rita1706 commited on
Commit
dfd42d7
·
verified ·
1 Parent(s): 8622481

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|assistant|>": 151672,
5
+ "<|box_end|>": 151649,
6
+ "<|box_start|>": 151648,
7
+ "<|endofassistant|>": 151673,
8
+ "<|endofimg|>": 151667,
9
+ "<|endofslice|>": 151682,
10
+ "<|endofsystemprompt|>": 151669,
11
+ "<|endoftext|>": 151643,
12
+ "<|endofuser|>": 151671,
13
+ "<|file_sep|>": 151664,
14
+ "<|fim_middle|>": 151660,
15
+ "<|fim_pad|>": 151662,
16
+ "<|fim_prefix|>": 151659,
17
+ "<|fim_suffix|>": 151661,
18
+ "<|im_end|>": 151645,
19
+ "<|im_start|>": 151644,
20
+ "<|image_gen_end|>": 151687,
21
+ "<|image_gen_start|>": 151686,
22
+ "<|image_pad|>": 151655,
23
+ "<|imgpad|>": 151665,
24
+ "<|imgrowend|>": 151683,
25
+ "<|img|>": 151666,
26
+ "<|object_ref_end|>": 151647,
27
+ "<|object_ref_start|>": 151646,
28
+ "<|pictotext|>": 151679,
29
+ "<|pic|>": 151677,
30
+ "<|polygon_end|>": 151685,
31
+ "<|polygon_start|>": 151684,
32
+ "<|quad_end|>": 151651,
33
+ "<|quad_start|>": 151650,
34
+ "<|ref_end|>": 151675,
35
+ "<|ref_start|>": 151674,
36
+ "<|repo_name|>": 151663,
37
+ "<|slice|>": 151681,
38
+ "<|systemprompt|>": 151668,
39
+ "<|text|>": 151678,
40
+ "<|user|>": 151670,
41
+ "<|video_pad|>": 151656,
42
+ "<|vision_end|>": 151653,
43
+ "<|vision_pad|>": 151654,
44
+ "<|vision_start|>": 151652,
45
+ "[PAD]": 151680,
46
+ "[SEP]": 151676
47
+ }
chat_template.jinja ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- for m in messages %}
2
+ {%- if m.role == 'system' %}
3
+ {{- '<|system|>' + m.content + '<|endofsystem|>\n' }}
4
+ {%- elif m.role == 'user' %}
5
+ {{- '<|user|>' + m.content + '<|endofuser|>' }}
6
+ {%- elif m.role == 'assistant' %}
7
+ {{- '<|assistant|>' + m.content }}
8
+ {%- if not loop.last %}
9
+ {{- '<|endofassistant|>' }}
10
+ {%- endif %}
11
+ {%- endif %}
12
+ {%- endfor %}
13
+ {%- if messages[-1].role != 'assistant' %}
14
+ {{- '<|assistant|>' }}
15
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DotsOCRForCausalLM"
4
+ ],
5
+ "attention_bias": true,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_dots.DotsOCRConfig",
9
+ "AutoModelForCausalLM": "modeling_dots_ocr.DotsOCRForCausalLM"
10
+ },
11
+ "dtype": "float16",
12
+ "hidden_act": "silu",
13
+ "hidden_size": 1536,
14
+ "image_token_id": 151665,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 8960,
17
+ "layer_types": [
18
+ "full_attention",
19
+ "full_attention",
20
+ "full_attention",
21
+ "full_attention",
22
+ "full_attention",
23
+ "full_attention",
24
+ "full_attention",
25
+ "full_attention",
26
+ "full_attention",
27
+ "full_attention",
28
+ "full_attention",
29
+ "full_attention",
30
+ "full_attention",
31
+ "full_attention",
32
+ "full_attention",
33
+ "full_attention",
34
+ "full_attention",
35
+ "full_attention",
36
+ "full_attention",
37
+ "full_attention",
38
+ "full_attention",
39
+ "full_attention",
40
+ "full_attention",
41
+ "full_attention",
42
+ "full_attention",
43
+ "full_attention",
44
+ "full_attention",
45
+ "full_attention"
46
+ ],
47
+ "max_position_embeddings": 131072,
48
+ "max_window_layers": 28,
49
+ "model_type": "dots_ocr",
50
+ "num_attention_heads": 12,
51
+ "num_hidden_layers": 28,
52
+ "num_key_value_heads": 2,
53
+ "quantization_config": {
54
+ "_load_in_4bit": true,
55
+ "_load_in_8bit": false,
56
+ "bnb_4bit_compute_dtype": "bfloat16",
57
+ "bnb_4bit_quant_storage": "uint8",
58
+ "bnb_4bit_quant_type": "nf4",
59
+ "bnb_4bit_use_double_quant": true,
60
+ "llm_int8_enable_fp32_cpu_offload": false,
61
+ "llm_int8_has_fp16_weight": false,
62
+ "llm_int8_skip_modules": null,
63
+ "llm_int8_threshold": 6.0,
64
+ "load_in_4bit": true,
65
+ "load_in_8bit": false,
66
+ "quant_method": "bitsandbytes"
67
+ },
68
+ "rms_norm_eps": 1e-06,
69
+ "rope_scaling": null,
70
+ "rope_theta": 1000000,
71
+ "sliding_window": null,
72
+ "tie_word_embeddings": false,
73
+ "transformers_version": "4.56.2",
74
+ "use_cache": true,
75
+ "use_sliding_window": false,
76
+ "video_token_id": 151656,
77
+ "vision_config": {
78
+ "_attn_implementation_autoset": true,
79
+ "attn_implementation": "flash_attention_2",
80
+ "embed_dim": 1536,
81
+ "gradient_checkpointing": false,
82
+ "hidden_size": 1536,
83
+ "init_merger_std": 0.02,
84
+ "initializer_range": 0.02,
85
+ "intermediate_size": 4224,
86
+ "is_causal": false,
