update
Browse files- config.json +0 -0
- modeling_baichuan copy.py +0 -801
- modeling_baichuan.py +16 -0
config.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_baichuan copy.py
DELETED
|
@@ -1,801 +0,0 @@
|
|
| 1 |
-
# Copyright 2023 Baichuan Inc. All Rights Reserved.
|
| 2 |
-
|
| 3 |
-
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
| 4 |
-
#
|
| 5 |
-
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 6 |
-
# and OPT implementations in this library. It has been modified from its
|
| 7 |
-
# original forms to accommodate minor architectural differences compared
|
| 8 |
-
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 9 |
-
#
|
| 10 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 11 |
-
# you may not use this file except in compliance with the License.
|
| 12 |
-
# You may obtain a copy of the License at
|
| 13 |
-
#
|
| 14 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 15 |
-
#
|
| 16 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 17 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 18 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 19 |
-
# See the License for the specific language governing permissions and
|
| 20 |
-
# limitations under the License.
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
from .configuration_baichuan import BaichuanConfig
|
| 24 |
-
from .generation_utils import build_chat_input, TextIterStreamer
|
| 25 |
-
|
| 26 |
-
import math
|
| 27 |
-
from typing import List, Optional, Tuple, Union
|
| 28 |
-
from threading import Thread
|
| 29 |
-
|
| 30 |
-
import torch
|
| 31 |
-
import torch.utils.checkpoint
|
| 32 |
-
from torch import nn
|
| 33 |
-
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 34 |
-
from torch.nn import functional as F
|
| 35 |
-
from transformers import PreTrainedModel, PretrainedConfig
|
| 36 |
-
from transformers.activations import ACT2FN
|
| 37 |
-
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 38 |
-
from transformers.generation.utils import GenerationConfig
|
| 39 |
-
from transformers.utils import logging, ContextManagers
|
| 40 |
-
|
| 41 |
-
import os
|
| 42 |
-
from contextlib import contextmanager
|
| 43 |
-
logger = logging.get_logger(__name__)
|
| 44 |
-
|
| 45 |
-
try:
|
| 46 |
-
from xformers import ops as xops
|
| 47 |
-
except ImportError:
|
| 48 |
-
xops = None
|
| 49 |
-
logger.warning(
|
| 50 |
-
"Xformers is not installed correctly. If you want to use memory_efficient_attention to accelerate training use the following command to install Xformers\npip install xformers."
|
| 51 |
-
)
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
| 55 |
-
def _make_causal_mask(
|
| 56 |
-
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
| 57 |
-
):
|
| 58 |
-
"""
|
| 59 |
-
Make causal mask used for bi-directional self-attention.
|
| 60 |
-
"""
|
| 61 |
-
bsz, tgt_len = input_ids_shape
|
| 62 |
-
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
| 63 |
-
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 64 |
-
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 65 |
-
mask = mask.to(dtype)
|
| 66 |
-
|
| 67 |
-
if past_key_values_length > 0:
|
| 68 |
-
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
| 69 |
-
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
| 70 |
-
|
| 71 |
-
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 72 |
-
"""
|
| 73 |
-
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 74 |
-
"""
|
| 75 |
-
if len(mask.size()) == 3:
|
| 76 |
-
bsz, src_len, _ = mask.size()
|
| 77 |
-
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 78 |
-
expanded_mask = mask[:,None,:,:].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 79 |
-
else:
|
| 80 |
-
bsz, src_len = mask.size()
|
| 81 |
-
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 82 |
-
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 83 |
-
|
| 84 |
-
inverted_mask = 1.0 - expanded_mask
|
| 85 |
-
|
| 86 |
-
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
class RMSNorm(nn.Module):
|
| 90 |
-
def __init__(self, hidden_size, eps=1e-6):
|
| 91 |
-
"""
|
| 92 |
-
RMSNorm is equivalent to T5LayerNorm
|
| 93 |
-
"""
|
| 94 |
-
super().__init__()
|
| 95 |
-
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 96 |
-
self.variance_epsilon = eps
|
| 97 |
-
|
| 98 |
-
def forward(self, hidden_states):
|
| 99 |
-
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
| 100 |
-
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 101 |
-
|
| 102 |
-
# convert into half-precision if necessary
|
| 103 |
-
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
| 104 |
-
hidden_states = hidden_states.to(self.weight.dtype)
|
| 105 |
-
|
| 106 |
-
return self.weight * hidden_states
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
class RotaryEmbedding(torch.nn.Module):
|
| 110 |
-
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 111 |
-
super().__init__()
|
| 112 |
-
self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
| 113 |
-
self.max_seq_len_cached = max_position_embeddings
|
| 114 |
-
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
|
| 115 |
-
freqs = torch.outer(t, self.inv_freq)
|
| 116 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
| 117 |
-
self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32)
|
| 118 |
-
self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32)
|
| 119 |
-
def forward(self, x, seq_len=None):
|
| 120 |
-
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 121 |
-
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
| 122 |
-
if seq_len > self.max_seq_len_cached:
|
| 123 |
-
self.max_seq_len_cached = seq_len
|
| 124 |
-
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
|
| 125 |
-
freqs = torch.outer(t, self.inv_freq)
|
| 126 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
| 127 |
-
self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32).to(x.device)
|
| 128 |
-
self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32).to(x.device)
|
| 129 |
-
elif self.cos_cached.device != x.device:
|
| 130 |
-
self.cos_cached = self.cos_cached.to(x.device)
|
| 131 |
-
self.sin_cached = self.sin_cached.to(x.device)
|
| 132 |
-
return (
|
| 133 |
-
self.cos_cached[:, :, :seq_len, ...],
|
| 134 |
-
self.sin_cached[:, :, :seq_len, ...],
|
| 135 |
-
)
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
def rotate_half(x):
|
| 139 |
-
"""Rotates half the hidden dims of the input."""
