Borys Tymchenko
commited on
Commit
·
ae2e28c
1
Parent(s):
1545cf6
Initial commit
Browse files- .gitignore +192 -0
- feature_extractor/preprocessor_config.json +28 -0
- flexible_unet/config.json +125 -0
- flexible_unet/diffusion_pytorch_model.safetensors +3 -0
- model_index.json +34 -0
- pipeline.py +1010 -0
- safety_checker/config.json +168 -0
- safety_checker/model.safetensors +3 -0
- scheduler/scheduler_config.json +19 -0
- text_encoder/config.json +25 -0
- text_encoder/model.safetensors +3 -0
- tokenizer/merges.txt +0 -0
- tokenizer/special_tokens_map.json +24 -0
- tokenizer/tokenizer_config.json +33 -0
- tokenizer/vocab.json +0 -0
- unet/config.json +68 -0
- unet/diffusion_pytorch_model.safetensors +3 -0
- vae/config.json +32 -0
- vae/diffusion_pytorch_model.safetensors +3 -0
.gitignore
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# Created by https://www.toptal.com/developers/gitignore/api/linux,macos,python
|
| 3 |
+
# Edit at https://www.toptal.com/developers/gitignore?templates=linux,macos,python
|
| 4 |
+
|
| 5 |
+
### Linux ###
|
| 6 |
+
*~
|
| 7 |
+
|
| 8 |
+
# temporary files which can be created if a process still has a handle open of a deleted file
|
| 9 |
+
.fuse_hidden*
|
| 10 |
+
|
| 11 |
+
# KDE directory preferences
|
| 12 |
+
.directory
|
| 13 |
+
|
| 14 |
+
# Linux trash folder which might appear on any partition or disk
|
| 15 |
+
.Trash-*
|
| 16 |
+
|
| 17 |
+
# .nfs files are created when an open file is removed but is still being accessed
|
| 18 |
+
.nfs*
|
| 19 |
+
|
| 20 |
+
### macOS ###
|
| 21 |
+
# General
|
| 22 |
+
.DS_Store
|
| 23 |
+
.AppleDouble
|
| 24 |
+
.LSOverride
|
| 25 |
+
|
| 26 |
+
# Icon must end with two \r
|
| 27 |
+
Icon
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# Thumbnails
|
| 31 |
+
._*
|
| 32 |
+
|
| 33 |
+
# Files that might appear in the root of a volume
|
| 34 |
+
.DocumentRevisions-V100
|
| 35 |
+
.fseventsd
|
| 36 |
+
.Spotlight-V100
|
| 37 |
+
.TemporaryItems
|
| 38 |
+
.Trashes
|
| 39 |
+
.VolumeIcon.icns
|
| 40 |
+
.com.apple.timemachine.donotpresent
|
| 41 |
+
|
| 42 |
+
# Directories potentially created on remote AFP share
|
| 43 |
+
.AppleDB
|
| 44 |
+
.AppleDesktop
|
| 45 |
+
Network Trash Folder
|
| 46 |
+
Temporary Items
|
| 47 |
+
.apdisk
|
| 48 |
+
|
| 49 |
+
### Python ###
|
| 50 |
+
# Byte-compiled / optimized / DLL files
|
| 51 |
+
__pycache__/
|
| 52 |
+
*.py[cod]
|
| 53 |
+
*$py.class
|
| 54 |
+
|
| 55 |
+
# C extensions
|
| 56 |
+
*.so
|
| 57 |
+
|
| 58 |
+
# Distribution / packaging
|
| 59 |
+
.Python
|
| 60 |
+
*/build/
|
| 61 |
+
develop-eggs/
|
| 62 |
+
dist/
|
| 63 |
+
downloads/
|
| 64 |
+
eggs/
|
| 65 |
+
.eggs/
|
| 66 |
+
lib/
|
| 67 |
+
lib64/
|
| 68 |
+
parts/
|
| 69 |
+
sdist/
|
| 70 |
+
var/