87
+ "model_type": "dots_vit",
88
+ "num_attention_heads": 12,
89
+ "num_channels": 3,
90
+ "num_hidden_layers": 42,
91
+ "patch_size": 14,
92
+ "post_norm": true,
93
+ "rms_norm_eps": 1e-05,
94
+ "spatial_merge_size": 2,
95
+ "temporal_patch_size": 1,
96
+ "use_bias": false
97
+ },
98
+ "vocab_size": 151936
99
+ }
configuration_dots.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Optional
2
+ from transformers.configuration_utils import PretrainedConfig
3
+ from transformers.models.qwen2 import Qwen2Config
4
+ from transformers import Qwen2_5_VLProcessor, AutoProcessor
5
+ from transformers.models.auto.configuration_auto import CONFIG_MAPPING
6
+
7
+
8
+ class DotsVisionConfig(PretrainedConfig):
9
+ model_type: str = "dots_vit"
10
+
11
+ def __init__(
12
+ self,
13
+ embed_dim: int = 1536, # vision encoder embed size
14
+ hidden_size: int = 1536, # after merger hidden size
15
+ intermediate_size: int = 4224,
16
+ num_hidden_layers: int = 42,
17
+ num_attention_heads: int = 12,
18
+ num_channels: int = 3,
19
+ patch_size: int = 14,
20
+ spatial_merge_size: int = 2,
21
+ temporal_patch_size: int = 1,
22
+ rms_norm_eps: float = 1e-5,
23
+ use_bias: bool = False,
24
+ attn_implementation="flash_attention_2", # "eager","sdpa","flash_attention_2"
25
+ initializer_range=0.02,
26
+ init_merger_std=0.02,
27
+ is_causal=False, # ve causal forward
28
+ post_norm=True,
29
+ gradient_checkpointing=False,
30
+ **kwargs: Any,
31
+ ):
32
+ super().__init__(**kwargs)
33
+ self.embed_dim = embed_dim
34
+ self.hidden_size = hidden_size
35
+ self.intermediate_size = intermediate_size
36
+ self.num_hidden_layers = num_hidden_layers
37
+ self.num_attention_heads = num_attention_heads
38
+ self.num_channels = num_channels
39
+ self.patch_size = patch_size
40
+ self.spatial_merge_size = spatial_merge_size
41
+ self.temporal_patch_size = temporal_patch_size
42
+ self.rms_norm_eps = rms_norm_eps
43
+ self.use_bias = use_bias
44
+ self.attn_implementation = attn_implementation
45
+ self.initializer_range = initializer_range
46
+ self.init_merger_std = init_merger_std
47
+ self.is_causal = is_causal
48
+ self.post_norm = post_norm
49
+ self.gradient_checkpointing = gradient_checkpointing
50
+
51
+
52
+
53
+ class DotsOCRConfig(Qwen2Config):
54
+ model_type = "dots_ocr"
55
+ def __init__(self,
56
+ image_token_id = 151665,
57
+ video_token_id = 151656,
58
+ vision_config: Optional[dict] = None, *args, **kwargs):
59
+ super().__init__(*args, **kwargs)
60
+ self.image_token_id = image_token_id
61
+ self.video_token_id = video_token_id
62
+ self.vision_config = DotsVisionConfig(**(vision_config or {}))
63
+
64
+ def save_pretrained(self, save_directory, **kwargs):
65
+ self._auto_class = None
66
+ super().save_pretrained(save_directory, **kwargs)
67
+
68
+
69
+ class DotsVLProcessor(Qwen2_5_VLProcessor):
70
+ def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
71
+ super().__init__(image_processor, tokenizer, chat_template=chat_template)
72
+ self.image_token = "<|imgpad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
73
+ self.image_token_id = 151665 if not hasattr(tokenizer, "image_token_id") else tokenizer.image_token_id
74
+
75
+
76
+ AutoProcessor.register("dots_ocr", DotsVLProcessor)
77
+ CONFIG_MAPPING.register("dots_ocr", DotsOCRConfig)
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token_id": [
3
+ 151643,
4
+ 151673
5
+ ],
6
+ "max_length": 32768,
7
+ "transformers_version": "4.56.2"
8
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4981cbc9901ae21fa5e7716bdb53f156b62016db3a9d0f70b374a8b68fdc1b85
3
+ size 2263132677
modeling_dots_ocr.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple, Union
2
+
3
+ import torch
4
+ from transformers.modeling_outputs import CausalLMOutputWithPast
5
+ from transformers.models.qwen2 import Qwen2ForCausalLM
6
+
7
+ from .configuration_dots import DotsVisionConfig, DotsOCRConfig
8
+ from .modeling_dots_vision import DotsVisionTransformer
9
+
10
+
11
+ DOTS_VLM_MAX_IMAGES = 200
12
+
13
+
14
+ class DotsOCRForCausalLM(Qwen2ForCausalLM):
15
+ config_class = DotsOCRConfig
16
+
17
+ def __init__(self, config: DotsOCRConfig):
18
+ super().__init__(config)
19
+
20
+ if isinstance(self.config.vision_config, dict):
21
+ vision_config = DotsVisionConfig(**self.config.vision_config)
22
+ self.config.vision_config = vision_config
