File size: 33,936 Bytes
41d206b 42376ab 41d206b d920677 42376ab d920677 37b4ab0 d920677 37b4ab0 41d206b 37b4ab0 41d206b 37b4ab0 41d206b 37b4ab0 41d206b 42376ab 41d206b 42376ab 41d206b 42376ab 41d206b 42376ab af5bb79 37b4ab0 d920677 41d206b 42376ab af5bb79 d918120 42376ab af5bb79 d918120 4a5b926 af5bb79 4a5b926 af5bb79 4a5b926 af5bb79 4a5b926 af5bb79 4a5b926 af5bb79 4a5b926 af5bb79 4a5b926 af5bb79 4a5b926 af5bb79 4a5b926 42376ab 41d206b 42376ab 37b4ab0 41d206b 42376ab 41d206b 42376ab 41d206b 42376ab 41d206b 37b4ab0 41d206b 42376ab 41d206b 42376ab 41d206b 42376ab 41d206b 42376ab 3f959d1 41d206b 42376ab 41d206b 42376ab 41d206b 42376ab 41d206b 42376ab 41d206b 42376ab 41d206b 42376ab 41d206b 42376ab 41d206b 42376ab 37b4ab0 42376ab 37b4ab0 42376ab 37b4ab0 42376ab 37b4ab0 42376ab 41d206b 42376ab 41d206b 42376ab 37b4ab0 42376ab d918120 42376ab 37b4ab0 42376ab 41d206b 42376ab 41d206b 42376ab 37b4ab0 41d206b 37b4ab0 41d206b 37b4ab0 41d206b 42376ab 41d206b 42376ab 41d206b 42376ab 37b4ab0 42376ab 37b4ab0 42376ab 41d206b 37b4ab0 41d206b 42376ab 41d206b d918120 42376ab 4a5b926 d918120 42376ab d918120 42376ab d918120 42376ab d918120 42376ab d918120 42376ab d918120 42376ab d918120 42376ab d918120 42376ab d918120 42376ab d918120 37b4ab0 42376ab 41d206b 42376ab 37b4ab0 42376ab 37b4ab0 41d206b 37b4ab0 41d206b 37b4ab0 41d206b 42376ab 41d206b 37b4ab0 42376ab 41d206b 37b4ab0 42376ab 41d206b 37b4ab0 41d206b d918120 37b4ab0 41d206b d918120 37b4ab0 42376ab 37b4ab0 42376ab 41d206b 42376ab 37b4ab0 42376ab 41d206b 37b4ab0 42376ab 37b4ab0 42376ab 37b4ab0 42376ab 37b4ab0 42376ab 41d206b 37b4ab0 41d206b 37b4ab0 42376ab 37b4ab0 42376ab 37b4ab0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 |
import os
import io
import base64
import tempfile
import zipfile
import logging
import sys
import time
from typing import Dict, Any, Optional
from pathlib import Path
import json
import torch
import numpy as np
from PIL import Image
import cv2
# CRITICAL: Patch torch.autocast BEFORE any SAM3 imports
# SAM3 uses @torch.autocast decorators that get applied at import time
# We must patch torch.autocast before the decorators are evaluated
class Float32Autocast:
"""No-op autocast that forces float32."""
def __init__(self, device_type, dtype=None, enabled=True):
self.device_type = device_type
self.dtype = torch.float32
self.enabled = False
def __enter__(self):
return self
def __exit__(self, *args):
pass
# Store original and replace globally
_ORIGINAL_AUTOCAST = torch.autocast
torch.autocast = Float32Autocast
if hasattr(torch.cuda, 'amp'):
torch.cuda.amp.autocast = Float32Autocast
if hasattr(torch, 'amp'):
torch.amp.autocast = Float32Autocast
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(levelname)s] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
stream=sys.stdout
)
logger = logging.getLogger(__name__)
logger.info("β Patched torch.autocast globally before SAM3 import")
# SAM3 imports - using local sam3 package in repository
# This will now use our patched autocast for all @torch.autocast decorators
from sam3.model_builder import build_sam3_video_predictor
# HuggingFace Hub for uploads
try:
from huggingface_hub import HfApi
HF_HUB_AVAILABLE = True
except ImportError:
HF_HUB_AVAILABLE = False
class EndpointHandler:
"""
SAM3 Video Segmentation Handler for HuggingFace Inference Endpoints
Processes video with text prompts and returns segmentation masks.