|
| 140 |
-
x1 = x[..., : x.shape[-1] // 2]
|
| 141 |
-
x2 = x[..., x.shape[-1] // 2:]
|
| 142 |
-
return torch.cat((-x2, x1), dim=-1)
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
def apply_rotary_pos_emb(q, k, cos_, sin_, position_ids):
|
| 146 |
-
cos = cos_.squeeze(1).squeeze(0) # [seq_len, dim]
|
| 147 |
-
sin = sin_.squeeze(1).squeeze(0) # [seq_len, dim]
|
| 148 |
-
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
| 149 |
-
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
| 150 |
-
q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin)
|
| 151 |
-
k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin)
|
| 152 |
-
return q_embed.to(q.dtype), k_embed.to(k.dtype)
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
class MLP(nn.Module):
|
| 156 |
-
def __init__(
|
| 157 |
-
self,
|
| 158 |
-
hidden_size: int,
|
| 159 |
-
intermediate_size: int,
|
| 160 |
-
hidden_act: str,
|
| 161 |
-
):
|
| 162 |
-
super().__init__()
|
| 163 |
-
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
| 164 |
-
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
| 165 |
-
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
| 166 |
-
self.act_fn = ACT2FN[hidden_act]
|
| 167 |
-
|
| 168 |
-
def forward(self, x):
|
| 169 |
-
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
class Attention(nn.Module):
|
| 173 |
-
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 174 |
-
def __init__(self, config: BaichuanConfig):
|
| 175 |
-
super().__init__()
|
| 176 |
-
self.config = config
|
| 177 |
-
self.hidden_size = config.hidden_size
|
| 178 |
-
self.num_heads = config.num_attention_heads
|
| 179 |
-
self.head_dim = self.hidden_size // self.num_heads
|
| 180 |
-
self.max_position_embeddings = config.max_position_embeddings
|
| 181 |
-
|
| 182 |
-
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 183 |
-
raise ValueError(
|
| 184 |
-
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 185 |
-
f" and `num_heads`: {self.num_heads})."
|
| 186 |
-
)
|
| 187 |
-
self.W_pack = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
|
| 188 |
-
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 189 |
-
self.rotary_emb = RotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
| 190 |
-
|
| 191 |
-
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 192 |
-
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 193 |
-
|
| 194 |
-
def forward(
|
| 195 |
-
self,
|
| 196 |
-
hidden_states: torch.Tensor,
|
| 197 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 198 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 199 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 200 |
-
output_attentions: bool = False,
|
| 201 |
-
use_cache: bool = False,
|
| 202 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 203 |
-
bsz, q_len, _ = hidden_states.size()
|
| 204 |
-
|
| 205 |
-
proj = self.W_pack(hidden_states)
|
| 206 |
-
proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
|
| 207 |
-
query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 208 |
-
key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 209 |
-
value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 210 |
-
|
| 211 |
-
kv_seq_len = key_states.shape[-2]
|
| 212 |
-
if past_key_value is not None:
|
| 213 |
-
kv_seq_len += past_key_value[0].shape[-2]
|
| 214 |
-
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 215 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 216 |
-
# [bsz, nh, t, hd]
|
| 217 |
-
|
| 218 |
-
if past_key_value is not None:
|
| 219 |
-
# reuse k, v, self_attention
|
| 220 |
-
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 221 |
-
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 222 |
-
|
| 223 |
-
past_key_value = (key_states, value_states) if use_cache else None
|
| 224 |
-
if xops is not None and self.training:
|
| 225 |
-
attn_weights = None
|
| 226 |
-
query_states = query_states.transpose(1, 2)
|
| 227 |
-
key_states = key_states.transpose(1, 2)
|
| 228 |
-
value_states = value_states.transpose(1, 2)
|
| 229 |
-
attn_output = xops.memory_efficient_attention(
|
| 230 |
-
