tuan.ljn
commited on
Commit
·
ef54d41
1
Parent(s):
b865c35
Add: add README
Browse files- .ipynb_checkpoints/README-checkpoint.md +95 -0
- README.md +59 -54
.ipynb_checkpoints/README-checkpoint.md
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: sentence-transformers
|
| 3 |
+
pipeline_tag: sentence-similarity
|
| 4 |
+
tags:
|
| 5 |
+
- sentence-transformers
|
| 6 |
+
- feature-extraction
|
| 7 |
+
- sentence-similarity
|
| 8 |
+
- transformers
|
| 9 |
+
- sentence-embedding
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
language:
|
| 12 |
+
- fr
|
| 13 |
+
metrics:
|
| 14 |
+
- pearsonr
|
| 15 |
+
- spearmanr
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# [bilingual-embedding-base](https://huggingface.co/Lajavaness/bilingual-embedding-base)
|
| 19 |
+
|
| 20 |
+
bilingual-embedding is the Embedding Model for bilingual language: french and english. This model is a specialized sentence-embedding trained specifically for the bilingual language, leveraging the robust capabilities of [XLM-RoBERTa](https://huggingface.co/FacebookAI/xlm-roberta-base), a pre-trained language model based on the [XLM-RoBERTa](https://huggingface.co/FacebookAI/xlm-roberta-base) architecture. The model utilizes xlm-roberta to encode english-french sentences into a 1024-dimensional vector space, facilitating a wide range of applications from semantic search to text clustering. The embeddings capture the nuanced meanings of english-french sentences, reflecting both the lexical and contextual layers of the language.
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
## Full Model Architecture
|
| 24 |
+
```
|
| 25 |
+
SentenceTransformer(
|
| 26 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BilingualModel
|
| 27 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 28 |
+
(2): Normalize()
|
| 29 |
+
)
|
| 30 |
+
```
|
| 31 |
+
|
| 32 |
+
## Training and Fine-tuning process
|
| 33 |
+
#### Stage 1: NLI Training
|
| 34 |
+
- Dataset: [(SNLI+XNLI) for english+french]
|
| 35 |
+
- Method: Training using Multi-Negative Ranking Loss. This stage focused on improving the model's ability to discern and rank nuanced differences in sentence semantics.
|
| 36 |
+
### Stage 3: Continued Fine-tuning for Semantic Textual Similarity on STS Benchmark
|
| 37 |
+
- Dataset: [STSB-fr and en]
|
| 38 |
+
- Method: Fine-tuning specifically for the semantic textual similarity benchmark using Siamese BERT-Networks configured with the 'sentence-transformers' library.
|
| 39 |
+
### Stage 4: Advanced Augmentation Fine-tuning
|
| 40 |
+
- Dataset: STSB-vn with generate [silver sample from gold sample](https://www.sbert.net/examples/training/data_augmentation/README.html)
|
| 41 |
+
- Method: Employed an advanced strategy using [Augmented SBERT](https://arxiv.org/abs/2010.08240) with Pair Sampling Strategies, integrating both Cross-Encoder and Bi-Encoder models. This stage further refined the embeddings by enriching the training data dynamically, enhancing the model's robustness and accuracy.
