |
+
" }\n",
|
| 388 |
+
"\n",
|
| 389 |
+
"def get_max_story_length(ds): \n",
|
| 390 |
+
" return max(file_len[1] for file_len in ds.file_lens)\n"
|
| 391 |
+
]
|
| 392 |
+
},
|
| 393 |
+
{
|
| 394 |
+
"cell_type": "code",
|
| 395 |
+
"execution_count": 17,
|
| 396 |
+
"id": "2e828afe",
|
| 397 |
+
"metadata": {},
|
| 398 |
+
"outputs": [
|
| 399 |
+
{
|
| 400 |
+
"name": "stdout",
|
| 401 |
+
"output_type": "stream",
|
| 402 |
+
"text": [
|
| 403 |
+
"Reading dataset train data\n"
|
| 404 |
+
]
|
| 405 |
+
},
|
| 406 |
+
{
|
| 407 |
+
"data": {
|
| 408 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 409 |
+
"model_id": "8ca542afc1694073af6dcf9ce5f7e13a",
|
| 410 |
+
"version_major": 2,
|
| 411 |
+
"version_minor": 0
|
| 412 |
+
},
|
| 413 |
+
"text/plain": [
|
| 414 |
+
" 0%| | 0/133 [00:00<?, ?it/s]"
|
| 415 |
+
]
|
| 416 |
+
},
|
| 417 |
+
"metadata": {},
|
| 418 |
+
"output_type": "display_data"
|
| 419 |
+
},
|
| 420 |
+
{
|
| 421 |
+
"name": "stdout",
|
| 422 |
+
"output_type": "stream",
|
| 423 |
+
"text": [
|
| 424 |
+
"Populating a cache\n"
|
| 425 |
+
]
|
| 426 |
+
},
|
| 427 |
+
{
|
| 428 |
+
"data": {
|
| 429 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 430 |
+
"model_id": "8035a75107e84a54870a8c6f15c4100a",
|
| 431 |
+
"version_major": 2,
|
| 432 |
+
"version_minor": 0
|
| 433 |
+
},
|
| 434 |
+
"text/plain": [
|
| 435 |
+
" 0%| | 0/133 [00:00<?, ?it/s]"
|
| 436 |
+
]
|
| 437 |
+
},
|
| 438 |
+
"metadata": {},
|
| 439 |
+
"output_type": "display_data"
|
| 440 |
+
},
|
| 441 |
+
{
|
| 442 |
+
"ename": "AssertionError",
|
| 443 |
+
"evalue": "WARNIING: split long stories",
|
| 444 |
+
"output_type": "error",
|
| 445 |
+
"traceback": [
|
| 446 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 447 |
+
"\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)",
|
| 448 |
+
"Cell \u001b[0;32mIn[17], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m tokenizer\u001b[38;5;241m.\u001b[39mpadding_side \u001b[38;5;129;01min\u001b[39;00m [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mleft\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mright\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m 2\u001b[0m train_ds \u001b[38;5;241m=\u001b[39m TinyDataset(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtrain\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m----> 3\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m get_max_story_length(train_ds) \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m tokenizer\u001b[38;5;241m.\u001b[39mmodel_max_length, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWARNIING: split long stories\u001b[39m\u001b[38;5;124m\"\u001b[39m\n",
|
| 449 |
+
"\u001b[0;31mAssertionError\u001b[0m: WARNIING: split long stories"
|
| 450 |
+
]
|
| 451 |