query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask()
|
| 231 |
-
)
|
| 232 |
-
else:
|
| 233 |
-
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
|
| 234 |
-
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask = attention_mask)
|
| 235 |
-
attn_output = attn_output.transpose(1, 2)
|
| 236 |
-
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 237 |
-
attn_output = self.o_proj(attn_output)
|
| 238 |
-
|
| 239 |
-
if not output_attentions:
|
| 240 |
-
attn_weights = None
|
| 241 |
-
|
| 242 |
-
return attn_output, attn_weights, past_key_value
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
class DecoderLayer(nn.Module):
|
| 246 |
-
def __init__(self, config: BaichuanConfig):
|
| 247 |
-
super().__init__()
|
| 248 |
-
self.hidden_size = config.hidden_size
|
| 249 |
-
self.self_attn = Attention(config=config)
|
| 250 |
-
self.mlp = MLP(
|
| 251 |
-
hidden_size=self.hidden_size,
|
| 252 |
-
intermediate_size=config.intermediate_size,
|
| 253 |
-
hidden_act=config.hidden_act,
|
| 254 |
-
)
|
| 255 |
-
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 256 |
-
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 257 |
-
|
| 258 |
-
def forward(
|
| 259 |
-
self,
|
| 260 |
-
hidden_states: torch.Tensor,
|
| 261 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 262 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 263 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 264 |
-
output_attentions: Optional[bool] = False,
|
| 265 |
-
use_cache: Optional[bool] = False,
|
| 266 |
-
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 267 |
-
|
| 268 |
-
residual = hidden_states
|
| 269 |
-
|
| 270 |
-
hidden_states = self.input_layernorm(hidden_states)
|
| 271 |
-
|
| 272 |
-
# Self Attention
|
| 273 |
-
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 274 |
-
hidden_states=hidden_states,
|
| 275 |
-
attention_mask=attention_mask,
|
| 276 |
-
position_ids=position_ids,
|
| 277 |
-
past_key_value=past_key_value,
|
| 278 |
-
output_attentions=output_attentions,
|
| 279 |
-
use_cache=use_cache,
|
| 280 |
-
)
|
| 281 |
-
hidden_states = residual + hidden_states
|
| 282 |
-
|
| 283 |
-
# Fully Connected
|
| 284 |
-
residual = hidden_states
|
| 285 |
-
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 286 |
-
hidden_states = self.mlp(hidden_states)
|
| 287 |
-
hidden_states = residual + hidden_states
|
| 288 |
-
|
| 289 |
-
outputs = (hidden_states,)
|
| 290 |
-
|
| 291 |
-
if output_attentions:
|
| 292 |
-
outputs += (self_attn_weights,)
|
| 293 |
-
|
| 294 |
-
if use_cache:
|
| 295 |
-
outputs += (present_key_value,)
|
| 296 |
-
|
| 297 |
-
return outputs
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
class BaichuanPreTrainedModel(PreTrainedModel):
|
| 301 |
-
config_class = BaichuanConfig
|
| 302 |
-
base_model_prefix = "model"
|
| 303 |
-
supports_gradient_checkpointing = True
|
| 304 |
-
_no_split_modules = ["DecoderLayer"]
|
| 305 |
-
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
| 306 |
-
|
| 307 |
-
def _init_weights(self, module):
|
| 308 |
-
std = self.config.initializer_range
|
| 309 |
-
if isinstance(module, nn.Linear):
|
| 310 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
| 311 |
-
if module.bias is not None:
|
| 312 |
-
module.bias.data.zero_()
|
| 313 |
-
elif isinstance(module, nn.Embedding):
|
| 314 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
| 315 |
-
if module.padding_idx is not None:
|
| 316 |
-
module.weight.data[module.padding_idx].zero_()
|
| 317 |
-
|
| 318 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
| 319 |
-
if isinstance(module, BaichuanModel):
|
| 320 |
-
module.gradient_checkpointing = value
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
class BaichuanModel(BaichuanPreTrainedModel):
|
| 324 |
-
def __init__(self, config: BaichuanConfig):
|
| 325 |
-
super().__init__(config)
|
| 326 |
-
self.padding_idx = config.pad_token_id
|
| 327 |
-
self.vocab_size = config.vocab_size
|
| 328 |
-
|
| 329 |
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 330 |
-
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 331 |
-