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
## Usage:
|
| 45 |
+
|
| 46 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
| 47 |
+
|
| 48 |
+
```
|
| 49 |
+
pip install -U sentence-transformers
|
| 50 |
+
pip install -q pyvi
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
Then you can use the model like this:
|
| 54 |
+
|
| 55 |
+
```python
|
| 56 |
+
from sentence_transformers import SentenceTransformer
|
| 57 |
+
from pyvi.ViTokenizer import tokenize
|
| 58 |
+
|
| 59 |
+
sentences = ["Paris est une capitale de la France", "Paris is a capital of France"]
|
| 60 |
+
|
| 61 |
+
model = SentenceTransformer('Lajavaness/bilingual-embedding-base', trust_remote_code=True)
|
| 62 |
+
print(embeddings)
|
| 63 |
+
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
## Evaluation
|
| 71 |
+
|
| 72 |
+
TODO
|
| 73 |
+
|
| 74 |
+
## Citation
|
| 75 |
+
|
| 76 |
+
@article{conneau2019unsupervised,
|
| 77 |
+
title={Unsupervised cross-lingual representation learning at scale},
|
| 78 |
+
author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin},
|
| 79 |
+
journal={arXiv preprint arXiv:1911.02116},
|
| 80 |
+
year={2019}
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
@article{reimers2019sentence,
|
| 84 |
+
title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
|
| 85 |
+
author={Nils Reimers, Iryna Gurevych},
|
| 86 |
+
journal={https://arxiv.org/abs/1908.10084},
|
| 87 |
+
year={2019}
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
@article{thakur2020augmented,
|
| 91 |
+
title={Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks},
|
| 92 |
+
author={Thakur, Nandan and Reimers, Nils and Daxenberger, Johannes and Gurevych, Iryna},
|
| 93 |
+
journal={arXiv e-prints},
|
| 94 |
+
pages={arXiv--2010},
|
| 95 |
+
year={2020}
|
README.md
CHANGED
|
@@ -5,86 +5,91 @@ tags:
|
|
| 5 |
- sentence-transformers
|
| 6 |
- feature-extraction
|
| 7 |
- sentence-similarity
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
---
|
| 10 |
|
| 11 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
<!--- Describe your model here -->
|
| 16 |
|
| 17 |
-
## Usage
|
| 18 |
|
| 19 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
| 20 |
|
| 21 |
```
|
| 22 |
pip install -U sentence-transformers
|
|
|
|
| 23 |
```
|
| 24 |
|
| 25 |
Then you can use the model like this:
|
| 26 |
|
| 27 |
```python
|
| 28 |
from sentence_transformers import SentenceTransformer
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
model = SentenceTransformer('{MODEL_NAME}')
|
| 32 |
-
embeddings = model.encode(sentences)
|
| 33 |
-
print(embeddings)
|
| 34 |
-
```
|
| 35 |
-
|
| 36 |
|
|
|
|
| 37 |
|
| 38 |
-
|
|
|
|
| 39 |
|
| 40 |
-
|
| 41 |
|
| 42 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
| 43 |
|
| 44 |
|
| 45 |
-
## Training
|
| 46 |
-
The model was trained with the parameters:
|
| 47 |
|
| 48 |
-
**DataLoader**:
|
| 49 |
|
| 50 |
-
|
| 51 |
-
```
|
| 52 |
-
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
| 53 |
-
```
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
`__main__.CosineSimilarityLoss`
|
| 58 |
-
|
| 59 |
-
Parameters of the fit()-Method:
|
| 60 |
-
```
|
| 61 |
-
{
|
| 62 |
-
"epochs": 10,
|
| 63 |
-
"evaluation_steps": 1000,
|
| 64 |
-
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
| 65 |
-
"max_grad_norm": 1,
|
| 66 |
-
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
| 67 |
-
"optimizer_params": {
|
| 68 |
-
"eps": 1e-06,
|
| 69 |
-
"lr": 5e-07
|
| 70 |
-
},
|
| 71 |
-
"scheduler": "WarmupLinear",
|
| 72 |
-
"steps_per_epoch": null,
|
| 73 |
-
"warmup_steps": 1438,
|
| 74 |
-
"weight_decay": 0.01
|
| 75 |
-
}
|
| 76 |
-
```
|
| 77 |
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
)
|
| 86 |
-
```
|
| 87 |
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
- sentence-transformers
|
| 6 |
- feature-extraction
|
| 7 |
- sentence-similarity
|
| 8 |
+
- transformers
|
| 9 |
+
- sentence-embedding
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
language:
|
| 12 |
+
- fr
|
| 13 |
+
metrics:
|
| 14 |
+
- pearsonr
|
| 15 |
+
- spearmanr
|
| 16 |
---
|
| 17 |
|
| 18 |
+
# [bilingual-embedding-base](https://huggingface.co/Lajavaness/bilingual-embedding-base)
|
| 19 |
+
|
| 20 |
+
bilingual-embedding is the Embedding Model for bilingual language: french and english. This model is a specialized sentence-embedding trained specifically for the bilingual language, leveraging the robust capabilities of [XLM-RoBERTa](https://huggingface.co/FacebookAI/xlm-roberta-base), a pre-trained language model based on the [XLM-RoBERTa](https://huggingface.co/FacebookAI/xlm-roberta-base) architecture. The model utilizes xlm-roberta to encode english-french sentences into a 1024-dimensional vector space, facilitating a wide range of applications from semantic search to text clustering. The embeddings capture the nuanced meanings of english-french sentences, reflecting both the lexical and contextual layers of the language.
