--- license: apache-2.0 --- # Qwen-Image Image Structure Control Model - Depth ControlNet ![](./assets/cover.png) ## Model Introduction This model is an image structure control model based on [Qwen-Image](https://www.modelscope.cn/models/Qwen/Qwen-Image), with a ControlNet architecture that enables structural control of generated images using depth maps. The training framework is built upon [DiffSynth-Studio](https://github.com/modelscope/DiffSynth-Studio), and the dataset used for training is [BLIP3o](https://modelscope.cn/datasets/BLIP3o/BLIP3o-60k). ## Result Demonstration |Depth Map|Generated Image 1|Generated Image 2| |-|-|-| |![](./assets/depth2.jpg)|![](./assets/image2_0.jpg)|![](./assets/image2_1.jpg)| |![](./assets/depth3.jpg)|![](./assets/image3_0.jpg)|![](./assets/image3_1.jpg)| |![](./assets/depth1.jpg)|![](./assets/image1_0.jpg)|![](./assets/image1_1.jpg)| ## Inference Code ``` git clone https://github.com/modelscope/DiffSynth-Studio.git cd DiffSynth-Studio pip install -e . ``` ```python from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig, ControlNetInput from PIL import Image import torch from modelscope import dataset_snapshot_download pipe = QwenImagePipeline.from_pretrained( torch_dtype=torch.bfloat16, device="cuda", model_configs=[ ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"), ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"), ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"), ModelConfig(model_id="DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Depth", origin_file_pattern="model.safetensors"), ], tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"), ) dataset_snapshot_download( dataset_id="DiffSynth-Studio/example_image_dataset", local_dir="./data/example_image_dataset", allow_file_pattern="depth/image_1.jpg" ) controlnet_image = Image.open("data/example_image_dataset/depth/image_1.jpg").resize((1328, 1328)) ``` prompt = "Exquisite portrait, underwater girl, flowing blue dress, gently floating hair, translucent lighting, surrounded by bubbles, serene expression, intricate details, dreamy and ethereal." image = pipe( prompt, seed=0, blockwise_controlnet_inputs=[ControlNetInput(image=controlnet_image)] ) image.save("image.jpg")