Uses SAM3 repository code directly from local sam3/ package.
"""
def __init__(self, path: str = ""):
"""
Initialize SAM3 video predictor.
Args:
path: Path to model repository (not used - model loads from HF automatically)
"""
logger.info("="*80)
logger.info("INITIALIZING SAM3 VIDEO SEGMENTATION HANDLER")
logger.info("="*80)
# Set device
self.device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Device detection: {self.device}")
if self.device != "cuda":
logger.error("FATAL: SAM3 requires GPU acceleration. No CUDA device found.")
raise ValueError("SAM3 requires GPU acceleration. No CUDA device found.")
# Log GPU information
if torch.cuda.is_available():
logger.info(f"GPU Device: {torch.cuda.get_device_name(0)}")
logger.info(f"CUDA Version: {torch.version.cuda}")
logger.info(f"Total GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")
# Build SAM3 video predictor
# Note: torch.autocast was already patched at module import time
try:
logger.info("Building SAM3 video predictor...")
start_time = time.time()
# Ensure BPE tokenizer file exists
bpe_path = self._ensure_bpe_file()
logger.info(f"BPE tokenizer path: {bpe_path}")
# Build predictor with explicit bpe_path
self.predictor = build_sam3_video_predictor(
gpus_to_use=[0],
bpe_path=bpe_path
)
# Fix dtype mismatch: Convert all model parameters and buffers to float32
# This fixes: "Input type (c10::BFloat16) and bias type (float) should be the same"
logger.info("Converting model to float32 to avoid dtype mismatch...")
def convert_model_to_float32(model):
"""Recursively convert all model components to float32."""
conversion_count = 0
# Convert the model itself
model.float()
# Convert all parameters
for name, param in model.named_parameters():
if param.dtype != torch.float32:
param.data = param.data.float()
conversion_count += 1
logger.debug(f" Converted parameter: {name}")
# Convert all buffers (batch norm running stats, etc.)
for buffer_name, buffer in model.named_buffers():
if buffer.dtype != torch.float32 and buffer.dtype in [torch.float16, torch.bfloat16]:
model.register_buffer(buffer_name, buffer.float())
conversion_count += 1
logger.debug(f" Converted buffer: {buffer_name}")
# Also convert submodules explicitly
for name, module in model.named_modules():
if module is not model: # Skip the root module
try:
module.float()
except Exception:
pass # Some modules may not support .float()
return conversion_count
total_conversions = 0
# Convert the main model
if hasattr(self.predictor, 'model') and self.predictor.model is not None:
logger.info(" Converting main model...")
total_conversions += convert_model_to_float32(self.predictor.model)
# SAM3 may have additional models (detector, tracker, etc.)
# Check for other potential model attributes
for attr_name in ['detector', 'tracker', 'image_encoder', 'text_encoder']:
if hasattr(self.predictor, attr_name):
attr = getattr(self.predictor, attr_name)
if attr is not None and hasattr(attr, 'float'):
logger.info(f" Converting {attr_name}...")
