Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,112 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
- zh
|
| 6 |
+
base_model:
|
| 7 |
+
- Qwen/Qwen2-7B-Instruct
|
| 8 |
+
pipeline_tag: text-generation
|
| 9 |
+
library_name: transformers
|
| 10 |
+
tags:
|
| 11 |
+
- finance
|
| 12 |
+
- text-generation-inference
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
<!-- markdownlint-disable first-line-h1 -->
|
| 16 |
+
<!-- markdownlint-disable html -->
|
| 17 |
+
<!-- markdownlint-disable no-duplicate-header -->
|
| 18 |
+
|
| 19 |
+
<div align="center">
|
| 20 |
+
<img src="https://github.com/IDEA-FinAI/Golden-Touchstone/blob/main/Touchstone-GPT-logo.png?raw=true" width="7%" alt="Golden-Touchstone" />
|
| 21 |
+
<h1 style="display: inline-block; vertical-align: middle; margin-left: 10px; font-size: 2em; font-weight: bold;">Golden-Touchstone Benchmark</h1>
|
| 22 |
+
</div>
|
| 23 |
+
|
| 24 |
+
<div align="center" style="line-height: 1;">
|
| 25 |
+
<a href="https://arxiv.org/abs/2311.03301" target="_blank" style="margin: 2px;">
|
| 26 |
+
<img alt="arXiv" src="https://img.shields.io/badge/Arxiv-2311.03301-b31b1b.svg?logo=arXiv" style="display: inline-block; vertical-align: middle;"/>
|
| 27 |
+
</a>
|
| 28 |
+
<a href="https://github.com/IDEA-FinAI/Golden-Touchstone" target="_blank" style="margin: 2px;">
|
| 29 |
+
<img alt="github" src="https://img.shields.io/github/stars/IDEA-FinAI/Golden-Touchstone.svg?style=social" style="display: inline-block; vertical-align: middle;"/>
|
| 30 |
+
</a>
|
| 31 |
+
<a href="https://huggingface.co/IDEA-FinAI/TouchstoneGPT-7B-Instruct" target="_blank" style="margin: 2px;">
|
| 32 |
+
<img alt="datasets" src="https://img.shields.io/badge/🤗-Datasets-yellow.svg" style="display: inline-block; vertical-align: middle;"/>
|
| 33 |
+
</a>
|
| 34 |
+
<a href="https://huggingface.co/IDEA-FinAI/TouchstoneGPT-7B-Instruct" target="_blank" style="margin: 2px;">
|
| 35 |
+
<img alt="huggingface" src="https://img.shields.io/badge/🤗-Model-yellow.svg" style="display: inline-block; vertical-align: middle;"/>
|
| 36 |
+
</a>
|
| 37 |
+
</div>
|
| 38 |
+
|
| 39 |
+
# Golden-Touchstone
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
Golden Touchstone is a simple, effective, and systematic benchmark for bilingual (Chinese-English) financial large language models, driving the research and implementation of financial large language models, akin to a touchstone. We also have trained and open-sourced Touchstone-GPT as a baseline for subsequent community research.
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
## Introduction
|
| 46 |
+
|
| 47 |
+
The paper shows the evaluation of the diversity, systematicness and LLM adaptability of each open source benchmark.
|
| 48 |
+
|
| 49 |
+

|
| 50 |
+
|
| 51 |
+
By collecting and selecting representative task datasets, we built our own Chinese-English bilingual Touchstone Benchmark, which includes 22 datasets
|
| 52 |
+
|
| 53 |
+

|
| 54 |
+
|
| 55 |
+
We extensively evaluated GPT-4o, llama3, qwen2, fingpt and our own trained Touchstone-GPT, analyzed the advantages and disadvantages of these models, and provided direction for subsequent research on financial large language models
|
| 56 |
+
|
| 57 |
+

|
| 58 |
+
|
| 59 |
+
## Evaluation of Touchstone Benchmark
|
| 60 |
+
|
| 61 |
+
Please See our github repo [Golden-Touchstone](https://github.com/IDEA-FinAI/Golden-Touchstone)
|
| 62 |
+
|
| 63 |
+
## Usage of Touchstone-GPT
|
| 64 |
+
|
| 65 |
+
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
|
| 66 |
+
|
| 67 |
+
```python
|
| 68 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 69 |
+
device = "cuda" # the device to load the model onto
|
| 70 |
+
|
| 71 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 72 |
+
"IDEA-FinAI/TouchstoneGPT-7B-Instruct",
|
| 73 |
+
torch_dtype="auto",
|
| 74 |
+
device_map="auto"
|
| 75 |
+
)
|
| 76 |
+
tokenizer = AutoTokenizer.from_pretrained("IDEA-FinAI/TouchstoneGPT-7B-Instruct")
|
| 77 |
+
|
| 78 |
+
prompt = "What is the sentiment of the following financial post: Positive, Negative, or Neutral?\nsees #Apple at $150/share in a year (+36% from today) on growing services business."
|
| 79 |
+
messages = [
|
| 80 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 81 |
+
{"role": "user", "content": prompt}
|
| 82 |
+
]
|
| 83 |
+
text = tokenizer.apply_chat_template(
|
| 84 |
+
messages,
|
| 85 |
+
tokenize=False,
|
| 86 |
+
add_generation_prompt=True
|
| 87 |
+
)
|
| 88 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
| 89 |
+
|
| 90 |
+
generated_ids = model.generate(
|
| 91 |
+
model_inputs.input_ids,
|
| 92 |
+
max_new_tokens=512
|
| 93 |
+
)
|
| 94 |
+
generated_ids = [
|
| 95 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 96 |
+
]
|
| 97 |
+
|
| 98 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
## Citation
|
| 104 |
+
```
|
| 105 |
+
@article{gan2023ziya2,
|
| 106 |
+
title={Ziya2: Data-centric learning is all llms need},
|
| 107 |
+
author={Gan, Ruyi and Wu, Ziwei and Sun, Renliang and Lu, Junyu and Wu, Xiaojun and Zhang, Dixiang and Pan, Kunhao and He, Junqing and Tian, Yuanhe and Yang, Ping and others},
|
| 108 |
+
journal={arXiv preprint arXiv:2311.03301},
|
| 109 |
+
year={2023}
|
| 110 |
+
}
|
| 111 |
+
```
|
| 112 |
+
|