Image-Text-to-Text
Transformers
Safetensors
GGUF
gemma3
turkish
türkiye
english
ai
lamapi
next
next-x1
efficient
text-generation
open-source
4b
huggingface
large-language-model
llm
causal
transformer
artificial-intelligence
machine-learning
ai-research
natural-language-processing
language
multilingual
multimodal
nlp
finetuned
lightweight
creative
summarization
question-answering
chat
generative-ai
optimized
unsloth
trl
sft
chemistry
code
biology
finance
legal
music
art
state-of-the-art
climate
medical
agent
text-generation-inference
Merge
dense
conversational
File size: 10,872 Bytes
337b29c 41b6a98 337b29c 41b6a98 337b29c 41b6a98 337b29c 41b6a98 337b29c 41b6a98 1f22a61 41b6a98 7e5edaa 85b1400 41b6a98 337b29c 7b84fce 1f22a61 337b29c c3d14de 41b6a98 337b29c 41b6a98 337b29c c3d14de afbe580 f093dfa c3d14de f093dfa c3d14de afbe580 f093dfa c3d14de f093dfa c3d14de 60f634d c3d14de afbe580 c3d14de afbe580 c3d14de afbe580 c3d14de afbe580 c3d14de 337b29c f32ef21 337b29c 41b6a98 337b29c 41b6a98 337b29c 41b6a98 f32ef21 41b6a98 337b29c 41b6a98 337b29c 41b6a98 337b29c f32ef21 337b29c 41b6a98 337b29c 41b6a98 337b29c f32ef21 41b6a98 f32ef21 41b6a98 f32ef21 337b29c f32ef21 337b29c f32ef21 337b29c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
---
language:
- tr
- en
- de
- ka
- el
- ku
- es
- sl
- sk
- af
- da
- nl
- fa
- fi
- fr
- ga
- hi
- hu
- hy
- ja
- kg
- kk
- ko
- ky
- la
- lb
- id
- it
- is
- za
- zh
- zu
- cs
- vi
- be
- bg
- bs
- ne
- mn
- rm
- ro
- ru
- te
- th
- tk
- tt
- uk
- uz
- ug
- pl
- pt
- 'no'
license: mit
tags:
- turkish
- türkiye
- english
- ai
- lamapi
- gemma3
- next
- next-x1
- efficient
- text-generation
- open-source
- 4b
- huggingface
- large-language-model
- llm
- causal
- transformer
- artificial-intelligence
- machine-learning
- ai-research
- natural-language-processing
- language
- multilingual
- multimodal
- nlp
- finetuned
- lightweight
- creative
- summarization
- question-answering
- chat
- generative-ai
- optimized
- unsloth
- trl
- sft
- chemistry
- code
- biology
- finance
- legal
- music
- art
- state-of-the-art
- climate
- medical
- agent
- text-generation-inference
- merge
- dense
pipeline_tag: image-text-to-text
datasets:
- mlabonne/FineTome-100k
- ITCL/FineTomeOs
- Gryphe/ChatGPT-4o-Writing-Prompts
- dongguanting/ARPO-SFT-54K
- GreenerPastures/All-Your-Base-Full
- Gryphe/Opus-WritingPrompts
- HuggingFaceH4/MATH-500
- mlabonne/smoltalk-flat
- mlabonne/natural_reasoning-formatted
- OpenSPG/KAG-Thinker-training-dataset
- uclanlp/Brief-Pro
- CognitiveKernel/CognitiveKernel-Pro-SFT
- SuperbEmphasis/Claude-4.0-DeepSeek-R1-RP-SFWish
- QuixiAI/dolphin-r1
- mlabonne/lmsys-arena-human-sft-55k
library_name: transformers
---
<img src='assets/banner.png'>
# 🚀 Next 4B (s330)
### *Türkiye’s First Vision-Language Model — Efficient, Multimodal, and Reasoning-Focused*
[](https://opensource.org/licenses/MIT)
[]()
[](https://huggingface.co/Lamapi/next-4b)
---
## 📖 Overview
**Next 4B** is a **4-billion parameter multimodal Vision-Language Model (VLM)** based on **Gemma 3**, fine-tuned to handle **both text and images** efficiently. It is **Türkiye’s first open-source vision-language model**, designed for:
* Understanding and generating **text and image descriptions**.