|
| 71 |
+
wheels/
|
| 72 |
+
share/python-wheels/
|
| 73 |
+
*.egg-info/
|
| 74 |
+
.installed.cfg
|
| 75 |
+
*.egg
|
| 76 |
+
MANIFEST
|
| 77 |
+
|
| 78 |
+
# PyInstaller
|
| 79 |
+
# Usually these files are written by a python script from a template
|
| 80 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 81 |
+
*.manifest
|
| 82 |
+
*.spec
|
| 83 |
+
|
| 84 |
+
# Installer logs
|
| 85 |
+
pip-log.txt
|
| 86 |
+
pip-delete-this-directory.txt
|
| 87 |
+
|
| 88 |
+
# Unit test / coverage reports
|
| 89 |
+
htmlcov/
|
| 90 |
+
.tox/
|
| 91 |
+
.nox/
|
| 92 |
+
.coverage
|
| 93 |
+
.coverage.*
|
| 94 |
+
.cache
|
| 95 |
+
nosetests.xml
|
| 96 |
+
coverage.xml
|
| 97 |
+
*.cover
|
| 98 |
+
*.py,cover
|
| 99 |
+
.hypothesis/
|
| 100 |
+
.pytest_cache/
|
| 101 |
+
cover/
|
| 102 |
+
|
| 103 |
+
# Translations
|
| 104 |
+
*.mo
|
| 105 |
+
*.pot
|
| 106 |
+
|
| 107 |
+
# Django stuff:
|
| 108 |
+
*.log
|
| 109 |
+
local_settings.py
|
| 110 |
+
db.sqlite3
|
| 111 |
+
db.sqlite3-journal
|
| 112 |
+
|
| 113 |
+
# Flask stuff:
|
| 114 |
+
instance/
|
| 115 |
+
.webassets-cache
|
| 116 |
+
|
| 117 |
+
# Scrapy stuff:
|
| 118 |
+
.scrapy
|
| 119 |
+
|
| 120 |
+
# Sphinx documentation
|
| 121 |
+
documentation/_build/
|
| 122 |
+
documentation/build/
|
| 123 |
+
|
| 124 |
+
# PyBuilder
|
| 125 |
+
.pybuilder/
|
| 126 |
+
target/
|
| 127 |
+
|
| 128 |
+
# Jupyter Notebook
|
| 129 |
+
.ipynb_checkpoints
|
| 130 |
+
|
| 131 |
+
# IPython
|
| 132 |
+
profile_default/
|
| 133 |
+
ipython_config.py
|
| 134 |
+
|
| 135 |
+
# pyenv
|
| 136 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 137 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 138 |
+
# .python-version
|
| 139 |
+
|
| 140 |
+
# pipenv
|
| 141 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 142 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 143 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 144 |
+
# install all needed dependencies.
|
| 145 |
+
#Pipfile.lock
|
| 146 |
+
|
| 147 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
| 148 |
+
__pypackages__/
|
| 149 |
+
|
| 150 |
+
# Celery stuff
|
| 151 |
+
celerybeat-schedule
|
| 152 |
+
celerybeat.pid
|
| 153 |
+
|
| 154 |
+
# SageMath parsed files
|
| 155 |
+
*.sage.py
|
| 156 |
+
|
| 157 |
+
# Environments
|
| 158 |
+
.env
|
| 159 |
+
.venv
|
| 160 |
+
env/
|
| 161 |
+
venv/
|
| 162 |
+
ENV/
|
| 163 |
+
env.bak/
|
| 164 |
+
venv.bak/
|
| 165 |
+
|
| 166 |
+
# Spyder project settings
|
| 167 |
+
.spyderproject
|
| 168 |
+
.spyproject
|
| 169 |
+
|
| 170 |
+
# Rope project settings
|
| 171 |
+
.ropeproject
|
| 172 |
+
|
| 173 |
+
# mkdocs documentation
|
| 174 |
+
/site
|
| 175 |
+
|
| 176 |
+
# mypy
|
| 177 |
+
.mypy_cache/
|
| 178 |
+
.dmypy.json
|
| 179 |
+
dmypy.json