try:
total_conversions += convert_model_to_float32(attr)
except Exception as e:
logger.warning(f" Could not convert {attr_name}: {e}")
# Check if model has nested models
if hasattr(self.predictor, 'model') and self.predictor.model is not None:
model = self.predictor.model
for attr_name in dir(model):
if not attr_name.startswith('_'):
try:
attr = getattr(model, attr_name)
if hasattr(attr, 'parameters') and hasattr(attr, 'float'):
# This looks like a submodel
if attr_name not in ['model', 'detector', 'tracker']:
logger.debug(f" Found submodel: {attr_name}")
try:
convert_model_to_float32(attr)
except Exception:
pass
except Exception:
pass
if total_conversions > 0:
logger.info(f"β Model converted to float32 ({total_conversions} tensors converted)")
else:
logger.warning("β No tensors were converted - dtype fix may not have been applied correctly")
# Additional safety: Wrap handle_request to ensure inputs are float32
original_handle_request = self.predictor.handle_request
def float32_handle_request(request):
"""Wrapper to ensure all tensor inputs are float32."""
# Recursively convert any tensors in the request to float32
def ensure_float32(obj):
if isinstance(obj, torch.Tensor):
if obj.dtype in [torch.float16, torch.bfloat16]:
return obj.float()
return obj
elif isinstance(obj, dict):
return {k: ensure_float32(v) for k, v in obj.items()}
elif isinstance(obj, (list, tuple)):
return type(obj)(ensure_float32(item) for item in obj)
return obj
request = ensure_float32(request)
return original_handle_request(request)
self.predictor.handle_request = float32_handle_request
# Also wrap handle_stream_request if it exists
if hasattr(self.predictor, 'handle_stream_request'):
original_handle_stream_request = self.predictor.handle_stream_request
def float32_handle_stream_request(request):
"""Wrapper to ensure all tensor inputs are float32."""
def ensure_float32(obj):
if isinstance(obj, torch.Tensor):
if obj.dtype in [torch.float16, torch.bfloat16]:
return obj.float()
return obj
elif isinstance(obj, dict):
return {k: ensure_float32(v) for k, v in obj.items()}
elif isinstance(obj, (list, tuple)):
return type(obj)(ensure_float32(item) for item in obj)
return obj
request = ensure_float32(request)
for response in original_handle_stream_request(request):
yield response
self.predictor.handle_stream_request = float32_handle_stream_request
logger.info("β Added float32 enforcement wrappers to predictor methods")
elapsed = time.time() - start_time
logger.info(f"β SAM3 video predictor loaded successfully in {elapsed:.2f}s")
except Exception as e:
logger.error(f"β Failed to load SAM3 predictor: {type(e).__name__}: {e}")
logger.exception("Full traceback:")
raise
# Initialize HuggingFace API for uploads (if available)
self.hf_api = None
hf_token = os.getenv("HF_TOKEN")
if HF_HUB_AVAILABLE and hf_token:
try:
self.hf_api = HfApi(token=hf_token)
logger.info("β HuggingFace Hub API initialized")
except Exception as e:
logger.warning(f"Failed to initialize HF API: {e}")
else:
reasons = []
if not HF_HUB_AVAILABLE:
reasons.append("huggingface_hub not installed")
if not hf_token:
reasons.append("HF_TOKEN not set")
logger.info(f"HuggingFace Hub uploads disabled ({', '.join(reasons)})")
logger.info("="*80)
logger.info("INITIALIZATION COMPLETE - READY FOR REQUESTS")
logger.info("="*80)
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""
Process video segmentation request using SAM3 video predictor API.
Expected input format (HuggingFace Inference Toolkit standard):
{
"inputs": <base64_encoded_video>,
"parameters": {
"text_prompt": "object to segment",
"return_format": "download_url" or "base64" or "metadata_only", # optional
"output_repo": "username/dataset-name", # optional, for HF upload
}
}
Returns:
{
"download_url": "https://...", # if uploaded to HF
"frame_count": 120,
"video_metadata": {...},
"compressed_size_mb": 15.3,
"objects_detected": [1, 2, 3] # object IDs
}
"""
request_start = time.time()
logger.info("")
logger.info("="*80)
logger.info("NEW REQUEST RECEIVED")
logger.info("="*80)
try:
# Extract and validate parameters
logger.info("Parsing request parameters...")