23
+ else:
24
+ vision_config = self.config.vision_config
25
+
26
+ self.vision_tower = DotsVisionTransformer(vision_config)
27
+
28
+ def prepare_inputs_embeds(
29
+ self,
30
+ input_ids: torch.LongTensor,
31
+ pixel_values: Optional[torch.FloatTensor] = None,
32
+ grid_thw: Optional[torch.FloatTensor] = None,
33
+ img_mask: Optional[torch.BoolTensor] = None,
34
+ ) -> torch.Tensor:
35
+ inputs_embeds = self.get_input_embeddings()(input_ids)
36
+
37
+ if pixel_values is not None:
38
+ assert img_mask is not None
39
+ if grid_thw.shape[0] > DOTS_VLM_MAX_IMAGES:
40
+ print(
41
+ f"Num image exceeded: {grid_thw.shape[0]} > {DOTS_VLM_MAX_IMAGES}, which may cause FSDP hang"
42
+ )
43
+
44
+ vision_embeddings = self.vision_tower(pixel_values, grid_thw)
45
+
46
+ true_indices = torch.nonzero(img_mask).squeeze()
47
+ if len(true_indices) > vision_embeddings.size(0):
48
+ print(
49
+ f"img_mask sum > VE and will be truncated, mask.sum()={len(true_indices)} {vision_embeddings.size(0)=}"
50
+ )
51
+ true_indices = true_indices[: vision_embeddings.size(0)]
52
+ new_img_mask = torch.zeros_like(img_mask, device=img_mask.device)
53
+ new_img_mask[true_indices[:, 0], true_indices[:, 1]] = True
54
+ else:
55
+ new_img_mask = img_mask
56
+
57
+ assert (
58
+ vision_embeddings.size(0) == new_img_mask.sum()
59
+ ), f"{vision_embeddings.size(0)=}, {new_img_mask.sum()=}"
60
+
61
+ inputs_embeds = inputs_embeds.masked_scatter(
62
+ new_img_mask.to(inputs_embeds.device).unsqueeze(-1).expand_as(inputs_embeds),
63
+ vision_embeddings.to(inputs_embeds.device).type(inputs_embeds.dtype),
64
+ )
65
+
66
+ return inputs_embeds
67
+
68
+ def forward(
69
+ self,
70
+ input_ids: torch.LongTensor,
71
+ pixel_values: Optional[torch.FloatTensor] = None,
72
+ image_grid_thw: Optional[torch.FloatTensor] = None,
73
+ inputs_embeds: Optional[torch.Tensor] = None,
74
+ attention_mask: Optional[torch.Tensor] = None,
75
+ position_ids: Optional[torch.LongTensor] = None,
76
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
77
+ labels: Optional[torch.LongTensor] = None,
78
+ output_attentions: Optional[bool] = None,
79
+ output_hidden_states: Optional[bool] = None,
80
+ return_dict: Optional[bool] = None,
81
+ use_cache: Optional[bool] = None,
82
+ logits_to_keep: int = 0,
83
+ **loss_kwargs,
84
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
85
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
86
+ assert len(input_ids) >= 1, f"empty input_ids {input_ids.shape=} will cause gradnorm nan"
87
+ if inputs_embeds is None:
88
+ img_mask = input_ids == self.config.image_token_id
89
+ inputs_embeds = self.prepare_inputs_embeds(input_ids, pixel_values, image_grid_thw, img_mask)
90
+
91
+ outputs = super().forward(
92
+ inputs_embeds=inputs_embeds,
93
+ attention_mask=attention_mask,
94
+ position_ids=position_ids,
95
+ past_key_values=past_key_values,
96
+ labels=labels,
97
+ use_cache=use_cache if use_cache is not None else self.config.use_cache,
98
+ output_attentions=output_attentions,
99
+ output_hidden_states=output_hidden_states,
100
+ # return_dict=return_dict,
101
+ logits_to_keep=logits_to_keep,
102
+ **loss_kwargs,
103
+ )
104
+
105
+ return outputs
106
+
107
+ def prepare_inputs_for_generation(
108
+ self,
109
+ input_ids,
110
+ past_key_values=None,
111
+ inputs_embeds=None,
112
+ pixel_values=None,
113
+ attention_mask=None,
114
+ cache_position=None,
115
+ num_logits_to_keep=None,
116
+ **kwargs,
117
+ ):
118
+ model_inputs = super().prepare_inputs_for_generation(
119
+ input_ids,
120
+ past_key_values=past_key_values,
121
+ inputs_embeds=inputs_embeds,
122
+ attention_mask=attention_mask,
123
+ cache_position=cache_position,
124
+ num_logits_to_keep=num_logits_to_keep,
125
+ **kwargs,
126
+ )
127
+
128
+ if cache_position[0] == 0:
129
+ model_inputs["pixel_values"] = pixel_values
130
+
131
+ return model_inputs
modeling_dots_vision.py ADDED
@@ -0,0 +1,520 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+ import torch.utils.checkpoint
7
+
8
+ flash_attn_available = True
9
+ npu_available = True
10
+
11
+ try:
12
+ from flash_attn import flash_attn_varlen_func
13
+ except ImportError:
14
+ flash_attn_available = False
15
+
16
+ from torch.nn import LayerNorm
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from .configuration_dots import DotsVisionConfig
