| from torchvision import datasets, transforms | |
| from torch.utils.data import DataLoader | |
| def load_mnist(): | |
| transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) | |
| train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) | |
| test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) | |
| train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True) | |
| test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False) | |
| return {'train': train_loader, 'test': test_loader} | |