Upload KORMoMoeForCausalLM
Browse files- README.md +199 -0
- config.json +43 -0
- configuration_kormo_moe.py +86 -0
- generation_config.json +7 -0
- model-00001-of-00008.safetensors +3 -0
- model-00002-of-00008.safetensors +3 -0
- model-00003-of-00008.safetensors +3 -0
- model-00004-of-00008.safetensors +3 -0
- model-00005-of-00008.safetensors +3 -0
- model-00006-of-00008.safetensors +3 -0
- model-00007-of-00008.safetensors +3 -0
- model-00008-of-00008.safetensors +3 -0
- model.safetensors.index.json +531 -0
- modeling_kormo_moe.py +574 -0
README.md
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags: []
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
config.json
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"KORMoMoeForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_kormo_moe.KORMoMoeConfig",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_kormo_moe.KORMoMoeForCausalLM"
|
| 10 |
+
},
|
| 11 |
+
"bos_token_id": 125030,
|
| 12 |
+
"decoder_sparse_step": 1,
|
| 13 |
+
"dtype": "bfloat16",
|
| 14 |
+
"eos_token_id": 125040,
|
| 15 |
+
"head_dim": 128,
|
| 16 |
+
"hidden_act": "silu",
|
| 17 |
+
"hidden_size": 4096,
|
| 18 |
+
"initializer_range": 0.02,
|
| 19 |
+
"intermediate_size": 16384,
|
| 20 |
+
"mask_type": null,
|
| 21 |
+
"max_position_embeddings": 131072,
|
| 22 |
+
"mlp_bias": false,
|
| 23 |
+
"model_type": "kormo_moe",
|
| 24 |
+
"moe_intermediate_size": 16384,
|
| 25 |
+
"norm_topk_prob": true,
|
| 26 |
+
"num_attention_heads": 32,
|
| 27 |
+
"num_experts": 2,
|
| 28 |
+
"num_experts_per_tok": 2,
|
| 29 |
+
"num_hidden_layers": 40,
|
| 30 |
+
"num_key_value_heads": 8,
|
| 31 |
+
"pad_token_id": 125032,
|
| 32 |
+
"pretrain_tp": 1,
|
| 33 |
+
"pretraining_tp": 1,
|
| 34 |
+
"rms_norm_eps": 1e-05,
|
| 35 |
+
"rope_scaling": null,
|
| 36 |
+
"rope_theta": 8000000.0,
|
| 37 |
+
"shared_expert_intermediate_size": null,
|
| 38 |
+
"tie_word_embeddings": false,
|
| 39 |
+
"tie_word_embeddins": false,
|
| 40 |
+
"transformers_version": "4.57.0",
|
| 41 |
+
"use_cache": true,
|
| 42 |
+
"vocab_size": 125184
|
| 43 |
+
}
|
configuration_kormo_moe.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# <저장된_모델_경로>/configuration_kormo_moe.py
|
| 2 |
+
|
| 3 |
+
from transformers import PretrainedConfig
|
| 4 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class KORMoMoeConfig(PretrainedConfig):
|
| 8 |
+
model_type = "kormo_moe"
|
| 9 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 10 |
+
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
vocab_size=112576,
|
| 14 |
+
hidden_size=6144,
|
| 15 |
+
intermediate_size=21504,
|
| 16 |
+
num_hidden_layers=48,
|
| 17 |
+
num_attention_heads=40,
|
| 18 |
+
num_key_value_heads=8,
|
| 19 |
+
hidden_act="silu",
|
| 20 |
+
max_position_embeddings=131072,
|
| 21 |
+
initializer_range=0.02,
|
| 22 |
+
rms_norm_eps=1e-05,
|
| 23 |
+
use_cache=True,
|
| 24 |
+
pad_token_id=None,
|
| 25 |
+
bos_token_id=0,
|
| 26 |
+
eos_token_id=1,
|
| 27 |
+
pretraining_tp=1,
|
| 28 |
+
tie_word_embeddings=False,
|
| 29 |
+
rope_theta=500000.0,
|
| 30 |
+
attention_bias=False,
|
| 31 |
+
attention_dropout=0.0,
|
| 32 |
+
rope_scaling=None,
|
| 33 |
+
mlp_bias=False,
|
| 34 |
+
head_dim=128,
|
| 35 |
+
# MoE specific
|
| 36 |
+
num_experts=2,
|
| 37 |
+
num_experts_per_tok=2,
|
| 38 |
+
moe_intermediate_size=None,
|
| 39 |
+
shared_expert_intermediate_size=None,
|
| 40 |
+
norm_topk_prob=True,
|
| 41 |
+
decoder_sparse_step=1,
|
| 42 |
+
**kwargs,
|
| 43 |
+
):
|
| 44 |
+
self.vocab_size = vocab_size
|
| 45 |
+
self.max_position_embeddings = max_position_embeddings
|
| 46 |
+
self.hidden_size = hidden_size
|
| 47 |
+
self.intermediate_size = intermediate_size
|
| 48 |
+
self.num_hidden_layers = num_hidden_layers
|
| 49 |
+
self.num_attention_heads = num_attention_heads
|
| 50 |
+
|
| 51 |
+
if num_key_value_heads is None:
|
| 52 |
+
num_key_value_heads = num_attention_heads
|
| 53 |
+
|
| 54 |
+
self.num_key_value_heads = num_key_value_heads
|
| 55 |
+
self.hidden_act = hidden_act
|
| 56 |
+
self.initializer_range = initializer_range
|
| 57 |
+
self.rms_norm_eps = rms_norm_eps
|
| 58 |
+
self.pretraining_tp = pretraining_tp
|
| 59 |
+
self.use_cache = use_cache
|
| 60 |
+
self.rope_theta = rope_theta
|
| 61 |
+
self.rope_scaling = rope_scaling
|
| 62 |
+
self.attention_bias = attention_bias
|
| 63 |
+
self.attention_dropout = attention_dropout
|
| 64 |
+
self.mlp_bias = mlp_bias
|
| 65 |
+
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
|
| 66 |
+
self.mask_type = None
|
| 67 |
+
|
| 68 |
+
# MoE specific
|
| 69 |
+
self.num_experts = num_experts
|
| 70 |
+
self.num_experts_per_tok = num_experts_per_tok
|
| 71 |
+
self.moe_intermediate_size = moe_intermediate_size if moe_intermediate_size is not None else intermediate_size
|
| 72 |
+
self.shared_expert_intermediate_size = shared_expert_intermediate_size
|
| 73 |
+
self.norm_topk_prob = norm_topk_prob
|
| 74 |
+
self.decoder_sparse_step = decoder_sparse_step
|
| 75 |
+
|
| 76 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 77 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 78 |
+
rope_config_validation(self)
|
| 79 |
+
|
| 80 |
+
super().__init__(
|
| 81 |
+
pad_token_id=pad_token_id,
|
| 82 |
+
bos_token_id=bos_token_id,
|
| 83 |
+
eos_token_id=eos_token_id,
|
| 84 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 85 |
+
**kwargs,
|
| 86 |
+
)
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 125030,
|
| 4 |
+
"eos_token_id": 125040,
|
| 5 |
+
"pad_token_id": 125032,
|
| 6 |
+
"transformers_version": "4.57.0"
|
| 7 |
+
}
|
model-00001-of-00008.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6c1dfa9cefb050062dba0d9a2dada46857381a60c7ca3f3acfdf60e6f009d139
|
| 3 |
+
size 4934753320
|
model-00002-of-00008.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:91f3d80afe8bc8aabb757f98e27055b44edf75729182932cb7cd3a4bedc283ca
|
| 3 |
+
size 4983021920
|
model-00003-of-00008.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b16a41b26b9f43f3d75bf093ce58877a9704b028aa03e732fe3628de7b0dea8f
|
| 3 |
+
size 4932690560
|
model-00004-of-00008.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9f7021347a7d01814ed0dfad2802cbae0ff7f08631c3744654677991952349a9
|
| 3 |
+
size 4932707184
|
model-00005-of-00008.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e44ed78f1682fb3ef95b784aeebe7faae8a670c2b6b8c1d04f074a51695dbe4c
|
| 3 |
+
size 4983005368
|
model-00006-of-00008.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f9acc30f653240e4445f17dd01f2bbd032a204628a7cd3932360f7e92e7a38c5
|
| 3 |
+
size 4932707184
|
model-00007-of-00008.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b56a5a079335c2573b0e74e5e14b4f8997c71f7a051171dc7ffaa03a5ca3a7fa
|
| 3 |
+
size 4983005368
|
model-00008-of-00008.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6aa028f48047eb405328ee1fba2f346c6e2511c060788424fd0484089eb55446
|
| 3 |
+
size 2938203792
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,531 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_parameters": 18810015744,
|
| 4 |
+
"total_size": 37620031488
|
| 5 |
+
},
|
| 6 |
+
"weight_map": {
|
| 7 |
+
"lm_head.weight": "model-00008-of-00008.safetensors",
|
| 8 |
+
"model.embed_tokens.weight": "model-00001-of-00008.safetensors",
|
| 9 |
+
"model.layers.0.mlp.experts.0.down_proj.weight": "model-00001-of-00008.safetensors",
|
| 10 |
+
"model.layers.0.mlp.experts.0.gate_proj.weight": "model-00001-of-00008.safetensors",
|
| 11 |
+
"model.layers.0.mlp.experts.0.up_proj.weight": "model-00001-of-00008.safetensors",
|
| 12 |
+
"model.layers.0.mlp.experts.1.down_proj.weight": "model-00001-of-00008.safetensors",
|
| 13 |
+
"model.layers.0.mlp.experts.1.gate_proj.weight": "model-00001-of-00008.safetensors",
|
| 14 |
+
"model.layers.0.mlp.experts.1.up_proj.weight": "model-00001-of-00008.safetensors",
|
| 15 |
+
"model.layers.0.mlp.gate.linear.weight": "model-00001-of-00008.safetensors",
|
| 16 |
+
"model.layers.0.pre_attention_layernorm.weight": "model-00001-of-00008.safetensors",
|
| 17 |
+
"model.layers.0.pre_mlp_layernorm.weight": "model-00001-of-00008.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
|
| 20 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
|
| 21 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
|
| 22 |
+
"model.layers.1.mlp.experts.0.down_proj.weight": "model-00001-of-00008.safetensors",
|
| 23 |
+
"model.layers.1.mlp.experts.0.gate_proj.weight": "model-00001-of-00008.safetensors",
|
| 24 |
+
"model.layers.1.mlp.experts.0.up_proj.weight": "model-00001-of-00008.safetensors",
|
| 25 |
+
"model.layers.1.mlp.experts.1.down_proj.weight": "model-00001-of-00008.safetensors",
|
| 26 |
+
"model.layers.1.mlp.experts.1.gate_proj.weight": "model-00001-of-00008.safetensors",
|
| 27 |
+
"model.layers.1.mlp.experts.1.up_proj.weight": "model-00001-of-00008.safetensors",
|
| 28 |
+
"model.layers.1.mlp.gate.linear.weight": "model-00001-of-00008.safetensors",
|
| 29 |
+
"model.layers.1.pre_attention_layernorm.weight": "model-00001-of-00008.safetensors",
|
| 30 |
+
"model.layers.1.pre_mlp_layernorm.weight": "model-00001-of-00008.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
|