19
+
20
+ try:
21
+ import torch_npu
22
+ except ImportError:
23
+ npu_available = False
24
+
25
+
26
+ def rotate_half(x):
27
+ """Rotates half the hidden dims of the input."""
28
+ x1 = x[..., : x.shape[-1] // 2]
29
+ x2 = x[..., x.shape[-1] // 2:]
30
+ return torch.cat((-x2, x1), dim=-1)
31
+
32
+
33
+ def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
34
+ orig_dtype = tensor.dtype
35
+ tensor = tensor.float()
36
+
37
+ cos = freqs.cos()
38
+ sin = freqs.sin()
39
+
40
+ cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
41
+ sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
42
+
43
+ output = (tensor * cos) + (rotate_half(tensor) * sin)
44
+
45
+ output = output.to(orig_dtype)
46
+
47
+ return output
48
+
49
+
50
+ class VisionRotaryEmbedding(nn.Module):
51
+ def __init__(self, dim: int, theta: float = 10000.0) -> None:
52
+ super().__init__()
53
+ inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
54
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
55
+
56
+ def forward(self, seqlen: int) -> torch.Tensor:
57
+ seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
58
+ freqs = torch.outer(seq, self.inv_freq)
59
+ return freqs
60
+
61
+
62
+ class PatchMerger(nn.Module):
63
+ def __init__(
64
+ self,
65
+ dim: int,
66
+ context_dim: int,
67
+ spatial_merge_size: int = 2,
68
+ pre_norm="layernorm",
69
+ init_merger_std=None,
70
+ ) -> None:
71
+ super().__init__()
72
+ self.hidden_size = context_dim * (spatial_merge_size ** 2)
73
+ self.pre_norm = pre_norm
74
+ if self.pre_norm == "layernorm":
75
+ self.ln_q = LayerNorm(context_dim, eps=1e-6)
76
+ elif self.pre_norm == "rmsnorm":
77
+ self.ln_q = RMSNorm(context_dim, eps=1e-6)
78
+ else:
79
+ print("no norm in patch merger")
80
+
81
+ self.mlp = nn.Sequential(
82
+ nn.Linear(self.hidden_size, self.hidden_size),
83
+ nn.GELU(),
84
+ nn.Linear(self.hidden_size, dim),
85
+ )
86
+
87
+ if init_merger_std is not None:
88
+ nn.init.normal_(self.mlp[0].weight, mean=0.0, std=init_merger_std)
89
+ nn.init.zeros_(self.mlp[0].bias)
90
+ nn.init.normal_(self.mlp[2].weight, mean=0.0, std=init_merger_std)
91
+ nn.init.zeros_(self.mlp[2].bias)
92
+
93
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
94
+ if self.pre_norm:
95
+ x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
96
+ else:
97
+ x = self.mlp(x.view(-1, self.hidden_size))
98
+ return x
99
+
100
+
101
+ class VisionAttention(nn.Module):
102
+ def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
103
+ super().__init__()
104
+ self.num_heads = num_heads
105
+ self.head_dim = dim // num_heads
106
+ self.qkv = nn.Linear(dim, dim * 3, bias=bias)
107
+ self.proj = nn.Linear(dim, dim, bias=bias)
108
+
109
+ def forward(
110
+ self,
111
+ hidden_states: torch.Tensor,
112
+ cu_seqlens: torch.Tensor,
113
+ rotary_pos_emb: torch.Tensor = None,
114
+ ) -> torch.Tensor:
115
+ seq_length = hidden_states.shape[0]
116
+
117
+ q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
118
+ q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
119
+ k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
120
+
121
+ attention_mask = torch.full(
122
+ [1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
123
+ )
124
+ for i in range(1, len(cu_seqlens)):
125
+ attention_mask[..., cu_seqlens[i - 1]: cu_seqlens[i], cu_seqlens[i - 1]: cu_seqlens[i]] = 0
126
+
127
+ q = q.transpose(0, 1)
128
+ k = k.transpose(0, 1)
129
+ v = v.transpose(0, 1)
130
+ attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
131
+ attn_weights = attn_weights + attention_mask
132
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
133
+ attn_output = torch.matmul(attn_weights, v)
134
+ attn_output = attn_output.transpose(0, 1)
135
+ attn_output = attn_output.reshape(seq_length, -1)
136
+ attn_output = self.proj(attn_output)
137
+ return attn_output
138
+
139
+
140
+ class VisionFlashAttention2(nn.Module):
141
+ def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
142
+ super().__init__()
143
+ self.num_heads = num_heads
144
+ self.qkv = nn.Linear(dim, dim * 3, bias=bias)
145
+ self.proj = nn.Linear(dim, dim, bias=bias)
146
+ self.config = config
147
+ self.is_causal = config.is_causal
148
+
149
+ def forward(
150
+ self,
151
+ hidden_states: torch.Tensor,
152
+ cu_seqlens: torch.Tensor,
153
+ rotary_pos_emb: torch.Tensor = None,
154
+ ) -> torch.Tensor:
155
+ seq_length = hidden_states.shape[0]
156
+ q, k, v = (
157
+ self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
158
+ ) # 'shd'
159
+ q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
160
+ k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
161
+ max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
162
+ attn_output = flash_attn_varlen_func(
163
+ q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen, causal=self.is_causal
164
+ ).reshape(seq_length, -1)
165
+ attn_output = self.proj(attn_output)
166
+
167
+ return attn_output
168
+
169
+
170
+ class VisionAttentionV2(nn.Module):
171
+ def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
172
+ super().__init__()
173
+ self.num_heads = num_heads
174
+ self.head_dim = dim // num_heads
175
+ self.qkv = nn.Linear(dim, dim * 3, bias=bias)
176
+ self.proj = nn.Linear(dim, dim, bias=bias)
177
+
178
+ def forward(
179
+ self,
180
+ hidden_states: torch.Tensor,
181
+ cu_seqlens: torch.Tensor,
182
+ rotary_pos_emb: torch.Tensor = None,
183
+ ) -> torch.Tensor:
184
+ seq_length = hidden_states.shape[0]
185
+
186
+ q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
187
+ q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
188
+ k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
189
+
190
+ seqlens = torch.diff(cu_seqlens).tolist()
191
+
192
+ q_list = torch.split(q, seqlens, 0)
193
+ k_list = torch.split(k, seqlens, 0)
194
+ v_list = torch.split(v, seqlens, 0)
195
+ # eager attention 空间复杂度为 O(n^2) , n 为 b*s(batch_size * seq_len), 序列太长容易OOM, 这个实现 更具batch 切分 seq
196
+ # 减少内存需求, 计算相对 continus batching 较慢。
197
+ outputs = []
198
+ for q_i, k_i, v_i in zip(q_list, k_list, v_list):
199
+ q_i = q_i.transpose(0, 1)
200
+ k_i = k_i.transpose(0, 1)
201
+ v_i = v_i.transpose(0, 1)
202
+ out = torch.matmul(q_i, k_i.transpose(1, 2)) / math.sqrt(self.head_dim)
203
+ out = nn.functional.softmax(out, dim=-1, dtype=torch.float32).to(q.dtype)
204
+ out = torch.matmul(out, v_i)
205
+ out = out.transpose(0, 1)
206
+ outputs.append(out)
207
+
208
+ attn_output = torch.concat(outputs, dim=0)
209
+ attn_output = attn_output.reshape(seq_length, -1)
210
+ attn_output = self.proj(attn_output)
211
+ return attn_output
212
+
213
+
214
+ class VisionAscendAttention(nn.Module):
215
+ def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
216
+ super().__init__()
217
+ self.num_heads = num_heads
218
+ self.head_dim = dim // num_heads
219
+ self.qkv = nn.Linear(dim, dim * 3, bias=bias)
220
+ self.proj = nn.Linear(dim, dim, bias=bias)
221
+ self.config = config
222
+
223
+ def forward(
224
+ self,
225
+ hidden_states: torch.Tensor,
226
+ cu_seqlens: torch.Tensor,
227
+ rotary_pos_emb: torch.Tensor = None,
228
+ ) -> torch.Tensor:
229
+ seq_length = hidden_states.shape[0]
230
+ q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
231
+
232
+ q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
233
+ k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
234
+
235
+ attention_mask = torch.ones([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
236
+ for i in range(1, len(cu_seqlens)):
237
+ attention_mask[..., cu_seqlens[i - 1]: cu_seqlens[i], cu_seqlens[i - 1]: cu_seqlens[i]] = False
238
+
239
+ q = q.transpose(0, 1).unsqueeze(0)
240
+ k = k.transpose(0, 1).unsqueeze(0)
241
+ v = v.transpose(0, 1).unsqueeze(0)
242
+
243
+ attn_output = torch_npu.npu_prompt_flash_attention(q, k, v,
244
+ atten_mask=attention_mask,
245
+ num_heads=self.num_heads, input_layout="BNSD",
246
+ scale_value=self.head_dim ** -0.5)
247
+ attn_output = attn_output.squeeze(0).transpose(0, 1)
248
+ attn_output = attn_output.reshape(seq_length, -1)
249
+ attn_output = self.proj(attn_output)
250
+ return attn_output
251
+
252
+
253
+ class VisionSdpaAttention(nn.Module):
254
+ def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
255
+ super().__init__()
256
+ self.num_heads = num_heads
257
+ self.qkv = nn.Linear(dim, dim * 3, bias=bias)
258
+ self.proj = nn.Linear(dim, dim, bias=bias)
259
+ self.config = config
260
+
261
+ def forward(
262
+ self,
263
+ hidden_states: torch.Tensor,
264
+ cu_seqlens: torch.Tensor,
265
+ rotary_pos_emb: torch.Tensor = None,
266
+ ) -> torch.Tensor:
267
+ seq_length = hidden_states.shape[0]
268
+ q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
269
+
270