+
}
|
| 452 |
+
],
|
| 453 |
+
"source": [
|
| 454 |
+
"assert tokenizer.padding_side in [\"left\", \"right\"]\n",
|
| 455 |
+
"train_ds = TinyDataset(\"train\")\n",
|
| 456 |
+
"assert get_max_story_length(train_ds) <= tokenizer.model_max_length, \"WARNIING: split long stories\""
|
| 457 |
+
]
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"cell_type": "code",
|
| 461 |
+
"execution_count": 19,
|
| 462 |
+
"id": "6412e7c5",
|
| 463 |
+
"metadata": {},
|
| 464 |
+
"outputs": [],
|
| 465 |
+
"source": [
|
| 466 |
+
"from torch.utils.data import DataLoader\n",
|
| 467 |
+
"torch.manual_seed(11010)\n",
|
| 468 |
+
"torch.cuda.manual_seed(11010)\n",
|
| 469 |
+
"train_dl = DataLoader(train_ds, 16, True, collate_fn=batch_collate)"
|
| 470 |
+
]
|
| 471 |
+
},
|
| 472 |
+
{
|
| 473 |
+
"cell_type": "code",
|
| 474 |
+
"execution_count": 20,
|
| 475 |
+
"id": "f3ff5a66",
|
| 476 |
+
"metadata": {},
|
| 477 |
+
"outputs": [
|
| 478 |
+
{
|
| 479 |
+
"name": "stderr",
|
| 480 |
+
"output_type": "stream",
|
| 481 |
+
"text": [
|
| 482 |
+
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mggg4\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
|
| 483 |
+
]
|
| 484 |
+
},
|
| 485 |
+
{
|
| 486 |
+
"data": {
|
| 487 |
+
"text/html": [
|
| 488 |
+
"Tracking run with wandb version 0.15.5"
|
| 489 |
+
],
|
| 490 |
+
"text/plain": [
|
| 491 |
+
"<IPython.core.display.HTML object>"
|
| 492 |
+
]
|
| 493 |
+
},
|
| 494 |
+
"metadata": {},
|
| 495 |
+
"output_type": "display_data"
|
| 496 |
+
},
|
| 497 |
+
{
|
| 498 |
+
"data": {
|
| 499 |
+
"text/html": [
|
| 500 |
+
"Run data is saved locally in <code>/home/mayk/tiny-llama/wandb/run-20230707_181234-rilt4m6f</code>"
|
| 501 |
+
],
|
| 502 |
+
"text/plain": [
|
| 503 |
+
"<IPython.core.display.HTML object>"
|
| 504 |
+
]
|
| 505 |
+
},
|
| 506 |
+
"metadata": {},
|
| 507 |
+
"output_type": "display_data"
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"data": {
|
| 511 |
+
"text/html": [
|
| 512 |
+
"Syncing run <strong><a href='https://wandb.ai/ggg4/training-tiny-llama-preview/runs/rilt4m6f' target=\"_blank\">grateful-jazz-4</a></strong> to <a href='https://wandb.ai/ggg4/training-tiny-llama-preview' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
|
| 513 |
+
],
|
| 514 |
+
"text/plain": [
|
| 515 |
+
"<IPython.core.display.HTML object>"
|
| 516 |
+
]
|
| 517 |
+
},
|
| 518 |
+
"metadata": {},
|
| 519 |
+
"output_type": "display_data"
|
| 520 |
+
},
|
| 521 |
+
{
|
| 522 |
+
"data": {
|
| 523 |
+
"text/html": [
|
| 524 |
+
" View project at <a href='https://wandb.ai/ggg4/training-tiny-llama-preview' target=\"_blank\">https://wandb.ai/ggg4/training-tiny-llama-preview</a>"
|
| 525 |
+
],
|
| 526 |
+
"text/plain": [
|
| 527 |
+
"<IPython.core.display.HTML object>"
|
