Update README.md
Browse files
README.md
CHANGED
|
@@ -9,207 +9,8 @@ Phase 1 Structure Recovery (Skeleton): Transform binary/pseudo-code into obfusca
|
|
| 9 |
|
| 10 |
Phase 2 Identifier Naming (Skin): Generate human-readable source code with meaningful identifiers 🤗 [HF Link](https://huggingface.co/LLM4Binary/sk2decompile-ident-6.7)
|
| 11 |
|
| 12 |
-
|
| 13 |
Usage:
|
| 14 |
```
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
import argparse
|
| 19 |
-
import shutil
|
| 20 |
-
import os
|
| 21 |
-
from tqdm import tqdm
|
| 22 |
-
|
| 23 |
-
opts = ["O0", "O1", "O2", "O3"]
|
| 24 |
-
current_dir = os.path.dirname(os.path.abspath(__file__))
|
| 25 |
-
|
| 26 |
-
if __name__ == "__main__":
|
| 27 |
-
arg_parser = argparse.ArgumentParser()
|
| 28 |
-
arg_parser.add_argument("--model_path",type=str,default="LLM4Binary/llm4decompile-1.3b-v1.5")
|
| 29 |
-
arg_parser.add_argument("--dataset_path",type=str,default='../data/exebench_test_normsrcpseudo_io.json')
|
| 30 |
-
arg_parser.add_argument("--decompiler",type=str,default='asm')
|
| 31 |
-
arg_parser.add_argument("--gpus", type=int, default=1)
|
| 32 |
-
arg_parser.add_argument("--max_num_seqs", type=int, default=1)
|
| 33 |
-
arg_parser.add_argument("--gpu_memory_utilization", type=float, default=0.8)
|
| 34 |
-
arg_parser.add_argument("--temperature", type=float, default=0)
|
| 35 |
-
arg_parser.add_argument("--max_total_tokens", type=int, default=32768)
|
| 36 |
-
arg_parser.add_argument("--max_new_tokens", type=int, default=4096)
|
| 37 |
-
arg_parser.add_argument("--stop_sequences", type=str, default=None)
|
| 38 |
-
arg_parser.add_argument("--recover_model_path", type=str, default=None, help="Path to the model to recover from, if any.")
|
| 39 |
-
arg_parser.add_argument("--output_path", type=str, default='../result/exebench-1.3b-v2')
|
| 40 |
-
arg_parser.add_argument("--only_save", type=int, default=0)
|
| 41 |
-
arg_parser.add_argument("--strip", type=int, default=1)
|
| 42 |
-
arg_parser.add_argument("--language", type=str, default='c')
|
| 43 |
-
args = arg_parser.parse_args()
|
| 44 |
-
|
| 45 |
-
before = "# This is the assembly code:\n"
|
| 46 |
-
after = "\n# What is the source code?\n"
|
| 47 |
-
|
| 48 |
-
if args.dataset_path.endswith('.json'):
|
| 49 |
-
with open(args.dataset_path, "r") as f:
|
| 50 |
-
print("===========")
|
| 51 |
-
print(f"Loading dataset from {args.dataset_path}")
|
| 52 |
-
print("===========")
|
| 53 |
-
samples = json.load(f)
|
| 54 |
-
elif args.dataset_path.endswith('.jsonl'):
|
| 55 |
-
samples = []
|
| 56 |
-
with open(args.dataset_path, "r") as f:
|
| 57 |
-
for line in f:
|
| 58 |
-
line = line.strip()
|
| 59 |
-
if line:
|
| 60 |
-
samples.append(json.loads(line))
|
| 61 |
-
|
| 62 |
-
if args.language == 'c':
|
| 63 |
-
samples = [sample for sample in samples if sample['language'] == 'c']
|
| 64 |
-
elif args.language == 'cpp':
|
| 65 |
-
samples = [sample for sample in samples if sample['language'] == 'cpp']
|
| 66 |
-
|
| 67 |
-
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
|
| 68 |
-
if args.stop_sequences is None:
|
| 69 |
-
args.stop_sequences = [tokenizer.eos_token]
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
filtered_samples = []
|
| 73 |
-
for sample in tqdm(samples, desc="Filtering samples by token length"):
|
| 74 |
-
if 'ida_strip_pseudo_norm' in sample:
|
| 75 |
-
prompt = before + sample['ida_strip_pseudo_norm'] + after
|
| 76 |
-
tokens = tokenizer.encode(prompt)
|
| 77 |
-
if len(tokens) <= 12000:
|
| 78 |
-
filtered_samples.append(sample)
|
| 79 |
-
else:
|
| 80 |
-
print(f"Discarded sample with {len(tokens)} tokens")
|
| 81 |
-
else:
|
| 82 |
-
filtered_samples.append(sample)
|
| 83 |
-
|
| 84 |
-
samples = filtered_samples
|
| 85 |
-
print(f"Filtered samples: {len(samples)} remaining")
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
inputs = []
|
| 89 |
-
infos = []
|
| 90 |
-
for sample in samples:
|
| 91 |
-
prompt = before + sample[args.decompiler].strip() + after
|
| 92 |
-
sample['prompt_model1'] = prompt
|
| 93 |
-
inputs.append(prompt)
|
| 94 |
-
infos.append({
|
| 95 |
-
"opt": sample["opt"],
|
| 96 |
-
"language": sample["language"],
|
| 97 |
-
"index": sample["index"],
|
| 98 |
-
"func_name": sample["func_name"]
|
| 99 |
-
})
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
print("Starting first model inference...")