|
| 180 |
+
|
| 181 |
+
# Pyre type checker
|
| 182 |
+
.pyre/
|
| 183 |
+
|
| 184 |
+
# pytype static type analyzer
|
| 185 |
+
.pytype/
|
| 186 |
+
|
| 187 |
+
# Cython debug symbols
|
| 188 |
+
cython_debug/
|
| 189 |
+
|
| 190 |
+
.idea
|
| 191 |
+
docs/.doctrees
|
| 192 |
+
# End of https://www.toptal.com/developers/gitignore/api/linux,macos,python
|
feature_extractor/preprocessor_config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": {
|
| 3 |
+
"height": 224,
|
| 4 |
+
"width": 224
|
| 5 |
+
},
|
| 6 |
+
"do_center_crop": true,
|
| 7 |
+
"do_convert_rgb": true,
|
| 8 |
+
"do_normalize": true,
|
| 9 |
+
"do_rescale": true,
|
| 10 |
+
"do_resize": true,
|
| 11 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
| 12 |
+
"image_mean": [
|
| 13 |
+
0.48145466,
|
| 14 |
+
0.4578275,
|
| 15 |
+
0.40821073
|
| 16 |
+
],
|
| 17 |
+
"image_processor_type": "CLIPImageProcessor",
|
| 18 |
+
"image_std": [
|
| 19 |
+
0.26862954,
|
| 20 |
+
0.26130258,
|
| 21 |
+
0.27577711
|
| 22 |
+
],
|
| 23 |
+
"resample": 3,
|
| 24 |
+
"rescale_factor": 0.00392156862745098,
|
| 25 |
+
"size": {
|
| 26 |
+
"shortest_edge": 224
|
| 27 |
+
}
|
| 28 |
+
}
|
flexible_unet/config.json
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "FlexibleUNet2DConditionModel",
|
| 3 |
+
"_diffusers_version": "0.23.0",
|
| 4 |
+
"_name_or_path": "/home/borys.tymchenko/qcomdiffusion/checkpoint-286000-2050048000/pipeline/unet",
|
| 5 |
+
"act_fn": "silu",
|
| 6 |
+
"addition_embed_type": null,
|
| 7 |
+
"addition_embed_type_num_heads": 64,
|
| 8 |
+
"addition_time_embed_dim": null,
|
| 9 |
+
"attention_head_dim": 8,
|
| 10 |
+
"attention_type": "default",
|
| 11 |
+
"block_out_channels": [
|
| 12 |
+
320,
|
| 13 |
+
640,
|
| 14 |
+
1280,
|
| 15 |
+
1280
|
| 16 |
+
],
|
| 17 |
+
"center_input_sample": false,
|
| 18 |
+
"class_embed_type": null,
|
| 19 |
+
"class_embeddings_concat": false,
|
| 20 |
+
"configurations": {
|
| 21 |
+
"add_downsample": [
|
| 22 |
+
true,
|
| 23 |
+
true,
|
| 24 |
+
false
|
| 25 |
+
],
|
| 26 |
+
"add_upsample": [
|
| 27 |
+
true,
|
| 28 |
+
true,
|
| 29 |
+
false
|
| 30 |
+
],
|
| 31 |
+
"add_upsample_mid_block": null,
|
| 32 |
+
"cross_attention_dim": 768,
|
| 33 |
+
"down_blocks_in_channels": [
|
| 34 |
+
320,
|
| 35 |
+
320,
|
| 36 |
+
640
|
| 37 |
+
],
|
| 38 |
+
"down_blocks_num_attentions": [
|
| 39 |
+
0,
|
| 40 |
+
1,
|
| 41 |
+
3
|
| 42 |
+
],
|
| 43 |
+
"down_blocks_num_resnets": [
|
| 44 |
+
2,
|
| 45 |
+
2,
|
| 46 |
+
1
|
| 47 |
+
],
|
| 48 |
+
"down_blocks_out_channels": [
|
| 49 |
+
320,
|
| 50 |
+
640,
|
| 51 |
+
1280
|
| 52 |
+
],
|
| 53 |
+
"mid_num_attentions": 0,
|
| 54 |
+
"mid_num_resnets": 0,
|
| 55 |
+
"mix_block_in_forward": true,
|
| 56 |
+
"num_attention_heads": 8,