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 332 |
-
|
| 333 |
-
self.gradient_checkpointing = False
|
| 334 |
-
# Initialize weights and apply final processing
|
| 335 |
-
self.post_init()
|
| 336 |
-
|
| 337 |
-
def get_input_embeddings(self):
|
| 338 |
-
return self.embed_tokens
|
| 339 |
-
|
| 340 |
-
def set_input_embeddings(self, value):
|
| 341 |
-
self.embed_tokens = value
|
| 342 |
-
|
| 343 |
-
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
| 344 |
-
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
| 345 |
-
# create causal mask
|
| 346 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 347 |
-
combined_attention_mask = None
|
| 348 |
-
if input_shape[-1] > 1:
|
| 349 |
-
combined_attention_mask = _make_causal_mask(
|
| 350 |
-
input_shape,
|
| 351 |
-
inputs_embeds.dtype,
|
| 352 |
-
device=inputs_embeds.device,
|
| 353 |
-
past_key_values_length=past_key_values_length,
|
| 354 |
-
)
|
| 355 |
-
|
| 356 |
-
if attention_mask is not None:
|
| 357 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 358 |
-
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
| 359 |
-
inputs_embeds.device
|
| 360 |
-
)
|
| 361 |
-
combined_attention_mask = (
|
| 362 |
-
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
| 363 |
-
)
|
| 364 |
-
|
| 365 |
-
return combined_attention_mask
|
| 366 |
-
|
| 367 |
-
def forward(
|
| 368 |
-
self,
|
| 369 |
-
input_ids: torch.LongTensor = None,
|
| 370 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 371 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 372 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 373 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 374 |
-
use_cache: Optional[bool] = None,
|
| 375 |
-
output_attentions: Optional[bool] = None,
|
| 376 |
-
output_hidden_states: Optional[bool] = None,
|
| 377 |
-
return_dict: Optional[bool] = None,
|
| 378 |
-
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 379 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 380 |
-
output_hidden_states = (
|
| 381 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 382 |
-
)
|
| 383 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 384 |
-
|
| 385 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 386 |
-
|
| 387 |
-
# retrieve input_ids and inputs_embeds
|
| 388 |
-
if input_ids is not None and inputs_embeds is not None:
|
| 389 |
-
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
| 390 |
-
elif input_ids is not None:
|
| 391 |
-
batch_size, seq_length = input_ids.shape
|
| 392 |
-
elif inputs_embeds is not None:
|
| 393 |
-
batch_size, seq_length, _ = inputs_embeds.shape
|
| 394 |
-
else:
|
| 395 |
-
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
| 396 |
-
|
| 397 |
-
seq_length_with_past = seq_length
|
| 398 |
-
past_key_values_length = 0
|
| 399 |
-
|
| 400 |
-
if past_key_values is not None:
|
| 401 |
-
past_key_values_length = past_key_values[0][0].shape[2]
|
| 402 |
-
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 403 |
-
|
| 404 |
-
if position_ids is None:
|
| 405 |
-
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 406 |
-
position_ids = torch.arange(
|
| 407 |
-
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 408 |
-
)
|
| 409 |
-
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 410 |
-
else:
|
| 411 |
-
position_ids = position_ids.view(-1, seq_length).long()
|
| 412 |
-
|
| 413 |
-
if inputs_embeds is None:
|
| 414 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
| 415 |
-
# embed positions
|
| 416 |
-
if attention_mask is None:
|
| 417 |
-
attention_mask = torch.ones(
|
| 418 |
-
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
| 419 |
-
)
|
| 420 |
-
attention_mask = self._prepare_decoder_attention_mask(
|
| 421 |
-
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
| 422 |
-
)
|
| 423 |
-
|
| 424 |
-
hidden_states = inputs_embeds
|
| 425 |
-
|
| 426 |
-
if self.gradient_checkpointing and self.training:
|
| 427 |
-
if use_cache:
|
| 428 |
-
logger.warning_once(
|
| 429 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 430 |
-
)
|
| 431 |
-
use_cache = False
|
| 432 |
-
|
| 433 |
-