| 32 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
|
| 33 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
|
| 34 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
|
| 35 |
+
"model.layers.10.mlp.experts.0.down_proj.weight": "model-00003-of-00008.safetensors",
|
| 36 |
+
"model.layers.10.mlp.experts.0.gate_proj.weight": "model-00003-of-00008.safetensors",
|
| 37 |
+
"model.layers.10.mlp.experts.0.up_proj.weight": "model-00003-of-00008.safetensors",
|
| 38 |
+
"model.layers.10.mlp.experts.1.down_proj.weight": "model-00003-of-00008.safetensors",
|
| 39 |
+
"model.layers.10.mlp.experts.1.gate_proj.weight": "model-00003-of-00008.safetensors",
|
| 40 |
+
"model.layers.10.mlp.experts.1.up_proj.weight": "model-00003-of-00008.safetensors",
|
| 41 |
+
"model.layers.10.mlp.gate.linear.weight": "model-00003-of-00008.safetensors",
|
| 42 |
+
"model.layers.10.pre_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
| 43 |
+
"model.layers.10.pre_mlp_layernorm.weight": "model-00003-of-00008.safetensors",
|
| 44 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
| 45 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
| 46 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
| 47 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
| 48 |
+
"model.layers.11.mlp.experts.0.down_proj.weight": "model-00003-of-00008.safetensors",
|
| 49 |
+
"model.layers.11.mlp.experts.0.gate_proj.weight": "model-00003-of-00008.safetensors",
|
| 50 |
+
"model.layers.11.mlp.experts.0.up_proj.weight": "model-00003-of-00008.safetensors",
|
| 51 |
+
"model.layers.11.mlp.experts.1.down_proj.weight": "model-00003-of-00008.safetensors",
|
| 52 |
+
"model.layers.11.mlp.experts.1.gate_proj.weight": "model-00003-of-00008.safetensors",
|
| 53 |
+
"model.layers.11.mlp.experts.1.up_proj.weight": "model-00003-of-00008.safetensors",
|
| 54 |
+
"model.layers.11.mlp.gate.linear.weight": "model-00003-of-00008.safetensors",
|
| 55 |
+
"model.layers.11.pre_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
| 56 |
+
"model.layers.11.pre_mlp_layernorm.weight": "model-00003-of-00008.safetensors",
|
| 57 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
| 58 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
| 59 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
| 60 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
| 61 |
+
"model.layers.12.mlp.experts.0.down_proj.weight": "model-00003-of-00008.safetensors",
|
| 62 |
+
"model.layers.12.mlp.experts.0.gate_proj.weight": "model-00003-of-00008.safetensors",
|
| 63 |
+
"model.layers.12.mlp.experts.0.up_proj.weight": "model-00003-of-00008.safetensors",
|
| 64 |
+
"model.layers.12.mlp.experts.1.down_proj.weight": "model-00003-of-00008.safetensors",
|
| 65 |
+
"model.layers.12.mlp.experts.1.gate_proj.weight": "model-00003-of-00008.safetensors",
|
| 66 |
+
"model.layers.12.mlp.experts.1.up_proj.weight": "model-00003-of-00008.safetensors",
|
| 67 |
+
"model.layers.12.mlp.gate.linear.weight": "model-00003-of-00008.safetensors",
|
| 68 |
+
"model.layers.12.pre_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
| 69 |
+
"model.layers.12.pre_mlp_layernorm.weight": "model-00003-of-00008.safetensors",
|
| 70 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
| 71 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
| 72 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
| 73 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
| 74 |
+
"model.layers.13.mlp.experts.0.down_proj.weight": "model-00003-of-00008.safetensors",
|
| 75 |
+
"model.layers.13.mlp.experts.0.gate_proj.weight": "model-00003-of-00008.safetensors",
|
| 76 |
+
"model.layers.13.mlp.experts.0.up_proj.weight": "model-00003-of-00008.safetensors",
|
| 77 |
+
"model.layers.13.mlp.experts.1.down_proj.weight": "model-00003-of-00008.safetensors",
|
| 78 |
+
"model.layers.13.mlp.experts.1.gate_proj.weight": "model-00003-of-00008.safetensors",
|
| 79 |
+
"model.layers.13.mlp.experts.1.up_proj.weight": "model-00003-of-00008.safetensors",
|
| 80 |
+
"model.layers.13.mlp.gate.linear.weight": "model-00003-of-00008.safetensors",
|
| 81 |
+
"model.layers.13.pre_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
| 82 |
+
"model.layers.13.pre_mlp_layernorm.weight": "model-00003-of-00008.safetensors",
|
| 83 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
| 84 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
| 85 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
| 86 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
| 87 |
+
"model.layers.14.mlp.experts.0.down_proj.weight": "model-00003-of-00008.safetensors",
|
| 88 |
+
"model.layers.14.mlp.experts.0.gate_proj.weight": "model-00003-of-00008.safetensors",
|
| 89 |
+
"model.layers.14.mlp.experts.0.up_proj.weight": "model-00003-of-00008.safetensors",
|
| 90 |
+
"model.layers.14.mlp.experts.1.down_proj.weight": "model-00003-of-00008.safetensors",
|
| 91 |
+
"model.layers.14.mlp.experts.1.gate_proj.weight": "model-00003-of-00008.safetensors",
|
| 92 |
+
"model.layers.14.mlp.experts.1.up_proj.weight": "model-00003-of-00008.safetensors",
|
| 93 |
+
"model.layers.14.mlp.gate.linear.weight": "model-00003-of-00008.safetensors",
|
| 94 |
+
"model.layers.14.pre_attention_layernorm.weight": "model-00003-of-00008.safetensors",
|
| 95 |
+
"model.layers.14.pre_mlp_layernorm.weight": "model-00003-of-00008.safetensors",
|
| 96 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
| 97 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
| 98 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
| 99 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
| 100 |
+
"model.layers.15.mlp.experts.0.down_proj.weight": "model-00003-of-00008.safetensors",
|
| 101 |
+
"model.layers.15.mlp.experts.0.gate_proj.weight": "model-00003-of-00008.safetensors",
|
| 102 |
+
"model.layers.15.mlp.experts.0.up_proj.weight": "model-00003-of-00008.safetensors",
|
| 103 |
+
"model.layers.15.mlp.experts.1.down_proj.weight": "model-00004-of-00008.safetensors",
|
| 104 |
+
"model.layers.15.mlp.experts.1.gate_proj.weight": "model-00004-of-00008.safetensors",
|
| 105 |
+
"model.layers.15.mlp.experts.1.up_proj.weight": "model-00004-of-00008.safetensors",
|
| 106 |
+
"model.layers.15.mlp.gate.linear.weight": "model-00003-of-00008.safetensors",
|
| 107 |
+
"model.layers.15.pre_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
| 108 |
+
"model.layers.15.pre_mlp_layernorm.weight": "model-00004-of-00008.safetensors",
|
| 109 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
|
| 110 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
|
| 111 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
|
| 112 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
|
| 113 |
+
"model.layers.16.mlp.experts.0.down_proj.weight": "model-00004-of-00008.safetensors",
|
| 114 |
+
"model.layers.16.mlp.experts.0.gate_proj.weight": "model-00004-of-00008.safetensors",
|
| 115 |
+
"model.layers.16.mlp.experts.0.up_proj.weight": "model-00004-of-00008.safetensors",
|
| 116 |
+
"model.layers.16.mlp.experts.1.down_proj.weight": "model-00004-of-00008.safetensors",
|
| 117 |
+
"model.layers.16.mlp.experts.1.gate_proj.weight": "model-00004-of-00008.safetensors",
|
| 118 |
+
"model.layers.16.mlp.experts.1.up_proj.weight": "model-00004-of-00008.safetensors",
|
| 119 |
+
"model.layers.16.mlp.gate.linear.weight": "model-00004-of-00008.safetensors",
|
| 120 |
+
"model.layers.16.pre_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
| 121 |
+
"model.layers.16.pre_mlp_layernorm.weight": "model-00004-of-00008.safetensors",
|
| 122 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
| 123 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
| 124 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
| 125 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
| 126 |
+
"model.layers.17.mlp.experts.0.down_proj.weight": "model-00004-of-00008.safetensors",
|
| 127 |
+
"model.layers.17.mlp.experts.0.gate_proj.weight": "model-00004-of-00008.safetensors",
|
| 128 |
+
"model.layers.17.mlp.experts.0.up_proj.weight": "model-00004-of-00008.safetensors",
|
| 129 |
+
"model.layers.17.mlp.experts.1.down_proj.weight": "model-00004-of-00008.safetensors",
|
| 130 |
+
"model.layers.17.mlp.experts.1.gate_proj.weight": "model-00004-of-00008.safetensors",
|
| 131 |
+
"model.layers.17.mlp.experts.1.up_proj.weight": "model-00004-of-00008.safetensors",
|
| 132 |
+
"model.layers.17.mlp.gate.linear.weight": "model-00004-of-00008.safetensors",
|
| 133 |
+
"model.layers.17.pre_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
| 134 |
+
"model.layers.17.pre_mlp_layernorm.weight": "model-00004-of-00008.safetensors",
|
| 135 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
| 136 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
| 137 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
| 138 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
| 139 |
+
"model.layers.18.mlp.experts.0.down_proj.weight": "model-00004-of-00008.safetensors",
|
| 140 |
+
"model.layers.18.mlp.experts.0.gate_proj.weight": "model-00004-of-00008.safetensors",
|
| 141 |
+
"model.layers.18.mlp.experts.0.up_proj.weight": "model-00004-of-00008.safetensors",
|
| 142 |
+
