Initial upload of Academic Sentiment Classifier
Browse files- README.md +136 -0
- config.json +24 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +56 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
library_name: transformers
|
| 4 |
+
pipeline_tag: text-classification
|
| 5 |
+
license: mit
|
| 6 |
+
tags:
|
| 7 |
+
- sentiment-analysis
|
| 8 |
+
- distilbert
|
| 9 |
+
- sequence-classification
|
| 10 |
+
- academic-peer-review
|
| 11 |
+
- openreview
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# Academic Sentiment Classifier (DistilBERT)
|
| 15 |
+
|
| 16 |
+
DistilBERT-based sequence classification model that predicts the sentiment polarity of academic peer-review text (binary: negative vs positive). It supports research on evaluating the sentiment of scholarly reviews and AI-generated critique, enabling large-scale, reproducible measurements for academic-style content.
|
| 17 |
+
|
| 18 |
+
## Model details
|
| 19 |
+
|
| 20 |
+
- Architecture: DistilBERT for Sequence Classification (2 labels)
|
| 21 |
+
- Max input length used during training: 512 tokens
|
| 22 |
+
- Labels:
|
| 23 |
+
- LABEL_0 -> negative
|
| 24 |
+
- LABEL_1 -> positive
|
| 25 |
+
- Format: `safetensors`
|
| 26 |
+
|
| 27 |
+
## Intended uses & limitations
|
| 28 |
+
|
| 29 |
+
Intended uses:
|
| 30 |
+
|
| 31 |
+
- Analyze sentiment of peer-review snippets, full reviews, or similar scholarly discourse.
|
| 32 |
+
- Evaluate the effect of attacks (e.g., positive/negative steering) on generated reviews by measuring polarity shifts.
|
| 33 |
+
|
| 34 |
+
Limitations:
|
| 35 |
+
|
| 36 |
+
- Binary polarity only (no neutral class); confidence scores should be interpreted with care.
|
| 37 |
+
- Domain-specific: optimized for academic review-style English text; may underperform on general-domain data.
|
| 38 |
+
- Not a replacement for human judgement or editorial decision-making.
|
| 39 |
+
|
| 40 |
+
Ethical considerations and bias:
|
| 41 |
+
|
| 42 |
+
- Scholarly reviews can contain technical jargon, hedging, and nuanced tone; polarity is an imperfect proxy for quality or fairness.
|
| 43 |
+
- Potential biases may reflect those present in the underlying corpus.
|
| 44 |
+
|
| 45 |
+
## Training data
|
| 46 |
+
|
| 47 |
+
The model was fine-tuned on a corpus of academic peer-review text curated from OpenReview review texts. The task is binary sentiment classification over review text spans.
|
| 48 |
+
|
| 49 |
+
Note: If you plan to use or extend the underlying data, please review the terms of use for OpenReview and any relevant dataset licenses.
|
| 50 |
+
|
| 51 |
+
## Training procedure (high level)
|
| 52 |
+
|
| 53 |
+
- Base model: DistilBERT (transformers)
|
| 54 |
+
- Objective: single-label binary classification
|
| 55 |
+
- Tokenization: standard DistilBERT tokenizer, truncation to 512 tokens
|
| 56 |
+
- Optimizer/scheduler: standard Trainer defaults (AdamW with linear schedule)
|
| 57 |
+
|
| 58 |
+
Exact hyperparameters may vary across runs; typical training uses AdamW with a linear learning rate schedule and truncation to 512 tokens.
|
| 59 |
+
|
| 60 |
+
## How to use
|
| 61 |
+
|
| 62 |
+
Basic pipeline usage:
|
| 63 |
+
|
| 64 |
+
```python
|
| 65 |
+
from transformers import pipeline
|
| 66 |
+
|
| 67 |
+
clf = pipeline(
|
| 68 |
+
task="text-classification",
|
| 69 |
+
model="YOUR_USERNAME/academic-sentiment-classifier",
|
| 70 |
+
tokenizer="YOUR_USERNAME/academic-sentiment-classifier",
|
| 71 |
+
return_all_scores=False,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
text = "The paper is clearly written and provides strong empirical support for the claims."
|
| 75 |
+
print(clf(text))
|
| 76 |
+
# Example output: [{'label': 'LABEL_1', 'score': 0.97}] # LABEL_1 -> positive
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
If you prefer friendly labels, you can map them:
|
| 80 |
+
|
| 81 |
+
```python
|
| 82 |
+
from transformers import pipeline
|
| 83 |
+
|
| 84 |
+
id2name = {"LABEL_0": "negative", "LABEL_1": "positive"}
|
| 85 |
+
clf = pipeline("text-classification", model="YOUR_USERNAME/academic-sentiment-classifier")
|
| 86 |
+
res = clf("This section lacks clarity and the experiments are inconclusive.")[0]
|
| 87 |
+
res["label"] = id2name.get(res["label"], res["label"]) # map to human-friendly label
|
| 88 |
+
print(res)
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
Batch inference:
|
| 92 |
+
|
| 93 |
+
```python
|
| 94 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 95 |
+
import torch
|
| 96 |
+
|
| 97 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 98 |
+
tok = AutoTokenizer.from_pretrained("YOUR_USERNAME/academic-sentiment-classifier")
|
| 99 |
+
model = AutoModelForSequenceClassification.from_pretrained("YOUR_USERNAME/academic-sentiment-classifier")
|
| 100 |
+
|
| 101 |
+
texts = [
|
| 102 |
+
"I recommend acceptance; the methodology is solid and results are convincing.",
|
| 103 |
+
"Major concerns remain; the evaluation is incomplete and unclear.",
|
| 104 |
+
]
|
| 105 |
+
|
| 106 |
+
inputs = tok(texts, padding=True, truncation=True, max_length=512, return_tensors="pt")
|
| 107 |
+
with torch.no_grad():
|
| 108 |
+
logits = model(**inputs).logits
|
| 109 |
+
probs = torch.softmax(logits, dim=-1)
|
| 110 |
+
pred_ids = probs.argmax(dim=-1)
|
| 111 |
+
|
| 112 |
+
# Map to friendly labels
|
| 113 |
+
id2name = {0: "negative", 1: "positive"}
|
| 114 |
+
preds = [id2name[i.item()] for i in pred_ids]
|
| 115 |
+
print(list(zip(texts, preds)))
|
| 116 |
+
```
|
| 117 |
+
|
| 118 |
+
## Evaluation
|
| 119 |
+
|
| 120 |
+
If you compute new metrics on public datasets or benchmarks, consider sharing them via a pull request to this model card.
|
| 121 |
+
|
| 122 |
+
## License
|
| 123 |
+
|
| 124 |
+
The model weights and card are released under the MIT license. Review and comply with any third-party data licenses if reusing the training data.
|
| 125 |
+
|
| 126 |
+
## Citation
|
| 127 |
+
|
| 128 |
+
If you use this model, please cite the project:
|
| 129 |
+
|
| 130 |
+
```bibtex
|
| 131 |
+
@software{academic_sentiment_classifier,
|
| 132 |
+
title = {Academic Sentiment Classifier (DistilBERT)},
|
| 133 |
+
year = {2025},
|
| 134 |
+
url = {https://huggingface.co/EvilScript/academic-sentiment-classifier}
|
| 135 |
+
}
|
| 136 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation": "gelu",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"DistilBertForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.1,
|
| 7 |
+
"dim": 768,
|
| 8 |
+
"dropout": 0.1,
|
| 9 |
+
"dtype": "float32",
|
| 10 |
+
"hidden_dim": 3072,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"max_position_embeddings": 512,
|
| 13 |
+
"model_type": "distilbert",
|
| 14 |
+
"n_heads": 12,
|
| 15 |
+
"n_layers": 6,
|
| 16 |
+
"pad_token_id": 0,
|
| 17 |
+
"problem_type": "single_label_classification",
|
| 18 |
+
"qa_dropout": 0.1,
|
| 19 |
+
"seq_classif_dropout": 0.2,
|
| 20 |
+
"sinusoidal_pos_embds": false,
|
| 21 |
+
"tie_weights_": true,
|
| 22 |
+
"transformers_version": "4.56.1",
|
| 23 |
+
"vocab_size": 30522
|
| 24 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:38c9adf16f21badfe6569b17c551a5167f4deea78f91887519513153a4382eb9
|
| 3 |
+
size 267832560
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": false,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_lower_case": true,
|
| 47 |
+
"extra_special_tokens": {},
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"pad_token": "[PAD]",
|
| 51 |
+
"sep_token": "[SEP]",
|
| 52 |
+
"strip_accents": null,
|
| 53 |
+
"tokenize_chinese_chars": true,
|
| 54 |
+
"tokenizer_class": "DistilBertTokenizer",
|
| 55 |
+
"unk_token": "[UNK]"
|
| 56 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|