# decoder layers
|
| 434 |
-
all_hidden_states = () if output_hidden_states else None
|
| 435 |
-
all_self_attns = () if output_attentions else None
|
| 436 |
-
next_decoder_cache = () if use_cache else None
|
| 437 |
-
|
| 438 |
-
for idx, decoder_layer in enumerate(self.layers):
|
| 439 |
-
if output_hidden_states:
|
| 440 |
-
all_hidden_states += (hidden_states,)
|
| 441 |
-
|
| 442 |
-
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
| 443 |
-
|
| 444 |
-
if self.gradient_checkpointing and self.training:
|
| 445 |
-
|
| 446 |
-
def create_custom_forward(module):
|
| 447 |
-
def custom_forward(*inputs):
|
| 448 |
-
# None for past_key_value
|
| 449 |
-
return module(*inputs, output_attentions, None)
|
| 450 |
-
|
| 451 |
-
return custom_forward
|
| 452 |
-
|
| 453 |
-
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 454 |
-
create_custom_forward(decoder_layer),
|
| 455 |
-
hidden_states,
|
| 456 |
-
attention_mask,
|
| 457 |
-
position_ids,
|
| 458 |
-
None,
|
| 459 |
-
)
|
| 460 |
-
else:
|
| 461 |
-
layer_outputs = decoder_layer(
|
| 462 |
-
hidden_states,
|
| 463 |
-
attention_mask=attention_mask,
|
| 464 |
-
position_ids=position_ids,
|
| 465 |
-
past_key_value=past_key_value,
|
| 466 |
-
output_attentions=output_attentions,
|
| 467 |
-
use_cache=use_cache,
|
| 468 |
-
)
|
| 469 |
-
|
| 470 |
-
hidden_states = layer_outputs[0]
|
| 471 |
-
|
| 472 |
-
if use_cache:
|
| 473 |
-
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
| 474 |
-
|
| 475 |
-
if output_attentions:
|
| 476 |
-
all_self_attns += (layer_outputs[1],)
|
| 477 |
-
|
| 478 |
-
hidden_states = self.norm(hidden_states)
|
| 479 |
-
|
| 480 |
-
# add hidden states from the last decoder layer
|
| 481 |
-
if output_hidden_states:
|
| 482 |
-
all_hidden_states += (hidden_states,)
|
| 483 |
-
|
| 484 |
-
next_cache = next_decoder_cache if use_cache else None
|
| 485 |
-
if not return_dict:
|
| 486 |
-
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 487 |
-
return BaseModelOutputWithPast(
|
| 488 |
-
last_hidden_state=hidden_states,
|
| 489 |
-
past_key_values=next_cache,
|
| 490 |
-
hidden_states=all_hidden_states,
|
| 491 |
-
attentions=all_self_attns,
|
| 492 |
-
)
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
class NormHead(nn.Module):
|
| 496 |
-
def __init__(self, hidden_size, vocab_size, bias=False):
|
| 497 |
-
super().__init__()
|
| 498 |
-
self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size)))
|
| 499 |
-
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
| 500 |
-
self.first_flag = True
|
| 501 |
-
|
| 502 |
-
def forward(self, hidden_states):
|
| 503 |
-
if self.training:
|
| 504 |
-
norm_weight = nn.functional.normalize(self.weight)
|
| 505 |
-
self.first_flag = True
|
| 506 |
-
elif self.first_flag:
|
| 507 |
-
self.first_flag = False
|
| 508 |
-
self.weight = nn.Parameter(nn.functional.normalize(self.weight))
|
| 509 |
-
norm_weight = self.weight
|
| 510 |
-
else:
|
| 511 |
-
norm_weight = self.weight
|
| 512 |
-
return nn.functional.linear(hidden_states, norm_weight)
|
| 513 |
-
|
| 514 |
-
_init_weights = True
|
| 515 |
-
@contextmanager
|
| 516 |
-
def no_init_weights(_enable=True):
|
| 517 |
-
global _init_weights
|
| 518 |
-
old_init_weights = _init_weights
|
| 519 |
-
if _enable:
|
| 520 |
-
_init_weights = False
|
| 521 |
-
try:
|
| 522 |
-
yield
|
| 523 |
-
finally:
|
| 524 |
-
_init_weights = old_init_weights
|
| 525 |
-
|
| 526 |
-
class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
| 527 |
-
def __init__(self, config, *model_args, **model_kwargs):
|
| 528 |
-
super().__init__(config, *model_args, **model_kwargs)
|
| 529 |
-
self.model = BaichuanModel(config)
|
| 530 |
-
|
| 531 |
-
self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False)
|
| 532 |
-
if hasattr(config, "quantization_config") and isinstance(config.quantization_config, dict) and config.quantization_config.get('load_in_4bit', False):
|
| 533 |
-
try:
|
| 534 |
-
from .quantizer import quantize_offline, init_model_weight_int4
|
| 535 |
-
except ImportError:
|
| 536 |
-
raise ImportError(f"Needs QLinear to run quantize.")