# DEBUG: Log the exact structure we received
logger.info(f" Received keys: {list(data.keys())}")
if "parameters" in data:
logger.info(f" parameters dict keys: {list(data['parameters'].keys())}")
# Video comes from "inputs" (HF toolkit standard)
video_data = data.get("inputs")
# Parameters might be at top level (flattened) or in "parameters" dict
# HF Inference Toolkit doesn't always flatten, so check both locations
parameters = data.get("parameters", {})
text_prompt = data.get("text_prompt") or parameters.get("text_prompt", "")
output_repo = data.get("output_repo") or parameters.get("output_repo")
return_format = data.get("return_format") or parameters.get("return_format", "metadata_only")
# DEBUG: Log what we extracted
logger.info(f" Extracted text_prompt: '{text_prompt}'")
# Log request details
logger.info(f" text_prompt: '{text_prompt}'")
logger.info(f" return_format: {return_format}")
logger.info(f" output_repo: {output_repo if output_repo else 'None'}")
logger.info(f" video_data: {'Present' if video_data else 'Missing'} ({len(video_data) if video_data else 0} chars)")
# Validate inputs
if not video_data:
logger.error("β Validation failed: No video data provided")
return {"error": "No video data provided. Include video as 'inputs' in request."}
if not text_prompt:
logger.error("β Validation failed: No text prompt provided")
return {"error": "No text prompt provided. Include 'text_prompt' in 'parameters'."}
if return_format not in ["metadata_only", "base64", "download_url"]:
logger.warning(f"Invalid return_format '{return_format}', defaulting to 'metadata_only'")
return_format = "metadata_only"
if return_format == "download_url" and not output_repo:
logger.error("β Validation failed: download_url requires output_repo")
return {"error": "return_format='download_url' requires 'output_repo' parameter"}
logger.info("β Request validation passed")
# Process video in temporary directory
with tempfile.TemporaryDirectory() as tmpdir:
tmpdir_path = Path(tmpdir)
logger.info(f"Created temporary directory: {tmpdir}")
# STEP 1: Decode and save video
logger.info("")
logger.info("STEP 1/9: Decoding video data...")
step_start = time.time()
try:
video_path = self._prepare_video(video_data, tmpdir_path)
video_size_mb = video_path.stat().st_size / 1e6
logger.info(f" Video saved to: {video_path}")
logger.info(f" Video size: {video_size_mb:.2f} MB")
logger.info(f"β Step 1 completed in {time.time() - step_start:.2f}s")
except Exception as e:
logger.error(f"β Step 1 failed: {type(e).__name__}: {e}")
raise
# STEP 2: Start SAM3 session
logger.info("")
logger.info("STEP 2/9: Starting SAM3 session...")
step_start = time.time()
try:
response = self.predictor.handle_request(
request=dict(
type="start_session",
resource_path=str(video_path),
)
)
session_id = response["session_id"]
logger.info(f" Session ID: {session_id}")
logger.info(f"β Step 2 completed in {time.time() - step_start:.2f}s")
except Exception as e:
logger.error(f"β Step 2 failed: {type(e).__name__}: {e}")
raise
# STEP 3: Add text prompt
logger.info("")
logger.info("STEP 3/9: Adding text prompt to first frame...")
step_start = time.time()
try:
response = self.predictor.handle_request(
request=dict(
type="add_prompt",
session_id=session_id,
frame_index=0,
text=text_prompt,
)
)
logger.info(f" Prompt: '{text_prompt}'")
logger.info(f" Frame: 0")
logger.info(f"β Step 3 completed in {time.time() - step_start:.2f}s")
except Exception as e:
logger.error(f"β Step 3 failed: {type(e).__name__}: {e}")
raise
# STEP 4: Propagate through video
logger.info("")
logger.info("STEP 4/9: Propagating segmentation through video...")