+ q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
271
+ k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
272
+
273
+ attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
274
+ for i in range(1, len(cu_seqlens)):
275
+ attention_mask[..., cu_seqlens[i - 1]: cu_seqlens[i], cu_seqlens[i - 1]: cu_seqlens[i]] = True
276
+
277
+ # Convert q, k, v to 4D to enable : (1, num_heads, seq_length, head_dim)
278
+ q = q.transpose(0, 1).unsqueeze(0) # (1, num_heads, seq_length, head_dim)
279
+ k = k.transpose(0, 1).unsqueeze(0)
280
+ v = v.transpose(0, 1).unsqueeze(0)
281
+
282
+ # See: https://github.com/pytorch/pytorch/issues/127523
283
+ if attention_mask.stride(-1) != 1:
284
+ attention_mask = torch.empty_like(attention_mask, memory_format=torch.contiguous_format).copy_(attention_mask)
285
+
286
+ # use memory efficient backend
287
+ from torch.nn.attention import SDPBackend, sdpa_kernel
288
+ with sdpa_kernel(SDPBackend.EFFICIENT_ATTENTION):
289
+ attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
290
+
291
+ attn_output = attn_output.squeeze(0).transpose(0, 1) # (seq_length, num_heads, head_dim)
292
+ attn_output = attn_output.reshape(seq_length, -1)
293
+
294
+ attn_output = self.proj(attn_output)
295
+ return attn_output
296
+
297
+
298
+ DOTS_VISION_ATTENTION_CLASSES = {
299
+ "eager": VisionAttention,
300
+ "eager_v2": VisionAttentionV2, # 内存更少
301
+ "flash_attention_2": VisionFlashAttention2,
302
+ "sdpa": VisionSdpaAttention,
303
+ "ascend_fa": VisionAscendAttention, # ascend, 长序列精度下降严重。
304
+ }
305
+
306
+
307
+ class RMSNorm(nn.Module):
308
+ def __init__(self, dim: int, eps: float = 1e-6):
309
+ super().__init__()
310
+ self.weight = nn.Parameter(torch.ones(dim))
311
+ self.eps = eps
312
+
313
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
314
+ output = self._norm(x.float()).type_as(x)
315
+ return output * self.weight
316
+
317
+ def extra_repr(self) -> str:
318
+ return f"{tuple(self.weight.shape)}, eps={self.eps}"
319
+
320
+ def _norm(self, x: torch.Tensor) -> torch.Tensor:
321
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
322
+
323
+
324
+ class DotsSwiGLUFFN(nn.Module):
325
+ def __init__(self, config):
326
+ super().__init__()
327
+ hidden_features = config.intermediate_size
328
+ in_features = config.embed_dim
329
+ bias = config.use_bias
330
+
331
+ self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
332
+ self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
333
+ self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)
334
+
335
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
336
+ x = F.silu(self.fc1(x)) * self.fc3(x)
337
+ x = self.fc2(x)
338
+ return x
339
+
340
+
341
+ class DotsPatchEmbed(nn.Module):
342
+ def __init__(self, config):
343
+ super().__init__()
344
+ self.num_channels = config.num_channels
345
+ self.patch_size = config.patch_size
346
+ self.temporal_patch_size = config.temporal_patch_size
347
+ self.embed_dim = config.embed_dim
348
+ self.config = config
349
+ self.proj = nn.Conv2d(
350
+ config.num_channels,
351
+ config.embed_dim,
352
+ kernel_size=(config.patch_size, config.patch_size),
353
+ stride=(config.patch_size, config.patch_size),
354
+ )
355
+ self.norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
356
+
357
+ def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
358
+ x = x.view(-1, self.num_channels, self.temporal_patch_size, self.patch_size, self.patch_size)[:, :, 0]
359
+ x = self.proj(x).view(-1, self.embed_dim)
360
+ x = self.norm(x)
361
+ return x
362
+
363
+
364
+ class DotsViTPreprocessor(nn.Module):
365
+ def __init__(self, config):
366
+ super().__init__()
367
+ self.patch_h = config.patch_size
368
+ self.patch_w = config.patch_size
369
+ self.embed_dim = config.embed_dim
370
+ self.config = config
371
+ self.patchifier = DotsPatchEmbed(config)
372
+
373
+ def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
374
+ tokens = self.patchifier(x, grid_thw)
375
+ return tokens
376
+
377
+
378
+ class DotsVisionBlock(nn.Module):
379
+ def __init__(self, config, attn_implementation: str = "flash_attention_2"):
380
+ super().__init__()
381
+
382
+ if attn_implementation == "flash_attention_2" and not flash_attn_available:
383
+ # fallback to eager
384
+ attn_implementation = "eager"
385
+ print("flash attention not available! fallback to eager implementation ")