"model.layers.18.mlp.experts.1.down_proj.weight": "model-00004-of-00008.safetensors",
|
| 143 |
+
"model.layers.18.mlp.experts.1.gate_proj.weight": "model-00004-of-00008.safetensors",
|
| 144 |
+
"model.layers.18.mlp.experts.1.up_proj.weight": "model-00004-of-00008.safetensors",
|
| 145 |
+
"model.layers.18.mlp.gate.linear.weight": "model-00004-of-00008.safetensors",
|
| 146 |
+
"model.layers.18.pre_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
| 147 |
+
"model.layers.18.pre_mlp_layernorm.weight": "model-00004-of-00008.safetensors",
|
| 148 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
| 149 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
| 150 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
| 151 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
| 152 |
+
"model.layers.19.mlp.experts.0.down_proj.weight": "model-00004-of-00008.safetensors",
|
| 153 |
+
"model.layers.19.mlp.experts.0.gate_proj.weight": "model-00004-of-00008.safetensors",
|
| 154 |
+
"model.layers.19.mlp.experts.0.up_proj.weight": "model-00004-of-00008.safetensors",
|
| 155 |
+
"model.layers.19.mlp.experts.1.down_proj.weight": "model-00004-of-00008.safetensors",
|
| 156 |
+
"model.layers.19.mlp.experts.1.gate_proj.weight": "model-00004-of-00008.safetensors",
|
| 157 |
+
"model.layers.19.mlp.experts.1.up_proj.weight": "model-00004-of-00008.safetensors",
|
| 158 |
+
"model.layers.19.mlp.gate.linear.weight": "model-00004-of-00008.safetensors",
|
| 159 |
+
"model.layers.19.pre_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
| 160 |
+
"model.layers.19.pre_mlp_layernorm.weight": "model-00004-of-00008.safetensors",
|
| 161 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
| 162 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
| 163 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
| 164 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
| 165 |
+
"model.layers.2.mlp.experts.0.down_proj.weight": "model-00001-of-00008.safetensors",
|
| 166 |
+
"model.layers.2.mlp.experts.0.gate_proj.weight": "model-00001-of-00008.safetensors",
|
| 167 |
+
"model.layers.2.mlp.experts.0.up_proj.weight": "model-00001-of-00008.safetensors",
|
| 168 |
+
"model.layers.2.mlp.experts.1.down_proj.weight": "model-00001-of-00008.safetensors",
|
| 169 |
+
"model.layers.2.mlp.experts.1.gate_proj.weight": "model-00001-of-00008.safetensors",
|
| 170 |
+
"model.layers.2.mlp.experts.1.up_proj.weight": "model-00001-of-00008.safetensors",
|
| 171 |
+
"model.layers.2.mlp.gate.linear.weight": "model-00001-of-00008.safetensors",
|
| 172 |
+
"model.layers.2.pre_attention_layernorm.weight": "model-00001-of-00008.safetensors",
|
| 173 |
+
"model.layers.2.pre_mlp_layernorm.weight": "model-00001-of-00008.safetensors",
|
| 174 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
|
| 175 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
|
| 176 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
|
| 177 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
|
| 178 |
+
"model.layers.20.mlp.experts.0.down_proj.weight": "model-00004-of-00008.safetensors",
|
| 179 |
+
"model.layers.20.mlp.experts.0.gate_proj.weight": "model-00004-of-00008.safetensors",
|
| 180 |
+
"model.layers.20.mlp.experts.0.up_proj.weight": "model-00004-of-00008.safetensors",
|
| 181 |
+
"model.layers.20.mlp.experts.1.down_proj.weight": "model-00004-of-00008.safetensors",
|
| 182 |
+
"model.layers.20.mlp.experts.1.gate_proj.weight": "model-00004-of-00008.safetensors",
|
| 183 |
+
"model.layers.20.mlp.experts.1.up_proj.weight": "model-00004-of-00008.safetensors",
|
| 184 |
+
"model.layers.20.mlp.gate.linear.weight": "model-00004-of-00008.safetensors",
|
| 185 |
+
"model.layers.20.pre_attention_layernorm.weight": "model-00004-of-00008.safetensors",
|
| 186 |
+
"model.layers.20.pre_mlp_layernorm.weight": "model-00004-of-00008.safetensors",
|
| 187 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
| 188 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
| 189 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
| 190 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
| 191 |
+
"model.layers.21.mlp.experts.0.down_proj.weight": "model-00005-of-00008.safetensors",
|
| 192 |
+
"model.layers.21.mlp.experts.0.gate_proj.weight": "model-00005-of-00008.safetensors",
|
| 193 |
+
"model.layers.21.mlp.experts.0.up_proj.weight": "model-00005-of-00008.safetensors",
|
| 194 |
+
"model.layers.21.mlp.experts.1.down_proj.weight": "model-00005-of-00008.safetensors",
|
| 195 |
+
"model.layers.21.mlp.experts.1.gate_proj.weight": "model-00005-of-00008.safetensors",
|
| 196 |
+
"model.layers.21.mlp.experts.1.up_proj.weight": "model-00005-of-00008.safetensors",
|
| 197 |
+
"model.layers.21.mlp.gate.linear.weight": "model-00004-of-00008.safetensors",
|
| 198 |
+
"model.layers.21.pre_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
| 199 |
+
"model.layers.21.pre_mlp_layernorm.weight": "model-00005-of-00008.safetensors",
|
| 200 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
|
| 201 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
|
| 202 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
|
| 203 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
|
| 204 |
+
"model.layers.22.mlp.experts.0.down_proj.weight": "model-00005-of-00008.safetensors",
|
| 205 |
+
"model.layers.22.mlp.experts.0.gate_proj.weight": "model-00005-of-00008.safetensors",
|
| 206 |
+
"model.layers.22.mlp.experts.0.up_proj.weight": "model-00005-of-00008.safetensors",
|
| 207 |
+
"model.layers.22.mlp.experts.1.down_proj.weight": "model-00005-of-00008.safetensors",
|
| 208 |
+
"model.layers.22.mlp.experts.1.gate_proj.weight": "model-00005-of-00008.safetensors",
|
| 209 |
+
"model.layers.22.mlp.experts.1.up_proj.weight": "model-00005-of-00008.safetensors",
|
| 210 |
+
"model.layers.22.mlp.gate.linear.weight": "model-00005-of-00008.safetensors",
|
| 211 |
+
"model.layers.22.pre_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
| 212 |
+
"model.layers.22.pre_mlp_layernorm.weight": "model-00005-of-00008.safetensors",
|
| 213 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
| 214 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
| 215 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
| 216 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
| 217 |
+
"model.layers.23.mlp.experts.0.down_proj.weight": "model-00005-of-00008.safetensors",
|
| 218 |
+
"model.layers.23.mlp.experts.0.gate_proj.weight": "model-00005-of-00008.safetensors",
|
| 219 |
+
"model.layers.23.mlp.experts.0.up_proj.weight": "model-00005-of-00008.safetensors",
|
| 220 |
+
"model.layers.23.mlp.experts.1.down_proj.weight": "model-00005-of-00008.safetensors",
|
| 221 |
+
"model.layers.23.mlp.experts.1.gate_proj.weight": "model-00005-of-00008.safetensors",
|
| 222 |
+
"model.layers.23.mlp.experts.1.up_proj.weight": "model-00005-of-00008.safetensors",
|
| 223 |
+
"model.layers.23.mlp.gate.linear.weight": "model-00005-of-00008.safetensors",
|
| 224 |
+
"model.layers.23.pre_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
| 225 |
+
"model.layers.23.pre_mlp_layernorm.weight": "model-00005-of-00008.safetensors",
|
| 226 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
| 227 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
| 228 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
| 229 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
| 230 |
+
"model.layers.24.mlp.experts.0.down_proj.weight": "model-00005-of-00008.safetensors",
|
| 231 |
+
"model.layers.24.mlp.experts.0.gate_proj.weight": "model-00005-of-00008.safetensors",
|
| 232 |
+
"model.layers.24.mlp.experts.0.up_proj.weight": "model-00005-of-00008.safetensors",
|
| 233 |
+
"model.layers.24.mlp.experts.1.down_proj.weight": "model-00005-of-00008.safetensors",
|
| 234 |
+
"model.layers.24.mlp.experts.1.gate_proj.weight": "model-00005-of-00008.safetensors",
|
| 235 |
+
"model.layers.24.mlp.experts.1.up_proj.weight": "model-00005-of-00008.safetensors",
|
| 236 |
+
"model.layers.24.mlp.gate.linear.weight": "model-00005-of-00008.safetensors",
|
| 237 |
+
"model.layers.24.pre_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
| 238 |
+
"model.layers.24.pre_mlp_layernorm.weight": "model-00005-of-00008.safetensors",
|
| 239 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
| 240 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
| 241 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
| 242 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
| 243 |
+
"model.layers.25.mlp.experts.0.down_proj.weight": "model-00005-of-00008.safetensors",
|
| 244 |
+
"model.layers.25.mlp.experts.0.gate_proj.weight": "model-00005-of-00008.safetensors",
|
| 245 |
+
"model.layers.25.mlp.experts.0.up_proj.weight": "model-00005-of-00008.safetensors",
|
| 246 |
+
"model.layers.25.mlp.experts.1.down_proj.weight": "model-00005-of-00008.safetensors",
|
| 247 |
+
"model.layers.25.mlp.experts.1.gate_proj.weight": "model-00005-of-00008.safetensors",
|
| 248 |
+
"model.layers.25.mlp.experts.1.up_proj.weight": "model-00005-of-00008.safetensors",
|
| 249 |
+
"model.layers.25.mlp.gate.linear.weight": "model-00005-of-00008.safetensors",
|
| 250 |
+