step_start = time.time()
try:
outputs_per_frame = {}
last_log_frame = -1
log_interval = 10 # Log every 10 frames
for stream_response in self.predictor.handle_stream_request(
request=dict(
type="propagate_in_video",
session_id=session_id,
)
):
frame_idx = stream_response["frame_index"]
outputs_per_frame[frame_idx] = stream_response["outputs"]
# Log progress every N frames
if frame_idx - last_log_frame >= log_interval:
logger.info(f" Processing frame {frame_idx}...")
last_log_frame = frame_idx
logger.info(f" Total frames processed: {len(outputs_per_frame)}")
logger.info(f"β Step 4 completed in {time.time() - step_start:.2f}s")
except Exception as e:
logger.error(f"β Step 4 failed: {type(e).__name__}: {e}")
raise
# STEP 5: Save masks to PNG files
logger.info("")
logger.info("STEP 5/9: Saving masks to PNG files...")
step_start = time.time()
try:
masks_dir = tmpdir_path / "masks"
masks_dir.mkdir()
all_object_ids = set()
mask_count = 0
for frame_idx, frame_output in outputs_per_frame.items():
frame_masks = self._save_frame_masks(frame_output, masks_dir, frame_idx)
mask_count += frame_masks
# Collect object IDs
if "object_ids" in frame_output and frame_output["object_ids"] is not None:
obj_ids = frame_output["object_ids"]
if torch.is_tensor(obj_ids):
obj_ids = obj_ids.cpu().tolist()
elif isinstance(obj_ids, np.ndarray):
obj_ids = obj_ids.tolist()
if isinstance(obj_ids, list):
all_object_ids.update(obj_ids)
else:
all_object_ids.add(obj_ids)
logger.info(f" Masks directory: {masks_dir}")
logger.info(f" Total mask files: {mask_count}")
logger.info(f" Unique objects: {sorted(list(all_object_ids))}")
logger.info(f"β Step 5 completed in {time.time() - step_start:.2f}s")
except Exception as e:
logger.error(f"β Step 5 failed: {type(e).__name__}: {e}")
raise
# STEP 6: Create ZIP archive
logger.info("")
logger.info("STEP 6/9: Creating ZIP archive...")
step_start = time.time()
try:
zip_path = tmpdir_path / "masks.zip"
self._create_zip(masks_dir, zip_path)
zip_size_mb = zip_path.stat().st_size / 1e6
logger.info(f" ZIP path: {zip_path}")
logger.info(f" ZIP size: {zip_size_mb:.2f} MB")
logger.info(f" Compression ratio: {(1 - zip_size_mb / video_size_mb) * 100:.1f}%")
logger.info(f"β Step 6 completed in {time.time() - step_start:.2f}s")
except Exception as e:
logger.error(f"β Step 6 failed: {type(e).__name__}: {e}")
raise
# STEP 7: Get video metadata
logger.info("")
logger.info("STEP 7/9: Extracting video metadata...")
step_start = time.time()
try:
video_metadata = self._get_video_metadata(video_path)
for key, value in video_metadata.items():
logger.info(f" {key}: {value}")
logger.info(f"β Step 7 completed in {time.time() - step_start:.2f}s")
except Exception as e:
logger.warning(f"Step 7 partial failure: {e}")
video_metadata = {}
# STEP 8: Prepare response
logger.info("")
logger.info("STEP 8/9: Preparing response...")
step_start = time.time()
response = {
"frame_count": len(outputs_per_frame),
"objects_detected": sorted(list(all_object_ids)) if all_object_ids else [],
"compressed_size_mb": round(zip_size_mb, 2),
"video_metadata": video_metadata
}
if return_format == "download_url" and output_repo:
logger.info(f" Uploading to HuggingFace dataset: {output_repo}")
try:
download_url = self._upload_to_hf(zip_path, output_repo)
response["download_url"] = download_url
logger.info(f" β Upload successful: {download_url}")
except Exception as e:
logger.error(f" β Upload failed: {e}")
raise
elif return_format == "base64":
logger.info(" Encoding ZIP to base64...")