* Efficient reasoning and context-aware multimodal outputs.
* Turkish support with multilingual capabilities.
* Low-resource deployment using **8-bit quantization** for consumer-grade GPUs.
This model is ideal for **researchers, developers, and organizations** who need a **high-performance multimodal AI** capable of **visual understanding, reasoning, and creative generation**.
---
# Our Next 1B and Next 4B models are leading to all of the tiny models in benchmarks.
<table>
<thead>
<tr>
<th>Model</th>
<th>MMLU (5-shot) %</th>
<th>MMLU-Pro %</th>
<th>GSM8K %</th>
<th>MATH %</th>
</tr>
</thead>
<tbody>
<tr class="next">
<td data-label="Model">Next 4B preview</td>
<td data-label="MMLU (5-shot) %">84.6</td>
<td data-label="MMLU-Pro %">66.9</td>
<td data-label="GSM8K %">82.7</td>
<td data-label="MATH %"><strong>70.5</strong></td>
</tr>
<tr class="next">
<td data-label="Model">Next 1B</td>
<td data-label="MMLU (5-shot) %"><strong>87.3</strong></td>
<td data-label="MMLU-Pro %"><strong>69.2</strong></td>
<td data-label="GSM8K %"><strong>90.5</strong></td>
<td data-label="MATH %">70.1</td>
</tr>
<tr>
<td data-label="Model">Qwen 3 0.6B</td>
<td data-label="MMLU (5-shot) %">52.81</td>
<td data-label="MMLU-Pro %">37.6</td>
<td data-label="GSM8K %">60.7</td>
<td data-label="MATH %">20.5</td>
</tr>
<tr>
<td data-label="Model">Llama 3.2 1B</td>
<td data-label="MMLU (5-shot) %">49.3</td>
<td data-label="MMLU-Pro %">44.4</td>
<td data-label="GSM8K %">11.9</td>
<td data-label="MATH %">30.6</td>
</tr>
</tbody>
</table>
---
# Also, our Next 14b model is leading to state-of-the-art models in some of the Benchmarks.
<table>
<thead>
<tr>
<th>Model</th>
<th>MMLU (5-shot) %</th>
<th>MMLU-Pro %</th>
<th>GSM8K %</th>
<th>MATH %</th>
</tr>
</thead>
<tbody>
<tr class="next">
<td><strong>Next 14B (Thinking)</strong></td>
<td><strong>94.6</strong></td>
<td><strong>93.2</strong></td>
<td><strong>98.8</strong></td>
<td>92.7</td>
</tr>
<tr>
<td>Next 12B</td>
<td>92.7</td>
<td>84.4</td>
<td>95.3</td>
<td>87.2</td>
</tr>
<tr>
<td>GPT-5</td>
<td>92.5</td>
<td>87.0</td>
<td>98.4</td>
<td><strong>96.0</strong></td>
</tr>
<tr>
<td>Claude Opus 4.1 (Thinking)</td>
<td>~92.0</td>
<td>87.8</td>
<td>84.7</td>
<td>95.4</td>
</tr>
</tbody>
</table>
---
## 🚀 Installation & Usage
### Use with vision:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor
from PIL import Image
import torch
model_id = "Lamapi/next-4b"
model = AutoModelForCausalLM.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id) # For vision.