| 528 |
+
]
|
| 529 |
+
},
|
| 530 |
+
"metadata": {},
|
| 531 |
+
"output_type": "display_data"
|
| 532 |
+
},
|
| 533 |
+
{
|
| 534 |
+
"data": {
|
| 535 |
+
"text/html": [
|
| 536 |
+
" View run at <a href='https://wandb.ai/ggg4/training-tiny-llama-preview/runs/rilt4m6f' target=\"_blank\">https://wandb.ai/ggg4/training-tiny-llama-preview/runs/rilt4m6f</a>"
|
| 537 |
+
],
|
| 538 |
+
"text/plain": [
|
| 539 |
+
"<IPython.core.display.HTML object>"
|
| 540 |
+
]
|
| 541 |
+
},
|
| 542 |
+
"metadata": {},
|
| 543 |
+
"output_type": "display_data"
|
| 544 |
+
},
|
| 545 |
+
{
|
| 546 |
+
"data": {
|
| 547 |
+
"text/html": [
|
| 548 |
+
"<button onClick=\"this.nextSibling.style.display='block';this.style.display='none';\">Display W&B run</button><iframe src='https://wandb.ai/ggg4/training-tiny-llama-preview/runs/rilt4m6f?jupyter=true' style='border:none;width:100%;height:420px;display:none;'></iframe>"
|
| 549 |
+
],
|
| 550 |
+
"text/plain": [
|
| 551 |
+
"<wandb.sdk.wandb_run.Run at 0x7f6af8170b50>"
|
| 552 |
+
]
|
| 553 |
+
},
|
| 554 |
+
"execution_count": 20,
|
| 555 |
+
"metadata": {},
|
| 556 |
+
"output_type": "execute_result"
|
| 557 |
+
}
|
| 558 |
+
],
|
| 559 |
+
"source": [
|
| 560 |
+
"# prepare wandb\n",
|
| 561 |
+
"import wandb\n",
|
| 562 |
+
"wandb.init(\n",
|
| 563 |
+
" project=\"training-tiny-llama-preview\",\n",
|
| 564 |
+
" config={\n",
|
| 565 |
+
" \"architecture\": \"llama\",\n",
|
| 566 |
+
" \"dataset\": \"tiny-stories\",\n",
|
| 567 |
+
" \"epochs\": EPOCHS,\n",
|
| 568 |
+
" } \n",
|
| 569 |
+
")"
|
| 570 |
+
]
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"cell_type": "code",
|
| 574 |
+
"execution_count": null,
|
| 575 |
+
"id": "aed7b7a4",
|
| 576 |
+
"metadata": {},
|
| 577 |
+
"outputs": [],
|
| 578 |
+
"source": []
|
| 579 |
+
},
|
| 580 |
+
{
|
| 581 |
+
"cell_type": "code",
|
| 582 |
+
"execution_count": 21,
|
| 583 |
+
"id": "166a4a27",
|
| 584 |
+
"metadata": {},
|
| 585 |
+
"outputs": [],
|
| 586 |
+
"source": [
|
| 587 |
+
"from tqdm.auto import tqdm\n",
|
| 588 |
+
"def save_imm(epoch, step, saved=[]):\n",
|
| 589 |
+
" fname = f\"step-{epoch}-{step}.bin\"\n",
|
| 590 |
+
" torch.save(model.state_dict(), f\"step-{epoch}-{step}.bin\")\n",
|
| 591 |
+
" saved.append(fname)\n",
|
| 592 |
+
" if len(saved) > 5:\n",
|
| 593 |
+
" delete_me = saved.pop(0)\n",
|
| 594 |
+
" Path(delete_me).unlink(missing_ok=True)\n",
|
| 595 |
+
"\n",
|
| 596 |
+
"def epoch_step(epoch, opt):\n",
|
| 597 |
+
" for i, batch in enumerate(bar := tqdm(train_dl)):\n",
|
| 598 |
+
" for k in batch:\n",
|
| 599 |
+
" batch[k] = batch[k].to(device=model.lm_head.weight.device)\n",
|
| 600 |
+
" \n",
|
| 601 |
+
" n_batch, n_seq = batch[\"input_ids\"].shape\n",
|
| 602 |
+
" if n_seq > tokenizer.model_max_length:\n",