try:
with open(zip_path, "rb") as f:
zip_bytes = f.read()
response["masks_zip_base64"] = base64.b64encode(zip_bytes).decode("utf-8")
logger.info(f" β Encoded {len(response['masks_zip_base64'])} characters")
except Exception as e:
logger.error(f" β Encoding failed: {e}")
raise
else:
logger.info(" Returning metadata only (no mask data)")
logger.info(f"β Step 8 completed in {time.time() - step_start:.2f}s")
# STEP 9: Close session
logger.info("")
logger.info("STEP 9/9: Closing SAM3 session...")
step_start = time.time()
try:
self.predictor.handle_request(
request=dict(
type="close_session",
session_id=session_id,
)
)
logger.info(f"β Step 9 completed in {time.time() - step_start:.2f}s")
except Exception as e:
logger.warning(f"Step 9 partial failure (non-critical): {e}")
# Final summary
total_time = time.time() - request_start
logger.info("")
logger.info("="*80)
logger.info("REQUEST COMPLETED SUCCESSFULLY")
logger.info(f"Total processing time: {total_time:.2f}s")
logger.info(f"Frames processed: {len(outputs_per_frame)}")
logger.info(f"Objects detected: {len(all_object_ids)}")
logger.info("="*80)
logger.info("")
return response
except Exception as e:
total_time = time.time() - request_start
logger.error("")
logger.error("="*80)
logger.error("REQUEST FAILED")
logger.error(f"Error type: {type(e).__name__}")
logger.error(f"Error message: {str(e)}")
logger.error(f"Time elapsed: {total_time:.2f}s")
logger.error("="*80)
logger.exception("Full traceback:")
logger.error("")
return {
"error": str(e),
"error_type": type(e).__name__
}
def _ensure_bpe_file(self) -> str:
"""
Ensure BPE tokenizer file exists. Download from HuggingFace if missing.
Returns path to the BPE file.
"""
logger.info("Checking for BPE tokenizer file...")
# Try multiple possible paths
possible_paths = [
Path("/repository/assets/bpe_simple_vocab_16e6.txt.gz"),
Path("./assets/bpe_simple_vocab_16e6.txt.gz"),
Path("../assets/bpe_simple_vocab_16e6.txt.gz"),
Path("/app/assets/bpe_simple_vocab_16e6.txt.gz"),
]
for bpe_file in possible_paths:
if bpe_file.exists():
logger.info(f" β BPE file found: {bpe_file}")
return str(bpe_file)
logger.warning(" BPE file not found in any expected location")
# Use first path as default for download
assets_dir = Path("/repository/assets")
bpe_file = assets_dir / "bpe_simple_vocab_16e6.txt.gz"
logger.warning(f" BPE file not found at {bpe_file}")
logger.info(" Downloading from HuggingFace...")
# Create assets directory
assets_dir.mkdir(parents=True, exist_ok=True)
# Try primary method: hf_hub_download
try:
from huggingface_hub import hf_hub_download
logger.info(" Attempting download via hf_hub_download...")
downloaded_path = hf_hub_download(
repo_id="facebook/sam3",
filename="assets/bpe_simple_vocab_16e6.txt.gz",
local_dir="/repository",
local_dir_use_symlinks=False
)
logger.info(f" β BPE file downloaded: {downloaded_path}")
return downloaded_path
except Exception as e:
logger.warning(f" Primary download failed: {e}")
logger.info(" Trying fallback download method...")