|
| 537 |
-
quantize_offline(self, 4)
|
| 538 |
-
# Initialize weights and apply final processing
|
| 539 |
-
self.post_init()
|
| 540 |
-
|
| 541 |
-
def get_input_embeddings(self):
|
| 542 |
-
return self.model.embed_tokens
|
| 543 |
-
|
| 544 |
-
def set_input_embeddings(self, value):
|
| 545 |
-
self.model.embed_tokens = value
|
| 546 |
-
|
| 547 |
-
def get_output_embeddings(self):
|
| 548 |
-
return self.lm_head
|
| 549 |
-
|
| 550 |
-
def set_output_embeddings(self, new_embeddings):
|
| 551 |
-
self.lm_head = new_embeddings
|
| 552 |
-
|
| 553 |
-
def set_decoder(self, decoder):
|
| 554 |
-
self.model = decoder
|
| 555 |
-
|
| 556 |
-
def get_decoder(self):
|
| 557 |
-
return self.model
|
| 558 |
-
|
| 559 |
-
@classmethod
|
| 560 |
-
def from_pretrained(
|
| 561 |
-
cls,
|
| 562 |
-
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
| 563 |
-
*model_args,
|
| 564 |
-
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
|
| 565 |
-
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
| 566 |
-
ignore_mismatched_sizes: bool = False,
|
| 567 |
-
force_download: bool = False,
|
| 568 |
-
local_files_only: bool = False,
|
| 569 |
-
token: Optional[Union[str, bool]] = None,
|
| 570 |
-
revision: str = "main",
|
| 571 |
-
use_safetensors: bool = None,
|
| 572 |
-
**kwargs,
|
| 573 |
-
):
|
| 574 |
-
# Load config if we don't provide a configuration
|
| 575 |
-
if not isinstance(config, PretrainedConfig):
|
| 576 |
-
config_path = config if config is not None else pretrained_model_name_or_path
|
| 577 |
-
config, model_kwargs = cls.config_class.from_pretrained(
|
| 578 |
-
config_path,
|
| 579 |
-
cache_dir=cache_dir,
|
| 580 |
-
return_unused_kwargs=True,
|
| 581 |
-
force_download=force_download,
|
| 582 |
-
resume_download=False,
|
| 583 |
-
proxies=None,
|
| 584 |
-
local_files_only=local_files_only,
|
| 585 |
-
token=token,
|
| 586 |
-
revision=revision,
|
| 587 |
-
subfolder="",
|
| 588 |
-
_from_auto=False,
|
| 589 |
-
_from_pipeline=None,
|
| 590 |
-
**kwargs,
|
| 591 |
-
)
|
| 592 |
-
else:
|
| 593 |
-
model_kwargs = kwargs
|
| 594 |
-
|
| 595 |
-
if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
|
| 596 |
-
try:
|
| 597 |
-
from .quantizer import init_model_weight_int4
|
| 598 |
-
from accelerate import init_empty_weights, dispatch_model, infer_auto_device_map
|
| 599 |
-
from accelerate.utils import CustomDtype
|
| 600 |
-
from accelerate.utils import get_balanced_memory
|
| 601 |
-
except ImportError:
|
| 602 |
-
raise ImportError(f"Needs import model weight init func to run quantize.")
|
| 603 |
-
# Instantiate model.
|
| 604 |
-
init_contexts = [no_init_weights(_enable=True)]
|
| 605 |
-
init_contexts.append(init_empty_weights())
|
| 606 |
-
with ContextManagers(init_contexts):
|
| 607 |
-
model = cls(config)
|
| 608 |
-
|
| 609 |
-
model_file = os.path.join(pretrained_model_name_or_path, 'pytorch_model.bin')
|
| 610 |
-
state_dict = torch.load(model_file, map_location="cpu")
|
| 611 |
-
model.is_quantized = True
|
| 612 |
-
|
| 613 |
-
device_map = kwargs.pop("device_map", None)
|
| 614 |
-
torch_dtype = kwargs.pop("torch_dtype", None)
|
| 615 |
-
|
| 616 |
-
if device_map is not None:
|
| 617 |
-
kwargs = {"no_split_module_classes": model._no_split_modules}
|
| 618 |
-
target_dtype = CustomDtype.INT4
|
| 619 |
-
max_memory = get_balanced_memory(
|
| 620 |
-
model,
|
| 621 |
-
dtype=target_dtype,
|
| 622 |
-
low_zero=(device_map == "balanced_low_0"),
|
| 623 |
-
max_memory=None,
|
| 624 |
-
**kwargs,
|
| 625 |
-
)
|
| 626 |
-
kwargs["max_memory"] = max_memory
|
| 627 |
-
device_map = infer_auto_device_map(model, dtype=target_dtype, **kwargs)
|
| 628 |
-
|
| 629 |
-
model = init_model_weight_int4(config, model, state_dict)
|
| 630 |
-
|
| 631 |
-
# Set model in evaluation mode to deactivate DropOut modules by default
|
| 632 |
-
model.eval()
|
| 633 |
-
# If it is a model with generation capabilities, attempt to load the generation config
|
| 634 |
-
if model.can_generate():
|
| 635 |
-
try:
|
| 636 |
-
model.generation_config = GenerationConfig.from_pretrained(
|
| 637 |
-
pretrained_model_name_or_path,
|
| 638 |
-
cache_dir=cache_dir,
|
| 639 |
-
force_download=force_download,
|
| 640 |
-
resume_download=False,
|
| 641 |
-
proxies=None,
|
| 642 |
-
local_files_only=local_files_only,
|
| 643 |
-
token=token,
|
| 644 |
-
revision=revision,
|
| 645 |
-
subfolder="",
|
| 646 |
-
_from_auto=False,
|
| 647 |
-
_from_pipeline=None,
|
| 648 |
-
**kwargs,
|
| 649 |
-
)
|
| 650 |
-
except (OSError, TypeError):
|
| 651 |
-
logger.info(
|
| 652 |
-
"Generation config file not found, using a generation config created from the model config."