|
| 603 |
+
" assert tokenizer.padding_side == \"right\", \"Left-pad truncation only supported[as model should not see >2k token anyway]\"\n",
|
| 604 |
+
" batch[\"input_ids\"] = batch[\"input_ids\"][:, -tokenizer.model_max_length]\n",
|
| 605 |
+
" batch[\"labels\"] = batch[\"labels\"][:, -tokenizer.model_max_length]\n",
|
| 606 |
+
" batch[\"attention_mask\"] = batch[\"attention_mask\"][:, -tokenizer.model_max_length]\n",
|
| 607 |
+
" \n",
|
| 608 |
+
" \n",
|
| 609 |
+
" loss = model(**batch).loss\n",
|
| 610 |
+
" loss.backward()\n",
|
| 611 |
+
" opt.step()\n",
|
| 612 |
+
" opt.zero_grad()\n",
|
| 613 |
+
" bar.set_description(f'L:{loss.item():.4f}')\n",
|
| 614 |
+
" wandb.log({\"loss\": loss.item()})\n",
|
| 615 |
+
" if (i+1) % 100 == 0:\n",
|
| 616 |
+
" save_imm(epoch, i+1)\n",
|
| 617 |
+
" \n",
|
| 618 |
+
" torch.save(model.state_dict(), f\"epoch-{epoch}.bin\")\n"
|
| 619 |
+
]
|
| 620 |
+
},
|
| 621 |
+
{
|
| 622 |
+
"cell_type": "code",
|
| 623 |
+
"execution_count": 22,
|
| 624 |
+
"id": "ec4943c7",
|
| 625 |
+
"metadata": {},
|
| 626 |
+
"outputs": [],
|
| 627 |
+
"source": [
|
| 628 |
+
"opt = torch.optim.AdamW(model.parameters(), fused=True)\n"
|
| 629 |
+
]
|
| 630 |
+
},
|
| 631 |
+
{
|
| 632 |
+
"cell_type": "code",
|
| 633 |
+
"execution_count": null,
|
| 634 |
+
"id": "daae9020",
|
| 635 |
+
"metadata": {},
|
| 636 |
+
"outputs": [
|
| 637 |
+
{
|
| 638 |
+
"data": {
|
| 639 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 640 |
+
"model_id": "f7ab6fe3b99546f49acb0d43888b7ceb",
|
| 641 |
+
"version_major": 2,
|
| 642 |
+
"version_minor": 0
|
| 643 |
+
},
|
| 644 |
+
"text/plain": [
|
| 645 |
+
" 0%| | 0/169865 [00:00<?, ?it/s]"
|
| 646 |
+
]
|
| 647 |
+
},
|
| 648 |
+
"metadata": {},
|
| 649 |
+
"output_type": "display_data"
|
| 650 |
+
}
|
| 651 |
+
],
|
| 652 |
+
"source": [
|
| 653 |
+
"for e in range(EPOCHS):\n",
|
| 654 |
+
" epoch_step(e+1, opt)"
|
| 655 |
+
]
|
| 656 |
+
},
|
| 657 |
+
{
|
| 658 |
+
"cell_type": "code",
|
| 659 |
+
"execution_count": 45,
|
| 660 |
+
"id": "87988cf5",
|
| 661 |
+
"metadata": {},
|
| 662 |
+
"outputs": [
|
| 663 |
+
{
|
| 664 |
+
"name": "stdout",
|
| 665 |
+
"output_type": "stream",
|
| 666 |
+
"text": [
|
| 667 |
+
" total used free shared buff/cache available\r\n",
|
| 668 |
+
"Mem: 85Gi 1.5Gi 72Gi 8.0Mi 11Gi 83Gi\r\n",
|
| 669 |
+
"Swap: 0B 0B 0B\r\n"
|
| 670 |
+
]
|
| 671 |
+
}
|
| 672 |
+
],
|
| 673 |
+
"source": [
|
| 674 |
+
"!free -h"
|
| 675 |
+
]
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"cell_type": "code",
|
| 679 |
+
"execution_count": 65,
|
| 680 |
+
"id": "e43eb9f3",
|
| 681 |
+
"metadata": {},
|
| 682 |
+
"outputs": [
|
| 683 |
+
{
|
| 684 |
+
"name": "stdout",
|
| 685 |
+
"output_type": "stream",
|
| 686 |
+
"text": [