"model.layers.25.pre_attention_layernorm.weight": "model-00005-of-00008.safetensors",
|
| 251 |
+
"model.layers.25.pre_mlp_layernorm.weight": "model-00005-of-00008.safetensors",
|
| 252 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
| 253 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
| 254 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
| 255 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
| 256 |
+
"model.layers.26.mlp.experts.0.down_proj.weight": "model-00005-of-00008.safetensors",
|
| 257 |
+
"model.layers.26.mlp.experts.0.gate_proj.weight": "model-00005-of-00008.safetensors",
|
| 258 |
+
"model.layers.26.mlp.experts.0.up_proj.weight": "model-00005-of-00008.safetensors",
|
| 259 |
+
"model.layers.26.mlp.experts.1.down_proj.weight": "model-00006-of-00008.safetensors",
|
| 260 |
+
"model.layers.26.mlp.experts.1.gate_proj.weight": "model-00005-of-00008.safetensors",
|
| 261 |
+
"model.layers.26.mlp.experts.1.up_proj.weight": "model-00006-of-00008.safetensors",
|
| 262 |
+
"model.layers.26.mlp.gate.linear.weight": "model-00005-of-00008.safetensors",
|
| 263 |
+
"model.layers.26.pre_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
| 264 |
+
"model.layers.26.pre_mlp_layernorm.weight": "model-00006-of-00008.safetensors",
|
| 265 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
|
| 266 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
|
| 267 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
|
| 268 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
|
| 269 |
+
"model.layers.27.mlp.experts.0.down_proj.weight": "model-00006-of-00008.safetensors",
|
| 270 |
+
"model.layers.27.mlp.experts.0.gate_proj.weight": "model-00006-of-00008.safetensors",
|
| 271 |
+
"model.layers.27.mlp.experts.0.up_proj.weight": "model-00006-of-00008.safetensors",
|
| 272 |
+
"model.layers.27.mlp.experts.1.down_proj.weight": "model-00006-of-00008.safetensors",
|
| 273 |
+
"model.layers.27.mlp.experts.1.gate_proj.weight": "model-00006-of-00008.safetensors",
|
| 274 |
+
"model.layers.27.mlp.experts.1.up_proj.weight": "model-00006-of-00008.safetensors",
|
| 275 |
+
"model.layers.27.mlp.gate.linear.weight": "model-00006-of-00008.safetensors",
|
| 276 |
+
"model.layers.27.pre_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
| 277 |
+
"model.layers.27.pre_mlp_layernorm.weight": "model-00006-of-00008.safetensors",
|
| 278 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
| 279 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
| 280 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
| 281 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
| 282 |
+
"model.layers.28.mlp.experts.0.down_proj.weight": "model-00006-of-00008.safetensors",
|
| 283 |
+
"model.layers.28.mlp.experts.0.gate_proj.weight": "model-00006-of-00008.safetensors",
|
| 284 |
+
"model.layers.28.mlp.experts.0.up_proj.weight": "model-00006-of-00008.safetensors",
|
| 285 |
+
"model.layers.28.mlp.experts.1.down_proj.weight": "model-00006-of-00008.safetensors",
|
| 286 |
+
"model.layers.28.mlp.experts.1.gate_proj.weight": "model-00006-of-00008.safetensors",
|
| 287 |
+
"model.layers.28.mlp.experts.1.up_proj.weight": "model-00006-of-00008.safetensors",
|
| 288 |
+
"model.layers.28.mlp.gate.linear.weight": "model-00006-of-00008.safetensors",
|
| 289 |
+
"model.layers.28.pre_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
| 290 |
+
"model.layers.28.pre_mlp_layernorm.weight": "model-00006-of-00008.safetensors",
|
| 291 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
| 292 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
| 293 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
| 294 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
| 295 |
+
"model.layers.29.mlp.experts.0.down_proj.weight": "model-00006-of-00008.safetensors",
|
| 296 |
+
"model.layers.29.mlp.experts.0.gate_proj.weight": "model-00006-of-00008.safetensors",
|
| 297 |
+
"model.layers.29.mlp.experts.0.up_proj.weight": "model-00006-of-00008.safetensors",
|
| 298 |
+
"model.layers.29.mlp.experts.1.down_proj.weight": "model-00006-of-00008.safetensors",
|
| 299 |
+
"model.layers.29.mlp.experts.1.gate_proj.weight": "model-00006-of-00008.safetensors",
|
| 300 |
+
"model.layers.29.mlp.experts.1.up_proj.weight": "model-00006-of-00008.safetensors",
|
| 301 |
+
"model.layers.29.mlp.gate.linear.weight": "model-00006-of-00008.safetensors",
|
| 302 |
+
"model.layers.29.pre_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
| 303 |
+
"model.layers.29.pre_mlp_layernorm.weight": "model-00006-of-00008.safetensors",
|
| 304 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
| 305 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
| 306 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
| 307 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
| 308 |
+
"model.layers.3.mlp.experts.0.down_proj.weight": "model-00001-of-00008.safetensors",
|
| 309 |
+
"model.layers.3.mlp.experts.0.gate_proj.weight": "model-00001-of-00008.safetensors",
|
| 310 |
+
"model.layers.3.mlp.experts.0.up_proj.weight": "model-00001-of-00008.safetensors",
|
| 311 |
+
"model.layers.3.mlp.experts.1.down_proj.weight": "model-00001-of-00008.safetensors",
|
| 312 |
+
"model.layers.3.mlp.experts.1.gate_proj.weight": "model-00001-of-00008.safetensors",
|
| 313 |
+
"model.layers.3.mlp.experts.1.up_proj.weight": "model-00001-of-00008.safetensors",
|
| 314 |
+
"model.layers.3.mlp.gate.linear.weight": "model-00001-of-00008.safetensors",
|
| 315 |
+
"model.layers.3.pre_attention_layernorm.weight": "model-00001-of-00008.safetensors",
|
| 316 |
+
"model.layers.3.pre_mlp_layernorm.weight": "model-00001-of-00008.safetensors",
|
| 317 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
|
| 318 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
|
| 319 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
|
| 320 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
|
| 321 |
+
"model.layers.30.mlp.experts.0.down_proj.weight": "model-00006-of-00008.safetensors",
|
| 322 |
+
"model.layers.30.mlp.experts.0.gate_proj.weight": "model-00006-of-00008.safetensors",
|
| 323 |
+
"model.layers.30.mlp.experts.0.up_proj.weight": "model-00006-of-00008.safetensors",
|
| 324 |
+
"model.layers.30.mlp.experts.1.down_proj.weight": "model-00006-of-00008.safetensors",
|
| 325 |
+
"model.layers.30.mlp.experts.1.gate_proj.weight": "model-00006-of-00008.safetensors",
|
| 326 |
+
"model.layers.30.mlp.experts.1.up_proj.weight": "model-00006-of-00008.safetensors",
|
| 327 |
+
"model.layers.30.mlp.gate.linear.weight": "model-00006-of-00008.safetensors",
|
| 328 |
+
"model.layers.30.pre_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
| 329 |
+
"model.layers.30.pre_mlp_layernorm.weight": "model-00006-of-00008.safetensors",
|
| 330 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
| 331 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
| 332 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
| 333 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
| 334 |
+
"model.layers.31.mlp.experts.0.down_proj.weight": "model-00006-of-00008.safetensors",
|
| 335 |
+
"model.layers.31.mlp.experts.0.gate_proj.weight": "model-00006-of-00008.safetensors",
|
| 336 |
+
"model.layers.31.mlp.experts.0.up_proj.weight": "model-00006-of-00008.safetensors",
|
| 337 |
+
"model.layers.31.mlp.experts.1.down_proj.weight": "model-00006-of-00008.safetensors",
|
| 338 |
+
"model.layers.31.mlp.experts.1.gate_proj.weight": "model-00006-of-00008.safetensors",
|
| 339 |
+
"model.layers.31.mlp.experts.1.up_proj.weight": "model-00006-of-00008.safetensors",
|
| 340 |
+
"model.layers.31.mlp.gate.linear.weight": "model-00006-of-00008.safetensors",
|
| 341 |
+
"model.layers.31.pre_attention_layernorm.weight": "model-00006-of-00008.safetensors",
|
| 342 |
+
"model.layers.31.pre_mlp_layernorm.weight": "model-00006-of-00008.safetensors",
|
| 343 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
| 344 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
| 345 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
| 346 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
| 347 |
+
"model.layers.32.mlp.experts.0.down_proj.weight": "model-00007-of-00008.safetensors",
|
| 348 |
+
"model.layers.32.mlp.experts.0.gate_proj.weight": "model-00006-of-00008.safetensors",
|
| 349 |
+
"model.layers.32.mlp.experts.0.up_proj.weight": "model-00007-of-00008.safetensors",
|
| 350 |
+
"model.layers.32.mlp.experts.1.down_proj.weight": "model-00007-of-00008.safetensors",
|
| 351 |
+
"model.layers.32.mlp.experts.1.gate_proj.weight": "model-00007-of-00008.safetensors",
|
| 352 |
+
"model.layers.32.mlp.experts.1.up_proj.weight": "model-00007-of-00008.safetensors",
|
| 353 |
+
"model.layers.32.mlp.gate.linear.weight": "model-00006-of-00008.safetensors",
|
| 354 |
+
"model.layers.32.pre_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
| 355 |
+
"model.layers.32.pre_mlp_layernorm.weight": "model-00007-of-00008.safetensors",
|
| 356 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
|
| 357 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
|
| 358 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
|
| 359 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