|
| 653 |
-
)
|
| 654 |
-
pass
|
| 655 |
-
|
| 656 |
-
if device_map is not None:
|
| 657 |
-
dispatch_model(model, device_map=device_map)
|
| 658 |
-
|
| 659 |
-
return model
|
| 660 |
-
return super(BaichuanForCausalLM, cls).from_pretrained(pretrained_model_name_or_path, *model_args,
|
| 661 |
-
config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes,
|
| 662 |
-
force_download=force_download, local_files_only=local_files_only, token=token, revision=revision,
|
| 663 |
-
use_safetensors=use_safetensors, **kwargs)
|
| 664 |
-
|
| 665 |
-
def forward(
|
| 666 |
-
self,
|
| 667 |
-
input_ids: torch.LongTensor = None,
|
| 668 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 669 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 670 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 671 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 672 |
-
labels: Optional[torch.LongTensor] = None,
|
| 673 |
-
use_cache: Optional[bool] = None,
|
| 674 |
-
output_attentions: Optional[bool] = None,
|
| 675 |
-
output_hidden_states: Optional[bool] = None,
|
| 676 |
-
return_dict: Optional[bool] = None,
|
| 677 |
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 678 |
-
|
| 679 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 680 |
-
output_hidden_states = (
|
| 681 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 682 |
-
)
|
| 683 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 684 |
-
|
| 685 |
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 686 |
-
outputs = self.model(
|
| 687 |
-
input_ids=input_ids,
|
| 688 |
-
attention_mask=attention_mask,
|
| 689 |
-
position_ids=position_ids,
|
| 690 |
-
past_key_values=past_key_values,
|
| 691 |
-
inputs_embeds=inputs_embeds,
|
| 692 |
-
use_cache=use_cache,
|
| 693 |
-
output_attentions=output_attentions,
|
| 694 |
-
output_hidden_states=output_hidden_states,
|
| 695 |
-
return_dict=return_dict,
|
| 696 |
-
)
|
| 697 |
-
|
| 698 |
-
hidden_states = outputs[0]
|
| 699 |
-
logits = self.lm_head(hidden_states)
|
| 700 |
-
loss = None
|
| 701 |
-
if labels is not None:
|
| 702 |
-
# Shift so that tokens < n predict n
|
| 703 |
-
shift_logits = logits[..., :-1, :].contiguous()
|
| 704 |
-
shift_labels = labels[..., 1:].contiguous()
|
| 705 |
-
# Flatten the tokens
|
| 706 |
-
loss_fct = CrossEntropyLoss()
|
| 707 |
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 708 |
-
shift_labels = shift_labels.view(-1)
|
| 709 |
-
softmax_normalizer = shift_logits.max(-1).values ** 2
|
| 710 |
-
z_loss = self.config.z_loss_weight * softmax_normalizer.mean()
|
| 711 |
-
# Enable model parallelism
|
| 712 |
-
shift_labels = shift_labels.to(shift_logits.device)
|
| 713 |
-
loss = loss_fct(shift_logits, shift_labels) + z_loss
|
| 714 |
-
|
| 715 |
-
if not return_dict:
|
| 716 |
-
output = (logits,) + outputs[1:]
|
| 717 |
-
return (loss,) + output if loss is not None else output
|
| 718 |
-
|
| 719 |
-
return CausalLMOutputWithPast(
|
| 720 |
-
loss=loss,
|
| 721 |
-
logits=logits,
|
| 722 |
-
past_key_values=outputs.past_key_values,
|
| 723 |
-
hidden_states=outputs.hidden_states,
|
| 724 |
-
attentions=outputs.attentions,
|
| 725 |
-
)
|
| 726 |
-
|
| 727 |
-
def prepare_inputs_for_generation(
|
| 728 |
-
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 729 |
-
):
|
| 730 |
-
if past_key_values:
|
| 731 |
-
input_ids = input_ids[:, -1:]
|
| 732 |
-
|
| 733 |
-
position_ids = kwargs.get("position_ids", None)
|
| 734 |
-
if attention_mask is not None and position_ids is None:
|
| 735 |
-
# create position_ids on the fly for batch generation
|
| 736 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 737 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 738 |
-
if past_key_values:
|
| 739 |
-
position_ids = position_ids[:, -1].unsqueeze(-1)
|
| 740 |
-
|
| 741 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 742 |
-
if inputs_embeds is not None and past_key_values is None:
|
| 743 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 744 |
-
else:
|
| 745 |
-
model_inputs = {"input_ids": input_ids}