|
| 687 |
+
"Fri Jul 7 17:44:05 2023 \n",
|
| 688 |
+
"+-----------------------------------------------------------------------------+\n",
|
| 689 |
+
"| NVIDIA-SMI 520.61.05 Driver Version: 520.61.05 CUDA Version: 11.8 |\n",
|
| 690 |
+
"|-------------------------------+----------------------+----------------------+\n",
|
| 691 |
+
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
|
| 692 |
+
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
|
| 693 |
+
"| | | MIG M. |\n",
|
| 694 |
+
"|===============================+======================+======================|\n",
|
| 695 |
+
"| 0 NVIDIA A100-PCI... On | 00000000:05:00.0 Off | 0 |\n",
|
| 696 |
+
"| N/A 30C P0 34W / 250W | 5739MiB / 40960MiB | 0% Default |\n",
|
| 697 |
+
"| | | Disabled |\n",
|
| 698 |
+
"+-------------------------------+----------------------+----------------------+\n",
|
| 699 |
+
" \n",
|
| 700 |
+
"+-----------------------------------------------------------------------------+\n",
|
| 701 |
+
"| Processes: |\n",
|
| 702 |
+
"| GPU GI CI PID Type Process name GPU Memory |\n",
|
| 703 |
+
"| ID ID Usage |\n",
|
| 704 |
+
"|=============================================================================|\n",
|
| 705 |
+
"| 0 N/A N/A 13768 C /opt/conda/bin/python 5736MiB |\n",
|
| 706 |
+
"+-----------------------------------------------------------------------------+\n"
|
| 707 |
+
]
|
| 708 |
+
}
|
| 709 |
+
],
|
| 710 |
+
"source": [
|
| 711 |
+
"!nvidia-smi"
|
| 712 |
+
]
|
| 713 |
+
},
|
| 714 |
+
{
|
| 715 |
+
"cell_type": "code",
|
| 716 |
+
"execution_count": 73,
|
| 717 |
+
"id": "0351f57f",
|
| 718 |
+
"metadata": {},
|
| 719 |
+
"outputs": [
|
| 720 |
+
{
|
| 721 |
+
"data": {
|
| 722 |
+
"text/plain": [
|
| 723 |
+
"Parameter containing:\n",
|
| 724 |
+
"tensor([[ 8.3618e-03, 3.8330e-02, -5.9204e-03, ..., 2.0752e-02,\n",
|
| 725 |
+
" 4.4861e-03, 1.2512e-02],\n",
|
| 726 |
+
" [ 3.9978e-03, 2.1118e-02, -3.5645e-02, ..., -1.6846e-02,\n",
|
| 727 |
+
" 5.0659e-03, -3.8818e-02],\n",
|
| 728 |
+
" [-1.6928e-05, -1.2756e-02, -1.1536e-02, ..., -1.6235e-02,\n",
|
| 729 |
+
" 4.8218e-03, -1.4099e-02],\n",
|
| 730 |
+
" ...,\n",
|
| 731 |
+
" [-9.8267e-03, -6.8665e-03, 1.0864e-02, ..., -1.0864e-02,\n",
|
| 732 |
+
" -2.4170e-02, -5.6076e-04],\n",
|
| 733 |
+
" [-9.5749e-04, 7.3853e-03, 4.9438e-03, ..., 1.2390e-02,\n",
|
| 734 |
+
" -2.1606e-02, -9.2163e-03],\n",
|
| 735 |
+
" [ 5.1758e-02, 2.1484e-02, -1.5381e-02, ..., -2.4292e-02,\n",
|
| 736 |
+
" -3.4912e-02, 3.0823e-03]], device='cuda:0', dtype=torch.bfloat16,\n",
|
| 737 |
+
" requires_grad=True)"
|
| 738 |
+
]
|
| 739 |
+
},
|
| 740 |
+
"execution_count": 73,
|
| 741 |
+
"metadata": {},
|
| 742 |
+
"output_type": "execute_result"
|
| 743 |
+
}
|
| 744 |
+
],
|
| 745 |
+
"source": []