# Fallback: download directly from raw URL
import urllib.request
url = "https://huggingface.co/facebook/sam3/resolve/main/assets/bpe_simple_vocab_16e6.txt.gz"
try:
logger.info(f" Downloading from: {url}")
urllib.request.urlretrieve(url, str(bpe_file))
logger.info(f" β BPE file downloaded: {bpe_file}")
return str(bpe_file)
except Exception as e2:
logger.error(f" β Fallback download failed: {e2}")
raise ValueError(
f"Could not download BPE tokenizer file. Please add assets/bpe_simple_vocab_16e6.txt.gz "
f"to your repository. Download from: {url}"
)
def _prepare_video(self, video_data: str, tmpdir: Path) -> Path:
"""Decode base64 video and save to file."""
try:
logger.info(" Decoding base64 data...")
video_bytes = base64.b64decode(video_data)
logger.info(f" Decoded {len(video_bytes)} bytes")
except Exception as e:
logger.error(f" Base64 decode failed: {e}")
raise ValueError(f"Failed to decode base64 video: {e}")
video_path = tmpdir / "input_video.mp4"
video_path.write_bytes(video_bytes)
return video_path
def _save_frame_masks(self, frame_output: Dict, masks_dir: Path, frame_idx: int) -> int:
"""
Save masks for a frame as PNG files.
Each object gets its own mask file: frame_XXXX_obj_Y.png
Returns the number of masks saved.
"""
if "masks" not in frame_output or frame_output["masks"] is None:
return 0
masks = frame_output["masks"]
object_ids = frame_output.get("object_ids", [])
# Handle different types of object_ids
if torch.is_tensor(object_ids):
object_ids = object_ids.cpu().tolist()
elif isinstance(object_ids, np.ndarray):
object_ids = object_ids.tolist()
elif not isinstance(object_ids, list):
object_ids = list(object_ids) if object_ids is not None else []
# Convert masks to numpy if tensor
if torch.is_tensor(masks):
masks = masks.cpu().numpy()
# Ensure masks is 3D array [num_objects, height, width]
if len(masks.shape) == 4:
masks = masks[0]
# Save each object's mask
saved_count = 0
for i, obj_id in enumerate(object_ids):
if i < len(masks):
mask = masks[i]
# Convert to binary (0 or 255)
mask_binary = (mask > 0.5).astype(np.uint8) * 255
# Save as PNG
mask_img = Image.fromarray(mask_binary)
mask_filename = f"frame_{frame_idx:05d}_obj_{obj_id}.png"
mask_img.save(masks_dir / mask_filename, compress_level=9)
saved_count += 1
return saved_count
def _create_zip(self, masks_dir: Path, zip_path: Path):
"""Create ZIP archive of all mask PNGs."""
mask_files = sorted(masks_dir.glob("*.png"))
logger.info(f" Creating ZIP with {len(mask_files)} files...")
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED, compresslevel=9) as zipf:
for mask_file in mask_files:
zipf.write(mask_file, mask_file.name)
def _get_video_metadata(self, video_path: Path) -> Dict[str, Any]:
"""Extract video metadata using OpenCV."""
try:
cap = cv2.VideoCapture(str(video_path))
if not cap.isOpened():
logger.warning(f" Could not open video file: {video_path}")
return {}
metadata = {
"width": int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
"height": int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
"fps": float(cap.get(cv2.CAP_PROP_FPS)),
"frame_count": int(cap.get(cv2.CAP_PROP_FRAME_COUNT)),
}
cap.release()
return metadata
except Exception as e:
logger.warning(f" Could not extract video metadata: {e}")
return {}
def _upload_to_hf(self, zip_path: Path, repo_id: str) -> str:
"""Upload ZIP file to HuggingFace dataset repository."""
if not self.hf_api:
raise ValueError("HuggingFace Hub API not initialized. Set HF_TOKEN environment variable.")
try:
# Generate unique filename
import time
timestamp = int(time.time())
filename = f"masks_{timestamp}.zip"
logger.info(f" Uploading {zip_path.stat().st_size / 1e6:.2f} MB...")
# Upload file
url = self.hf_api.upload_file(
path_or_fileobj=str(zip_path),
path_in_repo=filename,
repo_id=repo_id,
repo_type="dataset",
)
# Return download URL
download_url = f"https://huggingface.co/datasets/{repo_id}/resolve/main/{filename}"
return download_url
except Exception as e:
logger.error(f" Upload error: {e}")
raise ValueError(f"Failed to upload to HuggingFace: {e}") |