|
| 57 |
+
"prev_output_channels": [
|
| 58 |
+
1280,
|
| 59 |
+
1280,
|
| 60 |
+
640
|
| 61 |
+
],
|
| 62 |
+
"resnet_act_fn": "silu",
|
| 63 |
+
"resnet_eps": 1e-05,
|
| 64 |
+
"sample_size": 64,
|
| 65 |
+
"temb_dim": 1280,
|
| 66 |
+
"up_blocks_num_attentions": [
|
| 67 |
+
5,
|
| 68 |
+
3,
|
| 69 |
+
0
|
| 70 |
+
],
|
| 71 |
+
"up_blocks_num_resnets": [
|
| 72 |
+
2,
|
| 73 |
+
3,
|
| 74 |
+
3
|
| 75 |
+
]
|
| 76 |
+
},
|
| 77 |
+
"conv_in_kernel": 3,
|
| 78 |
+
"conv_out_kernel": 3,
|
| 79 |
+
"cross_attention_dim": 768,
|
| 80 |
+
"cross_attention_norm": null,
|
| 81 |
+
"down_block_types": [
|
| 82 |
+
"CrossAttnDownBlock2D",
|
| 83 |
+
"CrossAttnDownBlock2D",
|
| 84 |
+
"CrossAttnDownBlock2D",
|
| 85 |
+
"DownBlock2D"
|
| 86 |
+
],
|
| 87 |
+
"downsample_padding": 1,
|
| 88 |
+
"dropout": 0.0,
|
| 89 |
+
"dual_cross_attention": false,
|
| 90 |
+
"encoder_hid_dim": null,
|
| 91 |
+
"encoder_hid_dim_type": null,
|
| 92 |
+
"flip_sin_to_cos": true,
|
| 93 |
+
"freq_shift": 0,
|
| 94 |
+
"in_channels": 4,
|
| 95 |
+
"layers_per_block": 2,
|
| 96 |
+
"mid_block_only_cross_attention": null,
|
| 97 |
+
"mid_block_scale_factor": 1,
|
| 98 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
| 99 |
+
"norm_eps": 1e-05,
|
| 100 |
+
"norm_num_groups": 32,
|
| 101 |
+
"num_attention_heads": null,
|
| 102 |
+
"num_class_embeds": null,
|
| 103 |
+
"only_cross_attention": false,
|
| 104 |
+
"out_channels": 4,
|
| 105 |
+
"projection_class_embeddings_input_dim": null,
|
| 106 |
+
"resnet_out_scale_factor": 1.0,
|
| 107 |
+
"resnet_skip_time_act": false,
|
| 108 |
+
"resnet_time_scale_shift": "default",
|
| 109 |
+
"reverse_transformer_layers_per_block": null,
|
| 110 |
+
"sample_size": 64,
|
| 111 |
+
"time_cond_proj_dim": null,
|
| 112 |
+
"time_embedding_act_fn": null,
|
| 113 |
+
"time_embedding_dim": null,
|
| 114 |
+
"time_embedding_type": "positional",
|
| 115 |
+
"timestep_post_act": null,
|
| 116 |
+
"transformer_layers_per_block": 1,
|
| 117 |
+
"up_block_types": [
|
| 118 |
+
"UpBlock2D",
|
| 119 |
+
"CrossAttnUpBlock2D",
|
| 120 |
+
"CrossAttnUpBlock2D",
|
| 121 |
+
"CrossAttnUpBlock2D"
|
| 122 |
+
],
|
| 123 |
+
"upcast_attention": false,
|
| 124 |
+
"use_linear_projection": false
|
| 125 |
+
}
|
flexible_unet/diffusion_pytorch_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:337322d55ebf3ad224f25121b3ab439e3406f5517bdb61b252d1d2aaea06024d
|
| 3 |
+
size 2101170216
|
model_index.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "DeciDiffusionPipeline",
|
| 3 |
+
"_diffusers_version": "0.21.4",
|
| 4 |
+
"_name_or_path": "Deci/DeciDiffusion-v2-0",
|
| 5 |
+
"feature_extractor": [
|
| 6 |
+
"transformers",
|
| 7 |
+
"CLIPImageProcessor"
|
| 8 |
+
],
|
| 9 |
+
"requires_safety_checker": true,