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"cell_type": "code",
|
| 749 |
+
"execution_count": null,
|
| 750 |
+
"id": "ace72db5",
|
| 751 |
+
"metadata": {},
|
| 752 |
+
"outputs": [],
|
| 753 |
+
"source": []
|
| 754 |
+
}
|
| 755 |
+
],
|
| 756 |
+
"metadata": {
|
| 757 |
+
"kernelspec": {
|
| 758 |
+
"display_name": "Python 3 (ipykernel)",
|
| 759 |
+
"language": "python",
|
| 760 |
+
"name": "python3"
|
| 761 |
+
},
|
| 762 |
+
"language_info": {
|
| 763 |
+
"codemirror_mode": {
|
| 764 |
+
"name": "ipython",
|
| 765 |
+
"version": 3
|
| 766 |
+
},
|
| 767 |
+
"file_extension": ".py",
|
| 768 |
+
"mimetype": "text/x-python",
|
| 769 |
+
"name": "python",
|
| 770 |
+
"nbconvert_exporter": "python",
|
| 771 |
+
"pygments_lexer": "ipython3",
|
| 772 |
+
"version": "3.10.10"
|
| 773 |
+
}
|
| 774 |
+
},
|
| 775 |
+
"nbformat": 4,
|
| 776 |
+
"nbformat_minor": 5
|
| 777 |
+
}
|
valid.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import sys
|
| 4 |
+
import os
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from tqdm.auto import tqdm
|
| 7 |
+
|
| 8 |
+
model_id = os.getcwd()
|
| 9 |
+
if len(sys.argv) == 2:
|
| 10 |
+
filename = sys.argv[1]
|
| 11 |
+
elif len(sys.argv) == 3:
|
| 12 |
+
filename = sys.argv[1]
|
| 13 |
+
model_id = sys.argv[2]
|
| 14 |
+
else:
|
| 15 |
+
raise Exception("use valid.py <path-to-text> [model-id]")
|
| 16 |
+
|
| 17 |
+
text = Path(filename).read_text()
|
| 18 |
+
stories = text.split("<|endoftext|>")
|
| 19 |
+
print(len(stories))
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 21 |
+
model = AutoModelForCausalLM.from_pretrained(model_id).cuda().bfloat16()
|
| 22 |
+
|
| 23 |
+
ctx_size = tokenizer.model_max_length
|
| 24 |
+
sliding_window = ctx_size // 2
|
| 25 |
+
|
| 26 |
+
total_loss = 0.0
|
| 27 |
+
measurements = 0
|
| 28 |
+
model.eval()
|
| 29 |
+
for story in (bar := tqdm(stories)):
|
| 30 |
+
story = story.strip()
|
| 31 |
+
tokens = tokenizer(story, add_special_tokens=False).input_ids + [tokenizer.eos_token_id]
|
| 32 |
+
i = 0
|
| 33 |
+
while i < len(tokens):
|
| 34 |
+
current_window = tokens[i:i+ctx_size-1]
|
| 35 |
+
part_tokens = [tokenizer.bos_token_id] + current_window
|
| 36 |
+
input_ids = torch.tensor(part_tokens, device="cuda")[None]
|
| 37 |
+
labels = input_ids.clone()
|
| 38 |
+
if i:
|
| 39 |
+
# disable seen tokens
|
| 40 |
+
labels[:, :-sliding_window] = -100
|
| 41 |
+
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
loss = model(input_ids, labels=labels).loss
|
| 44 |
+
total_loss += loss.item()
|
| 45 |
+
measurements += 1
|
| 46 |
+
|
| 47 |
+
i += len(current_window)
|
| 48 |
+
bar.set_description(f"L {total_loss/measurements:.4f}")
|
| 49 |
+
|
| 50 |
+
print(f"FINAL LOSS: {total_loss/measurements:.4f}")
|
| 51 |
+
|
| 52 |
+
|