386
+
387
+ if attn_implementation == "ascend_fa" and not npu_available:
388
+ attn_implementation = "eager"
389
+ print("flash attention not available! fallback to eager implementation ")
390
+
391
+ self.attn = DOTS_VISION_ATTENTION_CLASSES[attn_implementation](
392
+ config, config.embed_dim, num_heads=config.num_attention_heads, bias=config.use_bias
393
+ )
394
+ self.norm1 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
395
+ self.mlp = DotsSwiGLUFFN(config)
396
+ self.norm2 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
397
+
398
+ def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
399
+ hidden_states = hidden_states + self.attn(
400
+ self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
401
+ )
402
+ hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
403
+ return hidden_states
404
+
405
+
406
+ class DotsVisionTransformer(PreTrainedModel):
407
+ def __init__(self, config: DotsVisionConfig) -> None:
408
+ super().__init__(config)
409
+ self.config = config
410
+ self.spatial_merge_size = config.spatial_merge_size
411
+
412
+ self.patch_embed = DotsViTPreprocessor(config)
413
+ self._init_weights(self.patch_embed.patchifier.proj)
414
+
415
+ head_dim = config.embed_dim // config.num_attention_heads
416
+
417
+ self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
418
+
419
+ _num_hidden_layers = config.num_hidden_layers
420
+ self.blocks = nn.ModuleList(
421
+ [DotsVisionBlock(config, config.attn_implementation) for _ in range(_num_hidden_layers)]
422
+ )
423
+
424
+ if self.config.post_norm:
425
+ self.post_trunk_norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
426
+
427
+ self.merger = PatchMerger(
428
+ dim=config.hidden_size,
429
+ context_dim=config.embed_dim,
430
+ spatial_merge_size=config.spatial_merge_size,
431
+ init_merger_std=self.config.init_merger_std,
432
+ )
433
+
434
+ self.gradient_checkpointing = False
435
+ self._gradient_checkpointing_func = torch.utils.checkpoint.checkpoint
436
+
437
+ def _init_weights(self, module):
438
+ std = self.config.initializer_range
439
+ if isinstance(module, (nn.Linear, nn.Conv3d)):
440
+ module.weight.data.normal_(mean=0.0, std=std)
441
+ if module.bias is not None:
442
+ module.bias.data.zero_()
443
+ elif isinstance(module, nn.Embedding):
444
+ module.weight.data.normal_(mean=0.0, std=std)
445
+ if module.padding_idx is not None:
446
+ module.weight.data[module.padding_idx].zero_()
447
+
448
+ @property
449
+ def dtype(self) -> torch.dtype:
450
+ return self.blocks[0].mlp.fc2.weight.dtype
451
+
452
+ @property
453
+ def device(self) -> torch.device:
454
+ return self.blocks[0].mlp.fc2.weight.device
455
+
456
+ def get_pos_ids_by_grid(self, grid_thw):
457
+ pos_ids = []
458
+ for t, h, w in grid_thw:
459
+ hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
460
+ hpos_ids = hpos_ids.reshape(
461
+ h // self.spatial_merge_size,
462
+ self.spatial_merge_size,
463
+ w // self.spatial_merge_size,
464
+ self.spatial_merge_size,
465
+ )
466
+ hpos_ids = hpos_ids.permute(0, 2, 1, 3)
467
+ hpos_ids = hpos_ids.flatten()
468
+
469
+ wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
470
+ wpos_ids = wpos_ids.reshape(
471
+ h // self.spatial_merge_size,
472
+ self.spatial_merge_size,
473
+ w // self.spatial_merge_size,
474
+ self.spatial_merge_size,
475
+ )
476
+ wpos_ids = wpos_ids.permute(0, 2, 1, 3)
477
+ wpos_ids = wpos_ids.flatten()
478
+ pos_ids.append(
479
+ torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)
480
+ )
481
+
482
+ return pos_ids
483
+
484
+ def rot_pos_emb(self, grid_thw):
485
+ pos_ids = self.get_pos_ids_by_grid(grid_thw)
486
+ pos_ids = torch.cat(pos_ids, dim=0)
487
+ max_grid_size = grid_thw[:, 1:].max()
488
+ rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
489
+ rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
490
+ return rotary_pos_emb
491
+
492
+ def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, bf16=True) -> torch.Tensor:
493
+ if bf16:
494
+ hidden_states = hidden_states.bfloat16()
495
+ hidden_states = self.patch_embed(hidden_states, grid_thw)
496
+
497
+ rotary_pos_emb = self.rot_pos_emb(grid_thw)
498
+
499
+ cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
500
+ dim=0,
501
+ dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
502
+ )
503
+ cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