|
| 10 |
+
"safety_checker": [
|
| 11 |
+
"stable_diffusion",
|
| 12 |
+
"StableDiffusionSafetyChecker"
|
| 13 |
+
],
|
| 14 |
+
"scheduler": [
|
| 15 |
+
"diffusers",
|
| 16 |
+
"DDIMScheduler"
|
| 17 |
+
],
|
| 18 |
+
"text_encoder": [
|
| 19 |
+
"transformers",
|
| 20 |
+
"CLIPTextModel"
|
| 21 |
+
],
|
| 22 |
+
"tokenizer": [
|
| 23 |
+
"transformers",
|
| 24 |
+
"CLIPTokenizer"
|
| 25 |
+
],
|
| 26 |
+
"unet": [
|
| 27 |
+
"diffusers",
|
| 28 |
+
"UNet2DConditionModel"
|
| 29 |
+
],
|
| 30 |
+
"vae": [
|
| 31 |
+
"diffusers",
|
| 32 |
+
"AutoencoderKL"
|
| 33 |
+
]
|
| 34 |
+
}
|
pipeline.py
ADDED
|
@@ -0,0 +1,1010 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import itertools
|
| 2 |
+
from functools import partial
|
| 3 |
+
from typing import Any, Dict, Tuple, Callable
|
| 4 |
+
from typing import Union, Optional, List
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
from diffusers import DPMSolverMultistepScheduler
|
| 9 |
+
from diffusers import StableDiffusionPipeline, AutoencoderKL
|
| 10 |
+
from diffusers import Transformer2DModel, ModelMixin, ConfigMixin
|
| 11 |
+
from diffusers import UNet2DConditionModel
|
| 12 |
+
from diffusers.configuration_utils import register_to_config
|
| 13 |
+
from diffusers.models.attention import BasicTransformerBlock
|
| 14 |
+
from diffusers.models.resnet import ResnetBlock2D, Downsample2D, Upsample2D
|
| 15 |
+
from diffusers.models.transformer_2d import Transformer2DModelOutput
|
| 16 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker, StableDiffusionPipelineOutput
|
| 17 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 18 |
+
from diffusers.utils import replace_example_docstring
|
| 19 |
+
from torch import nn
|
| 20 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
| 24 |
+
"""
|
| 25 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
| 26 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
| 27 |
+
"""
|
| 28 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
| 29 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
| 30 |
+
# rescale the results from guidance (fixes overexposure)
|
| 31 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
| 32 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
| 33 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
| 34 |
+
return noise_cfg
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def custom_sort_order(obj):
|
| 38 |
+
"""
|
| 39 |
+
Key function for sorting order of execution in forward methods
|
| 40 |
+
"""
|
| 41 |
+
return {ResnetBlock2D: 0, Transformer2DModel: 1, FlexibleTransformer2DModel: 1}.get(obj.__class__)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def squeeze_to_len_n_starting_from_index_i(n, i, timestep_spacing):
|
| 45 |