|
| 360 |
+
"model.layers.33.mlp.experts.0.down_proj.weight": "model-00007-of-00008.safetensors",
|
| 361 |
+
"model.layers.33.mlp.experts.0.gate_proj.weight": "model-00007-of-00008.safetensors",
|
| 362 |
+
"model.layers.33.mlp.experts.0.up_proj.weight": "model-00007-of-00008.safetensors",
|
| 363 |
+
"model.layers.33.mlp.experts.1.down_proj.weight": "model-00007-of-00008.safetensors",
|
| 364 |
+
"model.layers.33.mlp.experts.1.gate_proj.weight": "model-00007-of-00008.safetensors",
|
| 365 |
+
"model.layers.33.mlp.experts.1.up_proj.weight": "model-00007-of-00008.safetensors",
|
| 366 |
+
"model.layers.33.mlp.gate.linear.weight": "model-00007-of-00008.safetensors",
|
| 367 |
+
"model.layers.33.pre_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
| 368 |
+
"model.layers.33.pre_mlp_layernorm.weight": "model-00007-of-00008.safetensors",
|
| 369 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
| 370 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
| 371 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
| 372 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
| 373 |
+
"model.layers.34.mlp.experts.0.down_proj.weight": "model-00007-of-00008.safetensors",
|
| 374 |
+
"model.layers.34.mlp.experts.0.gate_proj.weight": "model-00007-of-00008.safetensors",
|
| 375 |
+
"model.layers.34.mlp.experts.0.up_proj.weight": "model-00007-of-00008.safetensors",
|
| 376 |
+
"model.layers.34.mlp.experts.1.down_proj.weight": "model-00007-of-00008.safetensors",
|
| 377 |
+
"model.layers.34.mlp.experts.1.gate_proj.weight": "model-00007-of-00008.safetensors",
|
| 378 |
+
"model.layers.34.mlp.experts.1.up_proj.weight": "model-00007-of-00008.safetensors",
|
| 379 |
+
"model.layers.34.mlp.gate.linear.weight": "model-00007-of-00008.safetensors",
|
| 380 |
+
"model.layers.34.pre_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
| 381 |
+
"model.layers.34.pre_mlp_layernorm.weight": "model-00007-of-00008.safetensors",
|
| 382 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
| 383 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
| 384 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
| 385 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
| 386 |
+
"model.layers.35.mlp.experts.0.down_proj.weight": "model-00007-of-00008.safetensors",
|
| 387 |
+
"model.layers.35.mlp.experts.0.gate_proj.weight": "model-00007-of-00008.safetensors",
|
| 388 |
+
"model.layers.35.mlp.experts.0.up_proj.weight": "model-00007-of-00008.safetensors",
|
| 389 |
+
"model.layers.35.mlp.experts.1.down_proj.weight": "model-00007-of-00008.safetensors",
|
| 390 |
+
"model.layers.35.mlp.experts.1.gate_proj.weight": "model-00007-of-00008.safetensors",
|
| 391 |
+
"model.layers.35.mlp.experts.1.up_proj.weight": "model-00007-of-00008.safetensors",
|
| 392 |
+
"model.layers.35.mlp.gate.linear.weight": "model-00007-of-00008.safetensors",
|
| 393 |
+
"model.layers.35.pre_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
| 394 |
+
"model.layers.35.pre_mlp_layernorm.weight": "model-00007-of-00008.safetensors",
|
| 395 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
| 396 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
| 397 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
| 398 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
| 399 |
+
"model.layers.36.mlp.experts.0.down_proj.weight": "model-00007-of-00008.safetensors",
|
| 400 |
+
"model.layers.36.mlp.experts.0.gate_proj.weight": "model-00007-of-00008.safetensors",
|
| 401 |
+
"model.layers.36.mlp.experts.0.up_proj.weight": "model-00007-of-00008.safetensors",
|
| 402 |
+
"model.layers.36.mlp.experts.1.down_proj.weight": "model-00007-of-00008.safetensors",
|
| 403 |
+
"model.layers.36.mlp.experts.1.gate_proj.weight": "model-00007-of-00008.safetensors",
|
| 404 |
+
"model.layers.36.mlp.experts.1.up_proj.weight": "model-00007-of-00008.safetensors",
|
| 405 |
+
"model.layers.36.mlp.gate.linear.weight": "model-00007-of-00008.safetensors",
|
| 406 |
+
"model.layers.36.pre_attention_layernorm.weight": "model-00007-of-00008.safetensors",
|
| 407 |
+
"model.layers.36.pre_mlp_layernorm.weight": "model-00007-of-00008.safetensors",
|
| 408 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
| 409 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
| 410 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
| 411 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
| 412 |
+
"model.layers.37.mlp.experts.0.down_proj.weight": "model-00007-of-00008.safetensors",
|
| 413 |
+
"model.layers.37.mlp.experts.0.gate_proj.weight": "model-00007-of-00008.safetensors",
|
| 414 |
+
"model.layers.37.mlp.experts.0.up_proj.weight": "model-00007-of-00008.safetensors",
|
| 415 |
+
"model.layers.37.mlp.experts.1.down_proj.weight": "model-00008-of-00008.safetensors",
|
| 416 |
+
"model.layers.37.mlp.experts.1.gate_proj.weight": "model-00007-of-00008.safetensors",
|
| 417 |
+
"model.layers.37.mlp.experts.1.up_proj.weight": "model-00007-of-00008.safetensors",
|
| 418 |
+
"model.layers.37.mlp.gate.linear.weight": "model-00007-of-00008.safetensors",
|
| 419 |
+
"model.layers.37.pre_attention_layernorm.weight": "model-00008-of-00008.safetensors",
|
| 420 |
+
"model.layers.37.pre_mlp_layernorm.weight": "model-00008-of-00008.safetensors",
|
| 421 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
|
| 422 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
|
| 423 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
|
| 424 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
|
| 425 |
+
"model.layers.38.mlp.experts.0.down_proj.weight": "model-00008-of-00008.safetensors",
|
| 426 |
+
"model.layers.38.mlp.experts.0.gate_proj.weight": "model-00008-of-00008.safetensors",
|
| 427 |
+
"model.layers.38.mlp.experts.0.up_proj.weight": "model-00008-of-00008.safetensors",
|
| 428 |
+
"model.layers.38.mlp.experts.1.down_proj.weight": "model-00008-of-00008.safetensors",
|
| 429 |
+
"model.layers.38.mlp.experts.1.gate_proj.weight": "model-00008-of-00008.safetensors",
|
| 430 |
+
"model.layers.38.mlp.experts.1.up_proj.weight": "model-00008-of-00008.safetensors",
|
| 431 |
+
"model.layers.38.mlp.gate.linear.weight": "model-00008-of-00008.safetensors",
|
| 432 |
+
"model.layers.38.pre_attention_layernorm.weight": "model-00008-of-00008.safetensors",
|
| 433 |
+
"model.layers.38.pre_mlp_layernorm.weight": "model-00008-of-00008.safetensors",
|
| 434 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00008-of-00008.safetensors",
|
| 435 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00008-of-00008.safetensors",
|
| 436 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00008-of-00008.safetensors",
|
| 437 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00008-of-00008.safetensors",
|
| 438 |
+
"model.layers.39.mlp.experts.0.down_proj.weight": "model-00008-of-00008.safetensors",
|
| 439 |
+
"model.layers.39.mlp.experts.0.gate_proj.weight": "model-00008-of-00008.safetensors",
|
| 440 |
+
"model.layers.39.mlp.experts.0.up_proj.weight": "model-00008-of-00008.safetensors",
|
| 441 |
+
"model.layers.39.mlp.experts.1.down_proj.weight": "model-00008-of-00008.safetensors",
|
| 442 |
+
"model.layers.39.mlp.experts.1.gate_proj.weight": "model-00008-of-00008.safetensors",
|
| 443 |
+
"model.layers.39.mlp.experts.1.up_proj.weight": "model-00008-of-00008.safetensors",
|
| 444 |
+
"model.layers.39.mlp.gate.linear.weight": "model-00008-of-00008.safetensors",
|
| 445 |
+
"model.layers.39.pre_attention_layernorm.weight": "model-00008-of-00008.safetensors",
|
| 446 |
+
"model.layers.39.pre_mlp_layernorm.weight": "model-00008-of-00008.safetensors",
|
| 447 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00008-of-00008.safetensors",
|
| 448 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00008-of-00008.safetensors",
|
| 449 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00008-of-00008.safetensors",
|
| 450 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00008-of-00008.safetensors",
|
| 451 |
+
"model.layers.4.mlp.experts.0.down_proj.weight": "model-00002-of-00008.safetensors",
|
| 452 |
+
"model.layers.4.mlp.experts.0.gate_proj.weight": "model-00001-of-00008.safetensors",
|
| 453 |
+
"model.layers.4.mlp.experts.0.up_proj.weight": "model-00001-of-00008.safetensors",
|
| 454 |
+
"model.layers.4.mlp.experts.1.down_proj.weight": "model-00002-of-00008.safetensors",
|
| 455 |
+
"model.layers.4.mlp.experts.1.gate_proj.weight": "model-00002-of-00008.safetensors",
|
| 456 |
+
"model.layers.4.mlp.experts.1.up_proj.weight": "model-00002-of-00008.safetensors",
|
| 457 |
+
"model.layers.4.mlp.gate.linear.weight": "model-00001-of-00008.safetensors",
|
| 458 |
+
"model.layers.4.pre_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
| 459 |
+
"model.layers.4.pre_mlp_layernorm.weight": "model-00002-of-00008.safetensors",
|
| 460 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
|
| 461 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
|
| 462 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
|
| 463 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
|
| 464 |
+
"model.layers.5.mlp.experts.0.down_proj.weight": "model-00002-of-00008.safetensors",
|
| 465 |
+