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
## Full Model Architecture
|
| 24 |
+
```
|
| 25 |
+
SentenceTransformer(
|
| 26 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BilingualModel
|
| 27 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 28 |
+
(2): Normalize()
|
| 29 |
+
)
|
| 30 |
+
```
|
| 31 |
|
| 32 |
+
## Training and Fine-tuning process
|
| 33 |
+
#### Stage 1: NLI Training
|
| 34 |
+
- Dataset: [(SNLI+XNLI) for english+french]
|
| 35 |
+
- Method: Training using Multi-Negative Ranking Loss. This stage focused on improving the model's ability to discern and rank nuanced differences in sentence semantics.
|
| 36 |
+
### Stage 3: Continued Fine-tuning for Semantic Textual Similarity on STS Benchmark
|
| 37 |
+
- Dataset: [STSB-fr and en]
|
| 38 |
+
- Method: Fine-tuning specifically for the semantic textual similarity benchmark using Siamese BERT-Networks configured with the 'sentence-transformers' library.
|
| 39 |
+
### Stage 4: Advanced Augmentation Fine-tuning
|
| 40 |
+
- Dataset: STSB-vn with generate [silver sample from gold sample](https://www.sbert.net/examples/training/data_augmentation/README.html)
|
| 41 |
+
- Method: Employed an advanced strategy using [Augmented SBERT](https://arxiv.org/abs/2010.08240) with Pair Sampling Strategies, integrating both Cross-Encoder and Bi-Encoder models. This stage further refined the embeddings by enriching the training data dynamically, enhancing the model's robustness and accuracy.
|
| 42 |
|
|
|
|
| 43 |
|
| 44 |
+
## Usage:
|
| 45 |
|
| 46 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
| 47 |
|
| 48 |
```
|
| 49 |
pip install -U sentence-transformers
|
| 50 |
+
pip install -q pyvi
|
| 51 |
```
|
| 52 |
|
| 53 |
Then you can use the model like this:
|
| 54 |
|
| 55 |
```python
|
| 56 |
from sentence_transformers import SentenceTransformer
|
| 57 |
+
from pyvi.ViTokenizer import tokenize
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
sentences = ["Paris est une capitale de la France", "Paris is a capital of France"]
|
| 60 |
|
| 61 |
+
model = SentenceTransformer('Lajavaness/bilingual-embedding-base', trust_remote_code=True)
|
| 62 |
+
print(embeddings)
|
| 63 |
|
| 64 |
+
```
|
| 65 |
|
|
|
|
| 66 |
|
| 67 |
|
|
|
|
|
|
|
| 68 |
|
|
|
|
| 69 |
|
| 70 |
+
## Evaluation
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
TODO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
## Citation
|
| 75 |
|
| 76 |
+
@article{conneau2019unsupervised,
|
| 77 |
+
title={Unsupervised cross-lingual representation learning at scale},
|
| 78 |
+
author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin},
|
| 79 |
+
journal={arXiv preprint arXiv:1911.02116},
|
| 80 |
+
year={2019}
|
| 81 |
+
}
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
@article{reimers2019sentence,
|
| 84 |
+
title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
|
| 85 |
+
author={Nils Reimers, Iryna Gurevych},
|
| 86 |
+
journal={https://arxiv.org/abs/1908.10084},
|
| 87 |
+
year={2019}
|
| 88 |
+
}
|
| 89 |
|
| 90 |
+
@article{thakur2020augmented,
|
| 91 |
+
title={Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks},
|
| 92 |
+
author={Thakur, Nandan and Reimers, Nils and Daxenberger, Johannes and Gurevych, Iryna},
|
| 93 |
+
journal={arXiv e-prints},
|
| 94 |
+
pages={arXiv--2010},
|
| 95 |
+
year={2020}
|