+
"""
|
| 46 |
+
:param timestep_spacing: the timestep_spacing array we want to squeeze
|
| 47 |
+
:param n: the size of the squeezed array
|
| 48 |
+
:param i: the index we start squeezing from
|
| 49 |
+
:return: squeezed timestep_spacing
|
| 50 |
+
Example:
|
| 51 |
+
timesteps = np.array([967, 907, 846, 786, 725, 665, 604, 544, 484, 423, 363, 302, 242, 181, 121, 60]) (len=16)
|
| 52 |
+
n = 10, i = 6
|
| 53 |
+
Expected:
|
| 54 |
+
[967, 907, 846, 786, 725, 665, 4k, 3k, 2k, k], and if we define 665=5k => k = 133
|
| 55 |
+
"""
|
| 56 |
+
assert i < n
|
| 57 |
+
squeezed = np.flip(np.arange(n)) + 1 # [n, n-1, ..., 2, 1]
|
| 58 |
+
squeezed[:i] = timestep_spacing[:i]
|
| 59 |
+
k = squeezed[i - 1] // (n - i + 1)
|
| 60 |
+
squeezed[i:] *= k
|
| 61 |
+
|
| 62 |
+
return squeezed
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
PREDEFINED_TIMESTEP_SQUEEZERS = {
|
| 66 |
+
# Tested with DPM 16-steps (reduced 16 -> 10 or 11 steps)
|
| 67 |
+
"10,6": partial(squeeze_to_len_n_starting_from_index_i, 10, 6),
|
| 68 |
+
"11,7": partial(squeeze_to_len_n_starting_from_index_i, 11, 7),
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
FlexibleUnetConfigurations = {
|
| 72 |
+
# General parameters for all blocks
|
| 73 |
+
"sample_size": 64,
|
| 74 |
+
"temb_dim": 320 * 4,
|
| 75 |
+
"resnet_eps": 1e-5,
|
| 76 |
+
"resnet_act_fn": "silu",
|
| 77 |
+
"num_attention_heads": 8,
|
| 78 |
+
"cross_attention_dim": 768,
|
| 79 |
+
# Controls modules execute order in unet's forward
|
| 80 |
+
"mix_block_in_forward": True,
|
| 81 |
+
# Down blocks parameters
|
| 82 |
+
"down_blocks_in_channels": [320, 320, 640],
|
| 83 |
+
"down_blocks_out_channels": [320, 640, 1280],
|
| 84 |
+
"down_blocks_num_attentions": [0, 1, 3],
|
| 85 |
+
"down_blocks_num_resnets": [2, 2, 1],
|
| 86 |
+
"add_downsample": [True, True, False],
|
| 87 |
+
# Middle block parameters
|
| 88 |
+
"add_upsample_mid_block": None,
|
| 89 |
+
"mid_num_resnets": 0,
|
| 90 |
+
"mid_num_attentions": 0,
|
| 91 |
+
# Up block parameters
|
| 92 |
+
"prev_output_channels": [1280, 1280, 640],
|
| 93 |
+
"up_blocks_num_attentions": [5, 3, 0],
|
| 94 |
+
"up_blocks_num_resnets": [2, 3, 3],
|
| 95 |
+
"add_upsample": [True, True, False],
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class SqueezedDPMSolverMultistepScheduler(DPMSolverMultistepScheduler):
|
| 100 |
+
"""
|
| 101 |
+
This is a copy-paste from Diffuser's `DPMSolverMultistepScheduler`, with minor differences:
|
| 102 |
+
* Defaults are modified to accommodate DeciDiffusion
|
| 103 |
+
* It supports a squeezer to squeeze the number of inference steps to a smaller number
|
| 104 |
+
//!\\ IMPORTANT: the actual number of inference steps is deduced by the squeezer, and not the pipeline!
|
| 105 |
+
"""
|
| 106 |
+
|
| 107 |
+
@register_to_config
|
| 108 |
+
def __init__(
|
| 109 |
+
self,
|
| 110 |
+
num_train_timesteps: int = 1000,
|
| 111 |
+
beta_start: float = 0.0001,
|
| 112 |
+
beta_end: float = 0.02,
|
| 113 |
+
beta_schedule: str = "squaredcos_cap_v2", # NOTE THIS DEFAULT VALUE
|
| 114 |
+
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
| 115 |
+
solver_order: int = 2,
|
| 116 |
+
prediction_type: str = "v_prediction", # NOTE THIS DEFAULT VALUE
|
| 117 |
+
thresholding: bool = False,
|
| 118 |
+
dynamic_thresholding_ratio: float = 0.995,
|
| 119 |
+
sample_max_value: float = 1.0,
|
| 120 |
+
algorithm_type: str = "dpmsolver++",
|
| 121 |
+
solver_type: str = "heun", # NOTE THIS DEFAULT VALUE
|
| 122 |
+
lower_order_final: bool = True,
|
| 123 |
+
use_karras_sigmas: Optional[bool] = False,
|
| 124 |
+
lambda_min_clipped: float = -3.0, # NOTE THIS DEFAULT VALUE
|
| 125 |
+
variance_type: Optional[str] = None,
|
| 126 |
+
timestep_spacing: str = "linspace",
|
| 127 |
+
steps_offset: int = 1,
|
| 128 |
+
squeeze_mode: Optional[str] = None, # NOTE THIS ADDITION. Supports keys from `PREDEFINED_TIMESTEP_SQUEEZERS` defined above
|
| 129 |
+
):
|
| 130 |
+
self._squeezer = PREDEFINED_TIMESTEP_SQUEEZERS.get(squeeze_mode)
|
| 131 |
+
|
| 132 |
+
if use_karras_sigmas:
|
| 133 |
+
raise NotImplementedError("Squeezing isn't tested with `use_karras_sigmas`. Please provide `use_karras_sigmas=False`")
|
| 134 |
+
|
| 135 |
+
super().__init__(
|
| 136 |
+
num_train_timesteps=num_train_timesteps,
|
| 137 |
+
beta_start=beta_start,
|
| 138 |
+
beta_end=beta_end,
|
| 139 |
+
beta_schedule=beta_schedule,
|
| 140 |
+
trained_betas=trained_betas,
|
| 141 |
+
solver_order=solver_order,
|
| 142 |
+
prediction_type=prediction_type,
|
| 143 |
+
thresholding=thresholding,
|
| 144 |
+
dynamic_thresholding_ratio=dynamic_thresholding_ratio,
|
| 145 |
+
sample_max_value=sample_max_value,
|
| 146 |
+
algorithm_type=algorithm_type,
|
| 147 |
+
solver_type=solver_type,
|
| 148 |
+
lower_order_final=lower_order_final,
|
| 149 |
+
use_karras_sigmas=False,
|
| 150 |
+
lambda_min_clipped=lambda_min_clipped,
|
| 151 |
+
variance_type=variance_type,
|
| 152 |
+
timestep_spacing=timestep_spacing,
|
| 153 |
+
steps_offset=steps_offset,
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
|
| 157 |
+
"""
|
| 158 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
| 159 |
+
|
| 160 |
+
Args:
|
| 161 |
+
num_inference_steps (`int`):
|
| 162 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
| 163 |
+
device (`str` or `torch.device`, *optional*):
|
| 164 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 165 |
+
"""
|
| 166 |
+
super().set_timesteps(num_inference_steps=num_inference_steps, device=device)
|
| 167 |
+
if self._squeezer is not None:
|
| 168 |
+
timesteps = self._squeezer(self.timesteps.cpu())
|
| 169 |
+
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
| 170 |
+
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
| 171 |
+
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
|
| 172 |
+
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
| 173 |
+
self.sigmas = torch.from_numpy(sigmas)
|
| 174 |
+
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
|
| 175 |
+
self.num_inference_steps = len(timesteps)
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
class FlexibleIdentityBlock(nn.Module):
|
| 179 |
+
def forward(
|
| 180 |
+
self,
|
| 181 |
+
hidden_states: torch.FloatTensor,
|