"model.layers.5.mlp.experts.0.gate_proj.weight": "model-00002-of-00008.safetensors",
|
| 466 |
+
"model.layers.5.mlp.experts.0.up_proj.weight": "model-00002-of-00008.safetensors",
|
| 467 |
+
"model.layers.5.mlp.experts.1.down_proj.weight": "model-00002-of-00008.safetensors",
|
| 468 |
+
"model.layers.5.mlp.experts.1.gate_proj.weight": "model-00002-of-00008.safetensors",
|
| 469 |
+
"model.layers.5.mlp.experts.1.up_proj.weight": "model-00002-of-00008.safetensors",
|
| 470 |
+
"model.layers.5.mlp.gate.linear.weight": "model-00002-of-00008.safetensors",
|
| 471 |
+
"model.layers.5.pre_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
| 472 |
+
"model.layers.5.pre_mlp_layernorm.weight": "model-00002-of-00008.safetensors",
|
| 473 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
| 474 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
| 475 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
| 476 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
| 477 |
+
"model.layers.6.mlp.experts.0.down_proj.weight": "model-00002-of-00008.safetensors",
|
| 478 |
+
"model.layers.6.mlp.experts.0.gate_proj.weight": "model-00002-of-00008.safetensors",
|
| 479 |
+
"model.layers.6.mlp.experts.0.up_proj.weight": "model-00002-of-00008.safetensors",
|
| 480 |
+
"model.layers.6.mlp.experts.1.down_proj.weight": "model-00002-of-00008.safetensors",
|
| 481 |
+
"model.layers.6.mlp.experts.1.gate_proj.weight": "model-00002-of-00008.safetensors",
|
| 482 |
+
"model.layers.6.mlp.experts.1.up_proj.weight": "model-00002-of-00008.safetensors",
|
| 483 |
+
"model.layers.6.mlp.gate.linear.weight": "model-00002-of-00008.safetensors",
|
| 484 |
+
"model.layers.6.pre_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
| 485 |
+
"model.layers.6.pre_mlp_layernorm.weight": "model-00002-of-00008.safetensors",
|
| 486 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
| 487 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
| 488 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
| 489 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
| 490 |
+
"model.layers.7.mlp.experts.0.down_proj.weight": "model-00002-of-00008.safetensors",
|
| 491 |
+
"model.layers.7.mlp.experts.0.gate_proj.weight": "model-00002-of-00008.safetensors",
|
| 492 |
+
"model.layers.7.mlp.experts.0.up_proj.weight": "model-00002-of-00008.safetensors",
|
| 493 |
+
"model.layers.7.mlp.experts.1.down_proj.weight": "model-00002-of-00008.safetensors",
|
| 494 |
+
"model.layers.7.mlp.experts.1.gate_proj.weight": "model-00002-of-00008.safetensors",
|
| 495 |
+
"model.layers.7.mlp.experts.1.up_proj.weight": "model-00002-of-00008.safetensors",
|
| 496 |
+
"model.layers.7.mlp.gate.linear.weight": "model-00002-of-00008.safetensors",
|
| 497 |
+
"model.layers.7.pre_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
| 498 |
+
"model.layers.7.pre_mlp_layernorm.weight": "model-00002-of-00008.safetensors",
|
| 499 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
| 500 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
| 501 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
| 502 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
| 503 |
+
"model.layers.8.mlp.experts.0.down_proj.weight": "model-00002-of-00008.safetensors",
|
| 504 |
+
"model.layers.8.mlp.experts.0.gate_proj.weight": "model-00002-of-00008.safetensors",
|
| 505 |
+
"model.layers.8.mlp.experts.0.up_proj.weight": "model-00002-of-00008.safetensors",
|
| 506 |
+
"model.layers.8.mlp.experts.1.down_proj.weight": "model-00002-of-00008.safetensors",
|
| 507 |
+
"model.layers.8.mlp.experts.1.gate_proj.weight": "model-00002-of-00008.safetensors",
|
| 508 |
+
"model.layers.8.mlp.experts.1.up_proj.weight": "model-00002-of-00008.safetensors",
|
| 509 |
+
"model.layers.8.mlp.gate.linear.weight": "model-00002-of-00008.safetensors",
|
| 510 |
+
"model.layers.8.pre_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
| 511 |
+
"model.layers.8.pre_mlp_layernorm.weight": "model-00002-of-00008.safetensors",
|
| 512 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
| 513 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
| 514 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
| 515 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
| 516 |
+
"model.layers.9.mlp.experts.0.down_proj.weight": "model-00002-of-00008.safetensors",
|
| 517 |
+
"model.layers.9.mlp.experts.0.gate_proj.weight": "model-00002-of-00008.safetensors",
|
| 518 |
+
"model.layers.9.mlp.experts.0.up_proj.weight": "model-00002-of-00008.safetensors",
|
| 519 |
+
"model.layers.9.mlp.experts.1.down_proj.weight": "model-00002-of-00008.safetensors",
|
| 520 |
+
"model.layers.9.mlp.experts.1.gate_proj.weight": "model-00002-of-00008.safetensors",
|
| 521 |
+
"model.layers.9.mlp.experts.1.up_proj.weight": "model-00002-of-00008.safetensors",
|
| 522 |
+
"model.layers.9.mlp.gate.linear.weight": "model-00002-of-00008.safetensors",
|
| 523 |
+
"model.layers.9.pre_attention_layernorm.weight": "model-00002-of-00008.safetensors",
|
| 524 |
+
"model.layers.9.pre_mlp_layernorm.weight": "model-00002-of-00008.safetensors",
|
| 525 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
|
| 526 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
|
| 527 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
|
| 528 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
|
| 529 |
+
"model.norm.weight": "model-00008-of-00008.safetensors"
|
| 530 |
+
}
|
| 531 |
+
}
|
modeling_kormo_moe.py
ADDED
|
@@ -0,0 +1,574 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Callable, List, Optional, Tuple, Union, Dict
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
from transformers.activations import ACT2FN
|
| 7 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 8 |
+
from transformers.generation import GenerationMixin
|
| 9 |
+
from transformers.integrations import use_kernel_forward_from_hub
|
| 10 |
+
from transformers.masking_utils import create_causal_mask
|
| 11 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 12 |
+
from transformers.modeling_layers import GradientCheckpointingLayer
|
| 13 |
+
from transformers.modeling_outputs import (
|
| 14 |
+
BaseModelOutputWithPast,
|
| 15 |
+
CausalLMOutputWithPast,
|
| 16 |
+
)
|
| 17 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
| 18 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
| 19 |
+
from transformers.processing_utils import Unpack
|
| 20 |
+
from transformers.utils import can_return_tuple, logging
|
| 21 |
+
from .configuration_kormo_moe import KORMoMoeConfig
|
| 22 |
+
|
| 23 |
+
logger = logging.get_logger(__name__)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
@use_kernel_forward_from_hub("RMSNorm")
|
| 27 |
+
class RMSNorm(nn.Module):
|
| 28 |
+
"""KORMoRMSNorm is equivalent to T5LayerNorm"""
|
| 29 |
+
def __init__(self, hidden_size: int, eps: float = 1e-6):
|
| 30 |
+
super().__init__()
|
| 31 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 32 |
+
self.variance_epsilon = eps
|
| 33 |
+
|
| 34 |
+
def forward(self, hidden_states):
|
| 35 |
+
input_dtype = hidden_states.dtype
|
| 36 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 37 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 38 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 39 |
+
return (self.weight * hidden_states).to(input_dtype)
|
| 40 |
+
|
| 41 |
+
def extra_repr(self):
|
| 42 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 46 |
+
"""
|
| 47 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 48 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 49 |
+
"""
|
| 50 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 51 |
+
if n_rep == 1:
|
| 52 |
+
return hidden_states
|
| 53 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 54 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def eager_attention_forward(
|
| 58 |
+
module: nn.Module,
|
| 59 |
+
query: torch.Tensor,
|
| 60 |
+
key: torch.Tensor,
|
| 61 |
+
value: torch.Tensor,
|
| 62 |
+
attention_mask: Optional[torch.Tensor],
|
| 63 |
+
scaling: float,
|
| 64 |
+
dropout: float = 0.0,
|
| 65 |
+
**kwargs,
|
| 66 |
+
):
|
| 67 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 68 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 69 |
+
|
| 70 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
| 71 |
+
if attention_mask is not None:
|
| 72 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 73 |
+
attn_weights = attn_weights + causal_mask
|
| 74 |
+
|
| 75 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
| 76 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
| 77 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 78 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 79 |
+
|
| 80 |
+
return attn_output, attn_weights
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
|
| 84 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 85 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 86 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 87 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 88 |
+
return q_embed.to(q.dtype), k_embed.to(k.dtype)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def rotate_half(x):
|
| 92 |
+
"""Rotates half the hidden dims of the input."""