|
| 746 |
-
|
| 747 |
-
model_inputs.update(
|
| 748 |
-
{
|
| 749 |
-
"position_ids": position_ids,
|
| 750 |
-
"past_key_values": past_key_values,
|
| 751 |
-
"use_cache": kwargs.get("use_cache"),
|
| 752 |
-
"attention_mask": attention_mask,
|
| 753 |
-
}
|
| 754 |
-
)
|
| 755 |
-
return model_inputs
|
| 756 |
-
|
| 757 |
-
@staticmethod
|
| 758 |
-
def _reorder_cache(past_key_values, beam_idx):
|
| 759 |
-
reordered_past = ()
|
| 760 |
-
for layer_past in past_key_values:
|
| 761 |
-
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
| 762 |
-
return reordered_past
|
| 763 |
-
|
| 764 |
-
def quantize(self, bits: int):
|
| 765 |
-
try:
|
| 766 |
-
from .quantizer import quantize_online
|
| 767 |
-
except ImportError:
|
| 768 |
-
raise ImportError(f"Needs QLinear to run quantize.")
|
| 769 |
-
return quantize_online(self, bits)
|
| 770 |
-
|
| 771 |
-
def chat(self, tokenizer, messages: List[dict], stream=False,
|
| 772 |
-
generation_config: Optional[GenerationConfig]=None):
|
| 773 |
-
generation_config = generation_config or self.generation_config
|
| 774 |
-
input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
|
| 775 |
-
if stream:
|
| 776 |
-
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 777 |
-
Thread(target=self.generate, kwargs=dict(
|
| 778 |
-
inputs=input_ids, streamer=streamer,
|
| 779 |
-
generation_config=generation_config,
|
| 780 |
-
)).start()
|
| 781 |
-
return streamer
|
| 782 |
-
else:
|
| 783 |
-
outputs = self.generate(input_ids, generation_config=generation_config)
|
| 784 |
-
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
|
| 785 |
-
return response
|
| 786 |
-
|
| 787 |
-
def HuatuoChat(self, tokenizer, messages: List[dict], stream=False,
|
| 788 |
-
generation_config: Optional[GenerationConfig]=None):
|
| 789 |
-
generation_config = generation_config or self.generation_config
|
| 790 |
-
input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
|
| 791 |
-
if stream:
|
| 792 |
-
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 793 |
-
Thread(target=self.generate, kwargs=dict(
|
| 794 |
-
inputs=input_ids, streamer=streamer,
|
| 795 |
-
generation_config=generation_config,
|
| 796 |
-
)).start()
|
| 797 |
-
return streamer
|
| 798 |
-
else:
|
| 799 |
-
outputs = self.generate(input_ids, generation_config=generation_config)
|
| 800 |
-
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
|
| 801 |
-
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling_baichuan.py
CHANGED
|
@@ -706,6 +706,22 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
|
| 706 |
generation_config: Optional[GenerationConfig]=None):
|
| 707 |
generation_config = generation_config or self.generation_config
|
| 708 |
input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 709 |
if stream:
|
| 710 |
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 711 |
Thread(target=self.generate, kwargs=dict(
|
|
|
|
| 706 |
generation_config: Optional[GenerationConfig]=None):
|
| 707 |
generation_config = generation_config or self.generation_config
|
| 708 |
input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
|
| 709 |
+
if stream:
|
| 710 |
+
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 711 |
+
Thread(target=self.generate, kwargs=dict(
|
| 712 |
+
inputs=input_ids, streamer=streamer,
|
| 713 |
+
generation_config=generation_config,
|
| 714 |
+
)).start()
|
| 715 |
+
return streamer
|
| 716 |
+
else:
|
| 717 |
+
outputs = self.generate(input_ids, generation_config=generation_config)
|
| 718 |
+
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
|
| 719 |
+
return response
|
| 720 |
+
|
| 721 |
+
def HuatuoChat(self, tokenizer, messages: List[dict], stream=False,
|
| 722 |
+
generation_config: Optional[GenerationConfig]=None):
|
| 723 |
+
generation_config = generation_config or self.generation_config
|
| 724 |
+
input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
|
| 725 |
if stream:
|
| 726 |
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 727 |
Thread(target=self.generate, kwargs=dict(
|