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Read image
image = Image.open("image.jpg")
# Create a message in chat format
messages = [
{"role": "system","content": [{"type": "text", "text": "You are Next-X1, a smart and concise AI assistant trained by Lamapi. Always respond in the user's language. Proudly made in Turkey."}]},
{
"role": "user","content": [{"type": "image", "image": image},
{"type": "text", "text": "Who is in this image?"}
]
}
]
# Prepare input with Tokenizer
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=prompt, images=[image], return_tensors="pt")
# Output from the model
output = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
<div style='width:700px;'>
<img src='/Lamapi/next-4b/resolve/main/assets/image.jpg' style='height:192px;border-radius:16px;margin-left:225px;'>
<div style='background-color:rgba(0,140,255,0.5);border-radius:16px;border-bottom-right-radius:0px;padding:3px 10px;width:fit-content;max-width:400px;margin-left:250px;margin-top:-25px;margin-bottom:10px;'>
Who is in this image?
</div>
<div style='background-color:rgba(42,42,40,0.7);border-radius:16px;border-bottom-left-radius:0px;padding:3px 10px;width:fit-content;max-width:400px;'>
The image shows <strong>Mustafa Kemal Atatürk</strong>, the founder and first President of the Republic of Turkey.
</div>
</div>
### Use without vision:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "Lamapi/next-4b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
# Chat message
messages = [
{"role": "system", "content": "You are Next-X1, a smart and concise AI assistant trained by Lamapi. Always respond in the user's language. Proudly made in Turkey."},
{"role": "user", "content": "Hello, how are you?"}
]
# Prepare input with Tokenizer
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt")
# Output from the model
output = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
<div style='width:700px;'>
<div style='background-color:rgba(0,140,255,0.5);border-radius:16px;border-bottom-right-radius:0px;padding:3px 10px;width:fit-content;max-width:400px;margin-left:250px;margin-top:-15px;margin-bottom:10px;'>
Hello, how are you?
</div>
<div style='background-color:rgba(42,42,40,0.7);border-radius:16px;border-bottom-left-radius:0px;padding:3px 10px;width:fit-content;max-width:400px;'>
I'm fine, thank you. How are you?
</div>
</div>
---
## 🎯 Goals
1. **Multimodal Intelligence:** Understand and reason over images and text.
2. **Efficiency:** Run on modest GPUs using 8-bit quantization.
3. **Accessibility:** Open-source availability for research and applications.
4. **Cultural Relevance:** Optimized for Turkish language and context while remaining multilingual.
---
## ✨ Key Features
| Feature | Description |
| --------------------------------- | ----------------------------------------------------------------------- |
| 🔋 Efficient Architecture | Optimized for low VRAM; supports 8-bit quantization for consumer GPUs. |
| 🖼️ Vision-Language Capable | Understands images, captions them, and performs visual reasoning tasks. |
| 🇹🇷 Multilingual & Turkish-Ready | Handles complex Turkish text with high accuracy. |
| 🧠 Advanced Reasoning | Supports logical and analytical reasoning for both text and images. |
| 📊 Consistent & Reliable Outputs | Reproducible responses across multiple runs. |
| 🌍 Open Source | Transparent, community-driven, and research-friendly. |
---
## 📐 Model Specifications
| Specification | Details |
| ------------------ | ---------------------------------------------------------------------------------- |
| Base Model | Gemma 3 |
| Parameter Count | 4 Billion |
| Architecture | Transformer, causal LLM + Vision Encoder |
| Fine-Tuning Method | Instruction & multimodal fine-tuning (SFT) on Turkish and multilingual datasets |
| Optimizations | Q8_0, F16, F32 quantizations for low VRAM and high VRAM usage |
| Modalities | Text & Image |
| Use Cases | Image captioning, multimodal QA, text generation, reasoning, creative storytelling |
---
## 📄 License
This project is licensed under the **MIT License** — free to use, modify, and distribute. Attribution is appreciated.
---
## 📞 Contact & Support
* 📧 **Email:** [[email protected]](mailto:[email protected])
* 🤗 **HuggingFace:** [Lamapi](https://huggingface.co/Lamapi)
---
> **Next 4B** — Türkiye’s **first vision-language AI**, combining **multimodal understanding, reasoning, and efficiency**.
[](https://huggingface.co/Lamapi) |