|
| 93 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 94 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 95 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class Attention(nn.Module):
|
| 99 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 100 |
+
|
| 101 |
+
def __init__(self, config: KORMoMoeConfig, layer_idx: int):
|
| 102 |
+
super().__init__()
|
| 103 |
+
self.config = config
|
| 104 |
+
self.layer_idx = layer_idx
|
| 105 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
| 106 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
| 107 |
+
self.scaling = self.head_dim**-0.5
|
| 108 |
+
self.attention_dropout = config.attention_dropout
|
| 109 |
+
self.is_causal = True
|
| 110 |
+
|
| 111 |
+
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False)
|
| 112 |
+
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
|
| 113 |
+
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
|
| 114 |
+
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
|
| 115 |
+
|
| 116 |
+
def forward(
|
| 117 |
+
self,
|
| 118 |
+
hidden_states: torch.Tensor,
|
| 119 |
+
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
| 120 |
+
attention_mask: Optional[torch.Tensor],
|
| 121 |
+
past_key_value: Optional[Cache] = None,
|
| 122 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 123 |
+
**kwargs,
|
| 124 |
+
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
| 125 |
+
input_shape = hidden_states.shape[:-1]
|
| 126 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
| 127 |
+
|
| 128 |
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 129 |
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 130 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 131 |
+
|
| 132 |
+
cos, sin = position_embeddings
|
| 133 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 134 |
+
|
| 135 |
+
if past_key_value is not None:
|
| 136 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 137 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 138 |
+
|
| 139 |
+
attention_interface: Callable = eager_attention_forward
|
| 140 |
+
if self.config._attn_implementation != "eager":
|
| 141 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 142 |
+
|
| 143 |
+
attn_output, attn_weights = attention_interface(
|
| 144 |
+
self,
|
| 145 |
+
query_states,
|
| 146 |
+
key_states,
|
| 147 |
+
value_states,
|
| 148 |
+
attention_mask,
|
| 149 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 150 |
+
scaling=self.scaling,
|
| 151 |
+
**kwargs,
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
| 155 |
+
attn_output = self.o_proj(attn_output)
|
| 156 |
+
|
| 157 |
+
return attn_output, attn_weights
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
@use_kernel_forward_from_hub("MLP")
|
| 161 |
+
class MLP(nn.Module):
|
| 162 |
+
"""Basic MLP for experts"""
|
| 163 |
+
def __init__(self, config, intermediate_size=None):
|
| 164 |
+
super().__init__()
|
| 165 |
+
self.config = config
|
| 166 |
+
self.hidden_size = config.hidden_size
|
| 167 |
+
self.intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size
|
| 168 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 169 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 170 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 171 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 172 |
+
|
| 173 |
+
def forward(self, x):
|
| 174 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
class MoEGate(nn.Module):
|
| 178 |
+
"""MoE Gating mechanism"""
|
| 179 |
+
def __init__(self, config: KORMoMoeConfig):
|
| 180 |
+
super().__init__()
|
| 181 |
+
self.config = config
|
| 182 |
+
self.top_k = config.num_experts_per_tok
|
| 183 |
+
self.n_routed_experts = config.num_experts
|
| 184 |
+
self.norm_topk_prob = config.norm_topk_prob
|
| 185 |
+
|
| 186 |
+
self.linear = nn.Linear(config.hidden_size, config.num_experts, bias=False)
|
| 187 |
+
|
| 188 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 189 |
+
# hidden_states: [batch_size, seq_len, hidden_size]
|
| 190 |
+
batch_size, seq_len, hidden_dim = hidden_states.shape
|
| 191 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
| 192 |
+
|
| 193 |
+
# Compute router logits
|
| 194 |
+
router_logits = self.linear(hidden_states) # [batch_size * seq_len, num_experts]
|
| 195 |
+
|
| 196 |
+
# Get routing weights
|
| 197 |
+
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
|
| 198 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
| 199 |
+
|
| 200 |
+
# Normalize routing weights if needed
|
| 201 |
+
if self.norm_topk_prob:
|
| 202 |
+
routing_weights = routing_weights / routing_weights.sum(dim=-1, keepdim=True)
|
| 203 |
+
|
| 204 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
| 205 |
+
|
| 206 |
+
return routing_weights, selected_experts
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
class KORMoSparseMoeBlock(nn.Module):
|
| 210 |
+
"""KORMo Sparse MoE Block"""
|
| 211 |
+
def __init__(self, config: KORMoMoeConfig):
|
| 212 |
+
super().__init__()
|
| 213 |
+
self.hidden_size = config.hidden_size
|
| 214 |
+
self.num_experts = config.num_experts
|
| 215 |
+
self.top_k = config.num_experts_per_tok
|
| 216 |
+
|
| 217 |
+
self.gate = MoEGate(config)
|
| 218 |
+
self.experts = nn.ModuleList([
|
| 219 |
+
MLP(config, intermediate_size=config.moe_intermediate_size)
|
| 220 |
+
for _ in range(self.num_experts)
|
| 221 |
+
])
|
| 222 |
+
|
| 223 |
+
# Shared expert (선택사항)
|
| 224 |
+
self.shared_expert = None
|
| 225 |
+
self.shared_expert_gate = None
|
| 226 |
+
if config.shared_expert_intermediate_size is not None:
|
| 227 |
+
self.shared_expert = MLP(config, intermediate_size=config.shared_expert_intermediate_size)
|
| 228 |
+
self.shared_expert_gate = nn.Linear(config.hidden_size, 1, bias=False)
|
| 229 |
+
|
| 230 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 231 |
+
batch_size, seq_len, hidden_dim = hidden_states.shape
|
| 232 |
+
hidden_states_flat = hidden_states.view(-1, hidden_dim)
|
| 233 |
+
|
| 234 |
+
routing_weights, selected_experts = self.gate(hidden_states)
|
| 235 |
+
final_hidden_states = torch.zeros_like(hidden_states_flat)
|
| 236 |
+
|
| 237 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
| 238 |
+
|
| 239 |
+
for expert_idx in range(self.num_experts):
|
| 240 |
+
expert_layer = self.experts[expert_idx]
|
| 241 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
| 242 |
+
|
| 243 |
+
if top_x.shape[0] == 0:
|
| 244 |
+
continue
|
| 245 |
+
|
| 246 |
+
top_x_list = top_x.tolist()
|
| 247 |
+
idx_list = idx.tolist()
|
| 248 |
+
|
| 249 |
+
current_state = hidden_states_flat[None, top_x_list].reshape(-1, hidden_dim)
|
| 250 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
|
| 251 |
+
|
| 252 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
| 253 |
+
|
| 254 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, seq_len, hidden_dim)
|
| 255 |
+
|
| 256 |
+
# Shared expert 추가
|
| 257 |
+
if self.shared_expert is not None:
|
| 258 |
+
hidden_states_flat = hidden_states.view(-1, hidden_dim)
|
| 259 |
+
shared_output = self.shared_expert(hidden_states_flat)
|
| 260 |
+
shared_gate = torch.sigmoid(self.shared_expert_gate(hidden_states_flat))
|
| 261 |
+
final_hidden_states = final_hidden_states + (shared_gate * shared_output).reshape(batch_size, seq_len, hidden_dim)
|
| 262 |
+
|
| 263 |
+
return final_hidden_states
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
class DecoderLayer(GradientCheckpointingLayer):
|
| 267 |
+
def __init__(self, config: KORMoMoeConfig, layer_idx: int):
|
| 268 |
+
super().__init__()
|
| 269 |
+
self.hidden_size = config.hidden_size
|
| 270 |
+
self.self_attn = Attention(config=config, layer_idx=layer_idx)
|
| 271 |
+
self.mlp = KORMoSparseMoeBlock(config)
|
| 272 |
+
self.pre_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 273 |
+
self.pre_mlp_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 274 |
+
|
| 275 |
+
def forward(
|
| 276 |
+
self,
|
| 277 |
+
hidden_states: torch.Tensor,
|
| 278 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 279 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 280 |
+
past_key_value: Optional[Cache] = None,
|
| 281 |
+
output_attentions: Optional[bool] = False,
|
| 282 |
+
use_cache: Optional[bool] = False,
|
| 283 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 284 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 285 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 286 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 287 |
+
residual = hidden_states
|
| 288 |
+
hidden_states = self.pre_attention_layernorm(hidden_states)
|
| 289 |
+
|
| 290 |
+
# Self Attention
|
| 291 |
+
hidden_states, self_attn_weights = self.self_attn(
|
| 292 |
+
hidden_states=hidden_states,
|
| 293 |
+
attention_mask=attention_mask,
|
| 294 |
+
position_ids=position_ids,
|
| 295 |
+
past_key_value=past_key_value,
|
| 296 |
+
output_attentions=output_attentions,
|
| 297 |
+
use_cache=use_cache,
|
| 298 |
+
cache_position=cache_position,
|
| 299 |
+
position_embeddings=position_embeddings,
|
| 300 |
+
**kwargs,
|
| 301 |
+
)
|
| 302 |
+
hidden_states = residual + hidden_states
|
| 303 |
+
|
| 304 |
+
# MoE layer
|
| 305 |
+
residual = hidden_states
|
| 306 |
+
hidden_states = self.pre_mlp_layernorm(hidden_states)
|
| 307 |
+
hidden_states = self.mlp(hidden_states)
|
| 308 |
+
hidden_states = residual + hidden_states
|
| 309 |
+
|
| 310 |
+
outputs = (hidden_states,)
|
| 311 |
+
if output_attentions:
|
| 312 |
+
outputs += (self_attn_weights,)
|
| 313 |
+
|
| 314 |
+
return outputs
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
class RotaryEmbedding(nn.Module):
|
| 318 |
+
def __init__(self, config: KORMoMoeConfig, device=None):
|
| 319 |
+
super().__init__()
|
| 320 |
+
# BC: "rope_type" was originally "type"
|
| 321 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
| 322 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 323 |
+
else:
|
| 324 |
+
self.rope_type = "default"
