Midm-LLM commited on
Commit
35479c5
·
verified ·
1 Parent(s): d9634b6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -1
README.md CHANGED
@@ -30,7 +30,7 @@ library_name: transformers
30
 
31
  # News 📢
32
 
33
- - 🔜 _(Coming Soon!) GGUF format model files will be available soon for easier local deployment._
34
  - 📕`2025/08/08`: Published a technical blog article about Mi:dm 2.0 Model.
35
  - ⚡️`2025/07/04`: Released Mi:dm 2.0 Model collection on Hugging Face🤗.
36
  <br>
@@ -528,11 +528,33 @@ We provide a detailed description about running Mi:dm 2.0 on your local machine
528
 
529
  ## Deployment
530
 
 
 
531
  To serve Mi:dm 2.0 using [vLLM](https://github.com/vllm-project/vllm)(`>=0.8.0`) with an OpenAI-compatible API:
532
  ```bash
533
  vllm serve K-intelligence/Midm-2.0-Base-Instruct
534
  ```
535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536
 
537
  ## Tutorials
538
  To help our end-users easily use Mi:dm 2.0, we have provided comprehensive tutorials on [github](https://github.com/K-intelligence-Midm/Midm-2.0).
 
30
 
31
  # News 📢
32
 
33
+ - 🔧`2025/10/29`: Added support for function calling on vLLM with Mi:dm 2.0 parser.
34
  - 📕`2025/08/08`: Published a technical blog article about Mi:dm 2.0 Model.
35
  - ⚡️`2025/07/04`: Released Mi:dm 2.0 Model collection on Hugging Face🤗.
36
  <br>
 
528
 
529
  ## Deployment
530
 
531
+ #### Basic Serving
532
+
533
  To serve Mi:dm 2.0 using [vLLM](https://github.com/vllm-project/vllm)(`>=0.8.0`) with an OpenAI-compatible API:
534
  ```bash
535
  vllm serve K-intelligence/Midm-2.0-Base-Instruct
536
  ```
537
 
538
+ #### With Function Calling
539
+
540
+ For advanced function calling tasks, you can serve Mi:dm 2.0 with our own tool parser:
541
+ 1. Download and place [Mi:dm 2.0 parser file](https://github.com/K-intelligence-Midm/Midm-2.0/blob/main/tutorial/03_open-webui/modelfile/midm_parser.py) in your working directory.
542
+ 2. Run the following Docker command to launch the vLLM server with our custom parser file:
543
+ ```bash
544
+ docker run --rm -it --gpus all -p 8000:8000 \
545
+ -e HUGGING_FACE_HUB_TOKEN="<YOUR_HUGGINGFACE_TOKEN>" \
546
+ -v "$(pwd)/midm_parser.py:/custom/midm_parser.py" \
547
+ vllm/vllm-openai:v0.11.0 \
548
+ --model K-intelligence/Midm-2.0-Base-Instruct \
549
+ --enable-auto-tool-choice \
550
+ --tool-parser-plugin /custom/midm_parser.py \
551
+ --tool-call-parser midm-parser \
552
+ --host 0.0.0.0
553
+ ```
554
+
555
+ >[!Note]
556
+ > This setup is compatible with `vllm/vllm-openai:v0.8.0` and later, but we strongly recommend using `v0.11.0` for optimal stability and compatibility with our parser.
557
+
558
 
559
  ## Tutorials
560
  To help our end-users easily use Mi:dm 2.0, we have provided comprehensive tutorials on [github](https://github.com/K-intelligence-Midm/Midm-2.0).