504
+
505
+ for blk in self.blocks:
506
+ if self.gradient_checkpointing and self.training:
507
+ hidden_states = self._gradient_checkpointing_func(
508
+ blk.__call__,
509
+ hidden_states,
510
+ cu_seqlens,
511
+ rotary_pos_emb,
512
+ )
513
+ else:
514
+ hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)
515
+
516
+ if self.config.post_norm:
517
+ hidden_states = self.post_trunk_norm(hidden_states)
518
+
519
+ hidden_states = self.merger(hidden_states)
520
+ return hidden_states
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "[PAD]",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:904d81ff0cfa066dbc0b6a21e10ded6ebb7c2d8df14100d851f90bb7878bd5de
3
+ size 11426251
tokenizer_config.json ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<|imgpad|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ },
189
+ "151666": {
190
+ "content": "<|img|>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": true
196
+ },
197
+ "151667": {
198
+ "content": "<|endofimg|>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": true
204
+ },
205
+ "151668": {
206
+ "content": "<|systemprompt|>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": true
212
+ },
213
+ "151669": {
214
+ "content": "<|endofsystemprompt|>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": true
220
+ },
221
+ "151670": {
222
+ "content": "<|user|>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": true
228
+ },
229
+ "151671": {
230
+ "content": "<|endofuser|>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": true
236
+ },
237
+ "151672": {
238
+ "content": "<|assistant|>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": true
244
+ },
245
+ "151673": {
246
+ "content": "<|endofassistant|>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": true
252
+ },
253
+ "151674": {
254
+ "content": "<|ref_start|>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": true
260
+ },
261
+ "151675": {
262
+ "content": "<|ref_end|>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": true
268
+ },
269
+ "151676": {
270
+ "content": "[SEP]",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": true
276
+ },
277
+ "151677": {
278
+ "content": "<|pic|>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": true
284
+ },
285
+ "151678": {
286
+ "content": "<|text|>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": true
292
+ },
293
+ "151679": {
294
+ "content": "<|pictotext|>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": true
300
+ },
301
+ "151680": {
302
+ "content": "[PAD]",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": true
308
+ },
309
+ "151681": {
310
+ "content": "<|slice|>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": true
316
+ },
317
+ "151682": {
318
+ "content": "<|endofslice|>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": true
324
+ },
325
+ "151683": {
326
+ "content": "<|imgrowend|>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": true
332
+ },
333
+ "151684": {
334
+ "content": "<|polygon_start|>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": true
340
+ },
341
+ "151685": {
342
+ "content": "<|polygon_end|>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": true
348
+ },
349
+ "151686": {
350
+ "content": "<|image_gen_start|>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": true
356
+ },
357
+ "151687": {
358
+ "content": "<|image_gen_end|>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": true
364
+ }
365
+ },
366
+ "additional_special_tokens": [
367
+ "<|im_start|>",
368
+ "<|im_end|>",
369
+ "<|object_ref_start|>",
370
+ "<|object_ref_end|>",
371
+ "<|box_start|>",
372
+ "<|box_end|>",
373
+ "<|quad_start|>",
374
+ "<|quad_end|>",
375
+ "<|vision_start|>",
376
+ "<|vision_end|>",
377
+ "<|vision_pad|>",
378
+ "<|image_pad|>",
379
+ "<|video_pad|>"
380
+ ],
381
+ "auto_map": {
382
+ "AutoProcessor": "configuration_dots.DotsVLProcessor"
383
+ },
384
+ "bos_token": null,
385
+ "clean_up_tokenization_spaces": false,
386
+ "eos_token": "<|endoftext|>",
387
+ "errors": "replace",
388
+ "extra_special_tokens": {},
389
+ "model_max_length": 131072,
390
+ "pad_token": "[PAD]",
391
+ "processor_class": "DotsVLProcessor",
392
+ "split_special_tokens": false,
393
+ "tokenizer_class": "Qwen2Tokenizer",
394
+ "unk_token": null
395
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff