Demo code for GPT-NEO 2.7B
Browse files
demo.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
Created on Wed Mar 29 16:01:44 2023
|
| 4 |
+
|
| 5 |
+
Source: https://huggingface.co/EleutherAI/gpt-neo-2.7B
|
| 6 |
+
|
| 7 |
+
GPT-Neo 2.7B - a transformer model designed using EleutherAI's replication of the
|
| 8 |
+
GPT-3 architecture. The model is available on HuggingFace. Although it can be used
|
| 9 |
+
for different tasks, the model is best at what it was pretrained for, which is
|
| 10 |
+
generating texts from a prompt.
|
| 11 |
+
|
| 12 |
+
The task in this script is text generation.
|
| 13 |
+
|
| 14 |
+
There are also a 1.3B and 6B versions.
|
| 15 |
+
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
from transformers import AutoTokenizer, GPTNeoForCausalLM
|
| 20 |
+
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B")
|
| 22 |
+
model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-2.7B")
|
| 23 |
+
|
| 24 |
+
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
| 25 |
+
outputs = model(**inputs, labels=inputs["input_ids"])
|
| 26 |
+
|
| 27 |
+
input_ids = inputs["input_ids"]
|
| 28 |
+
|
| 29 |
+
gen_tokens = model.generate(
|
| 30 |
+
input_ids,
|
| 31 |
+
do_sample=True,
|
| 32 |
+
temperature=0.9,
|
| 33 |
+
max_length=100,
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
gen_text = tokenizer.batch_decode(gen_tokens)[0]
|
| 37 |
+
|
| 38 |
+
print("=========================================================")
|
| 39 |
+
print(gen_text)
|