|
| 325 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 326 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 327 |
+
|
| 328 |
+
self.config = config
|
| 329 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 330 |
+
|
| 331 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
| 332 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 333 |
+
self.original_inv_freq = self.inv_freq
|
| 334 |
+
|
| 335 |
+
@torch.no_grad()
|
| 336 |
+
@dynamic_rope_update
|
| 337 |
+
def forward(self, x, position_ids):
|
| 338 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
| 339 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 340 |
+
|
| 341 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
| 342 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 343 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 344 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 345 |
+
cos = emb.cos() * self.attention_scaling
|
| 346 |
+
sin = emb.sin() * self.attention_scaling
|
| 347 |
+
return cos, sin
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
class KORMoMoePreTrainedModel(PreTrainedModel):
|
| 351 |
+
config_class = KORMoMoeConfig
|
| 352 |
+
base_model_prefix = "model"
|
| 353 |
+
supports_gradient_checkpointing = True
|
| 354 |
+
_no_split_modules = ["DecoderLayer"]
|
| 355 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 356 |
+
_supports_flash_attn_3 = True
|
| 357 |
+
_supports_flash_attn_2 = True
|
| 358 |
+
_supports_sdpa = True
|
| 359 |
+
_supports_flex_attn = True
|
| 360 |
+
_supports_cache_class = True
|
| 361 |
+
_supports_quantized_cache = True
|
| 362 |
+
_supports_static_cache = True
|
| 363 |
+
_supports_attention_backend = True
|
| 364 |
+
|
| 365 |
+
def _init_weights(self, module):
|
| 366 |
+
std = self.config.initializer_range
|
| 367 |
+
if isinstance(module, nn.Linear):
|
| 368 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 369 |
+
if module.bias is not None:
|
| 370 |
+
module.bias.data.zero_()
|
| 371 |
+
elif isinstance(module, nn.Embedding):
|
| 372 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 373 |
+
if module.padding_idx is not None:
|
| 374 |
+
module.weight.data[module.padding_idx].zero_()
|
| 375 |
+
elif isinstance(module, RMSNorm):
|
| 376 |
+
module.weight.data.fill_(1.0)
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
class KORMoMoeModel(KORMoMoePreTrainedModel):
|
| 380 |
+
def __init__(self, config: KORMoMoeConfig):
|
| 381 |
+
super().__init__(config)
|
| 382 |
+
self.padding_idx = config.pad_token_id
|
| 383 |
+
self.vocab_size = config.vocab_size
|
| 384 |
+
|
| 385 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 386 |
+
self.layers = nn.ModuleList(
|
| 387 |
+
[DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 388 |
+
)
|
| 389 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 390 |
+
self.rotary_emb = RotaryEmbedding(config=config)
|
| 391 |
+
self.gradient_checkpointing = False
|
| 392 |
+
|
| 393 |
+
self.post_init()
|
| 394 |
+
|
| 395 |
+
def get_input_embeddings(self):
|
| 396 |
+
return self.embed_tokens
|
| 397 |
+
|
| 398 |
+
def set_input_embeddings(self, value):
|
| 399 |
+
self.embed_tokens = value
|
| 400 |
+
|
| 401 |
+
@can_return_tuple
|
| 402 |
+
def forward(
|
| 403 |
+
self,
|
| 404 |
+
input_ids: torch.LongTensor = None,
|
| 405 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 406 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 407 |
+
past_key_values: Optional[Cache] = None,
|
| 408 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 409 |
+
use_cache: Optional[bool] = None,
|
| 410 |
+
output_attentions: Optional[bool] = None,
|
| 411 |
+
output_hidden_states: Optional[bool] = None,
|
| 412 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 413 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
| 414 |
+
) -> BaseModelOutputWithPast:
|
| 415 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 416 |
+
output_hidden_states = (
|
| 417 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 418 |
+
)
|
| 419 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 420 |
+
|
| 421 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 422 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 423 |
+
|
| 424 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 425 |
+
logger.warning_once(
|
| 426 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
| 427 |
+
)
|
| 428 |
+
use_cache = False
|
| 429 |
+
|
| 430 |
+
if not isinstance(past_key_values, (type(None), Cache)):
|
| 431 |
+
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
|
| 432 |
+
|
| 433 |
+
if inputs_embeds is None:
|
| 434 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 435 |
+
|
| 436 |
+
if use_cache and past_key_values is None:
|
| 437 |
+
past_key_values = DynamicCache()
|
| 438 |
+
|
| 439 |
+
if cache_position is None:
|
| 440 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 441 |
+
cache_position = torch.arange(
|
| 442 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
if position_ids is None:
|
| 446 |
+
position_ids = cache_position.unsqueeze(0)
|
| 447 |
+
|
| 448 |
+
causal_mask = create_causal_mask(
|
| 449 |
+
config=self.config,
|
| 450 |
+
input_embeds=inputs_embeds,
|
| 451 |
+
attention_mask=attention_mask,
|
| 452 |
+
cache_position=cache_position,
|
| 453 |
+
past_key_values=past_key_values,
|
| 454 |
+
position_ids=position_ids,
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
hidden_states = inputs_embeds
|
| 458 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 459 |
+
|
| 460 |
+
all_hidden_states = () if output_hidden_states else None
|
| 461 |
+
all_self_attns = () if output_attentions else None
|
| 462 |
+
|
| 463 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
| 464 |
+
if output_hidden_states:
|
| 465 |
+
all_hidden_states += (hidden_states,)
|
| 466 |
+
|
| 467 |
+
layer_outputs = decoder_layer(
|
| 468 |
+
hidden_states,
|
| 469 |
+
attention_mask=causal_mask,
|
| 470 |
+
position_ids=position_ids,
|
| 471 |
+
past_key_value=past_key_values,
|
| 472 |
+
output_attentions=output_attentions,
|
| 473 |
+
use_cache=use_cache,
|
| 474 |
+
cache_position=cache_position,
|
| 475 |
+
position_embeddings=position_embeddings,
|
| 476 |
+
**flash_attn_kwargs,
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
hidden_states = layer_outputs[0]
|
| 480 |
+
|
| 481 |
+
if output_attentions:
|
| 482 |
+
all_self_attns += (layer_outputs[1],)
|
| 483 |
+
|
| 484 |
+
hidden_states = self.norm(hidden_states)
|
| 485 |
+
|
| 486 |
+
if output_hidden_states:
|
| 487 |
+
all_hidden_states += (hidden_states,)
|
| 488 |
+
|
| 489 |
+
return BaseModelOutputWithPast(
|
| 490 |
+
last_hidden_state=hidden_states,
|
| 491 |
+
past_key_values=past_key_values if use_cache else None,
|
| 492 |
+
hidden_states=all_hidden_states,
|
| 493 |
+
attentions=all_self_attns,
|
| 494 |
+
)
|
| 495 |
+
|
| 496 |
+
|
| 497 |
+
class KORMoMoeForCausalLM(KORMoMoePreTrainedModel, GenerationMixin):
|
| 498 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 499 |
+
|
| 500 |
+
def __init__(self, config):
|
| 501 |
+
super().__init__(config)
|
| 502 |
+
self.model = KORMoMoeModel(config)
|
| 503 |
+
self.vocab_size = config.vocab_size
|
| 504 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 505 |
+
self.post_init()
|
| 506 |
+
|
| 507 |
+
def get_input_embeddings(self):
|
| 508 |
+
return self.model.embed_tokens
|
| 509 |
+
|
| 510 |
+
def set_input_embeddings(self, value):
|
| 511 |
+
self.model.embed_tokens = value
|
| 512 |
+
|
| 513 |
+
def get_output_embeddings(self):
|
| 514 |
+
return self.lm_head
|
| 515 |
+
|
| 516 |
+
def set_output_embeddings(self, new_embeddings):
|
| 517 |
+
self.lm_head = new_embeddings
|
| 518 |
+
|
| 519 |
+
def set_decoder(self, decoder):
|
| 520 |
+
self.model = decoder
|
| 521 |
+
|
| 522 |
+
def get_decoder(self):
|
| 523 |
+
return self.model
|
| 524 |
+
|
| 525 |
+
@can_return_tuple
|
| 526 |
+
def forward(
|
| 527 |
+
self,
|
| 528 |
+
input_ids: torch.LongTensor = None,
|
| 529 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 530 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 531 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 532 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 533 |
+
labels: Optional[torch.LongTensor] = None,
|
| 534 |
+
use_cache: Optional[bool] = None,
|
| 535 |
+
output_attentions: Optional[bool] = None,
|
| 536 |
+
output_hidden_states: Optional[bool] = None,
|
| 537 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 538 |
+
logits_to_keep: int = 0,
|
| 539 |
+
**kwargs,
|
| 540 |
+
) -> CausalLMOutputWithPast:
|
| 541 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 542 |
+
output_hidden_states = (
|
| 543 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 544 |
+
)
|
| 545 |
+
|
| 546 |
+
outputs: BaseModelOutputWithPast = self.model(
|
| 547 |
+
input_ids=input_ids,
|
| 548 |
+
attention_mask=attention_mask,
|
| 549 |
+
position_ids=position_ids,
|
| 550 |
+
past_key_values=past_key_values,
|
| 551 |
+
inputs_embeds=inputs_embeds,
|
| 552 |
+
use_cache=use_cache,
|
| 553 |
+
output_attentions=output_attentions,
|
| 554 |
+
output_hidden_states=output_hidden_states,
|
| 555 |
+
cache_position=cache_position,
|
| 556 |
+
**kwargs,
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
+
hidden_states = outputs.last_hidden_state
|
| 560 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 561 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
| 562 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
| 563 |
+
|
| 564 |
+
loss = None
|
| 565 |
+
if labels is not None:
|
| 566 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
| 567 |
+
|
| 568 |
+
return CausalLMOutputWithPast(
|
| 569 |
+
loss=loss,
|
| 570 |
+
logits=logits,
|
| 571 |
+
past_key_values=outputs.past_key_values,
|
| 572 |
+
hidden_states=outputs.hidden_states,
|
| 573 |
+
attentions=outputs.attentions,
|
| 574 |
+
)
|