|
| 103 |
-
gen_results = llm_inference(inputs, args.model_path,
|
| 104 |
-
args.gpus,
|
| 105 |
-
args.max_total_tokens,
|
| 106 |
-
args.gpu_memory_utilization,
|
| 107 |
-
args.temperature,
|
| 108 |
-
args.max_new_tokens,
|
| 109 |
-
args.stop_sequences)
|
| 110 |
-
gen_results = [gen_result[0] for gen_result in gen_results]
|
| 111 |
-
|
| 112 |
-
for idx in range(len(gen_results)):
|
| 113 |
-
samples[idx]['gen_result_model1'] = gen_results[idx]
|
| 114 |
-
|
| 115 |
-
inputs_recovery = []
|
| 116 |
-
before_recovery = "# This is the normalized code:\n"
|
| 117 |
-
after_recovery = "\n# What is the source code?\n"
|
| 118 |
-
|
| 119 |
-
for idx, sample in enumerate(gen_results):
|
| 120 |
-
prompt_recovery = before_recovery + sample.strip() + after_recovery
|
| 121 |
-
samples[idx]['prompt_model2'] = prompt_recovery
|
| 122 |
-
inputs_recovery.append(prompt_recovery)
|
| 123 |
-
|
| 124 |
-
print("Starting recovery model inference...")
|
| 125 |
-
gen_results_recovery = llm_inference(inputs_recovery, args.recover_model_path,
|
| 126 |
-
args.gpus,
|
| 127 |
-
args.max_total_tokens,
|
| 128 |
-
args.gpu_memory_utilization,
|
| 129 |
-
args.temperature,
|
| 130 |
-
args.max_new_tokens,
|
| 131 |
-
args.stop_sequences)
|
| 132 |
-
gen_results_recovery = [gen_result[0] for gen_result in gen_results_recovery]
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
for idx in range(len(gen_results_recovery)):
|
| 136 |
-
samples[idx]['gen_result_model2'] = gen_results_recovery[idx]
|
| 137 |
-
|
| 138 |
-
if args.output_path:
|
| 139 |
-
if os.path.exists(args.output_path):
|
| 140 |
-
shutil.rmtree(args.output_path)
|
| 141 |
-
for opt in opts:
|
| 142 |
-
os.makedirs(os.path.join(args.output_path, opt))
|
| 143 |
-
|
| 144 |
-
if args.strip:
|
| 145 |
-
print("Processing function name stripping...")
|
| 146 |
-
for idx in range(len(gen_results_recovery)):
|
| 147 |
-
one = gen_results_recovery[idx]
|
| 148 |
-
func_name_in_gen = one.split('(')[0].split(' ')[-1].strip()
|
| 149 |
-
if func_name_in_gen.strip() and func_name_in_gen[0:2] == '**':
|
| 150 |
-
func_name_in_gen = func_name_in_gen[2:]
|
| 151 |
-
elif func_name_in_gen.strip() and func_name_in_gen[0] == '*':
|
| 152 |
-
func_name_in_gen = func_name_in_gen[1:]
|
| 153 |
-
|
| 154 |
-
original_func_name = samples[idx]["func_name"]
|
| 155 |
-
gen_results_recovery[idx] = one.replace(func_name_in_gen, original_func_name)
|
| 156 |
-
samples[idx]["gen_result_model2_stripped"] = gen_results_recovery[idx]
|
| 157 |
-
|
| 158 |
-
print("Saving inference results and logs...")
|
| 159 |
-
for idx_sample, final_result in enumerate(gen_results_recovery):
|
| 160 |
-
opt = infos[idx_sample]['opt']
|
| 161 |
-
language = infos[idx_sample]['language']
|
| 162 |
-
original_index = samples[idx_sample]['index']
|
| 163 |
-
|
| 164 |
-
save_path = os.path.join(args.output_path, opt, f"{original_index}_{opt}.{language}")
|
| 165 |
-
with open(save_path, "w") as f:
|
| 166 |
-
f.write(final_result)
|
| 167 |
-
|
| 168 |
-
log_path = save_path + ".log"
|
| 169 |
-
log_data = {
|
| 170 |
-
"index": original_index,
|
| 171 |
-
"opt": opt,
|
| 172 |
-
"language": language,
|
| 173 |
-
"func_name": samples[idx_sample]["func_name"],
|
| 174 |
-
"decompiler": args.decompiler,
|
| 175 |
-
"input_asm": samples[idx_sample][args.decompiler].strip(),
|
| 176 |
-
"prompt_model1": samples[idx_sample]['prompt_model1'],
|
| 177 |
-
"gen_result_model1": samples[idx_sample]['gen_result_model1'],
|
| 178 |
-
"prompt_model2": samples[idx_sample]['prompt_model2'],
|
| 179 |
-
"gen_result_model2": samples[idx_sample]['gen_result_model2'],
|
| 180 |
-
"final_result": final_result,
|
| 181 |
-
"stripped": args.strip
|
| 182 |
-
}
|
| 183 |
-
|
| 184 |
-
if args.strip and "gen_result_model2_stripped" in samples[idx_sample]:
|
| 185 |
-
log_data["gen_result_model2_stripped"] = samples[idx_sample]["gen_result_model2_stripped"]
|
| 186 |
-
|
| 187 |
-
with open(log_path, "w") as f:
|
| 188 |
-
json.dump(log_data, f, indent=2, ensure_ascii=False)
|
| 189 |
-
|
| 190 |
-
json_path = os.path.join(args.output_path, 'inference_results.jsonl')
|
| 191 |
-
with open(json_path, 'w') as f:
|
| 192 |
-
for sample in samples:
|
| 193 |
-
f.write(json.dumps(sample) + '\n')
|
| 194 |
-
|
| 195 |
-
stats_path = os.path.join(args.output_path, 'inference_stats.txt')
|
| 196 |
-
with open(stats_path, 'w') as f:
|
| 197 |
-
f.write(f"Total samples processed: {len(samples)}\n")
|
| 198 |
-
f.write(f"Model path: {args.model_path}\n")
|
| 199 |
-
f.write(f"Recovery model path: {args.recover_model_path}\n")
|
| 200 |
-
f.write(f"Dataset path: {args.dataset_path}\n")
|
| 201 |
-
f.write(f"Language: {args.language}\n")
|
| 202 |
-
f.write(f"Decompiler: {args.decompiler}\n")
|
| 203 |
-
f.write(f"Strip function names: {bool(args.strip)}\n")
|
| 204 |
-
|
| 205 |
-
opt_counts = {"O0": 0, "O1": 0, "O2": 0, "O3": 0}
|
| 206 |
-
for sample in samples:
|
| 207 |
-
opt_counts[sample['opt']] += 1
|
| 208 |
-
|
| 209 |
-
f.write("\nSamples per optimization level:\n")
|
| 210 |
-
for opt, count in opt_counts.items():
|
| 211 |
-
f.write(f" {opt}: {count}\n")
|
| 212 |
-
|
| 213 |
-
print(f"Inference completed! Results saved to {args.output_path}")
|
| 214 |
-
print(f"Total {len(samples)} samples processed.")
|
| 215 |
-
```
|
|
|
|
| 9 |
|
| 10 |
Phase 2 Identifier Naming (Skin): Generate human-readable source code with meaningful identifiers 🤗 [HF Link](https://huggingface.co/LLM4Binary/sk2decompile-ident-6.7)
|
| 11 |
|
|
|
|
| 12 |
Usage:
|
| 13 |
```
|
| 14 |
+
python normalize_pseudo.py --input_json reverse_sample.json --output_json reverse_sample.json
|
| 15 |
+
python sk2decompile.py --dataset_path reverse_sample.json --model_path LLM4Binary/sk2decompile-struct-6.7b --recover_model_path LLM4Binary/sk2decompile-ident-6.7
|
| 16 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|