SDNQ
Collection
Models quantized with SDNQ
•
17 items
•
Updated
•
2
4 bit (UINT4 with SVD rank 32) quantization of black-forest-labs/FLUX.1-dev using SDNQ.
Usage:
pip install git+https://github.com/Disty0/sdnq
import torch
import diffusers
from sdnq import SDNQConfig # import sdnq to register it into diffusers and transformers
pipe = diffusers.FluxPipeline.from_pretrained("Disty0/FLUX.1-dev-SDNQ-uint4-svd-r32", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
prompt = "A cat holding a sign that says hello world"
image = pipe(
prompt,
height=1024,
width=1024,
guidance_scale=3.5,
num_inference_steps=50,
max_sequence_length=512,
generator=torch.manual_seed(0)
).images[0]
image.save("flux-dev-sdnq-uint4-svd-r32.png")
Original BF16 vs SDNQ quantization comparison:
Base model
black-forest-labs/FLUX.1-dev