| 182 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 183 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 184 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 185 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 186 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 187 |
+
):
|
| 188 |
+
return hidden_states
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
class FlexibleUNet2DConditionModel(UNet2DConditionModel, ModelMixin):
|
| 192 |
+
configurations = FlexibleUnetConfigurations
|
| 193 |
+
|
| 194 |
+
@register_to_config
|
| 195 |
+
def __init__(self):
|
| 196 |
+
super().__init__(
|
| 197 |
+
sample_size=self.configurations.get("sample_size", FlexibleUnetConfigurations["sample_size"]),
|
| 198 |
+
cross_attention_dim=self.configurations.get("cross_attention_dim", FlexibleUnetConfigurations["cross_attention_dim"]),
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
num_attention_heads = self.configurations.get("num_attention_heads")
|
| 202 |
+
cross_attention_dim = self.configurations.get("cross_attention_dim")
|
| 203 |
+
mix_block_in_forward = self.configurations.get("mix_block_in_forward")
|
| 204 |
+
resnet_act_fn = self.configurations.get("resnet_act_fn")
|
| 205 |
+
resnet_eps = self.configurations.get("resnet_eps")
|
| 206 |
+
temb_dim = self.configurations.get("temb_dim")
|
| 207 |
+
|
| 208 |
+
###############
|
| 209 |
+
# Down blocks #
|
| 210 |
+
###############
|
| 211 |
+
down_blocks_num_attentions = self.configurations.get("down_blocks_num_attentions")
|
| 212 |
+
down_blocks_out_channels = self.configurations.get("down_blocks_out_channels")
|
| 213 |
+
down_blocks_in_channels = self.configurations.get("down_blocks_in_channels")
|
| 214 |
+
down_blocks_num_resnets = self.configurations.get("down_blocks_num_resnets")
|
| 215 |
+
add_downsample = self.configurations.get("add_downsample")
|
| 216 |
+
|
| 217 |
+
self.down_blocks = nn.ModuleList()
|
| 218 |
+
|
| 219 |
+
for i, (in_c, out_c, n_res, n_att, add_down) in enumerate(
|
| 220 |
+
zip(down_blocks_in_channels, down_blocks_out_channels, down_blocks_num_resnets, down_blocks_num_attentions, add_downsample)
|
| 221 |
+
):
|
| 222 |
+
last_block = i == len(down_blocks_in_channels) - 1
|
| 223 |
+
self.down_blocks.append(
|
| 224 |
+
FlexibleCrossAttnDownBlock2D(
|
| 225 |
+
in_channels=in_c,
|
| 226 |
+
out_channels=out_c,
|
| 227 |
+
temb_channels=temb_dim,
|
| 228 |
+
num_resnets=n_res,
|
| 229 |
+
num_attentions=n_att,
|
| 230 |
+
resnet_eps=resnet_eps,
|
| 231 |
+
resnet_act_fn=resnet_act_fn,
|
| 232 |
+
num_attention_heads=num_attention_heads,
|
| 233 |
+
cross_attention_dim=cross_attention_dim,
|
| 234 |
+
add_downsample=add_down,
|
| 235 |
+
last_block=last_block,
|
| 236 |
+
mix_block_in_forward=mix_block_in_forward,
|
| 237 |
+
)
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
###############
|
| 241 |
+
# Mid blocks #
|
| 242 |
+
###############
|
| 243 |
+
|
| 244 |
+
mid_block_add_upsample = self.configurations.get("add_upsample_mid_block")
|
| 245 |
+
mid_num_attentions = self.configurations.get("mid_num_attentions")
|
| 246 |
+
mid_num_resnets = self.configurations.get("mid_num_resnets")
|
| 247 |
+
|
| 248 |
+
if mid_num_resnets == mid_num_attentions == 0:
|
| 249 |
+
self.mid_block = FlexibleIdentityBlock()
|
| 250 |
+
else:
|
| 251 |
+
self.mid_block = FlexibleUNetMidBlock2DCrossAttn(
|
| 252 |
+
in_channels=down_blocks_out_channels[-1],
|
| 253 |
+
temb_channels=temb_dim,
|
| 254 |
+
resnet_act_fn=resnet_act_fn,
|
| 255 |
+
resnet_eps=resnet_eps,
|
| 256 |
+
cross_attention_dim=cross_attention_dim,
|
| 257 |
+
num_attention_heads=num_attention_heads,
|
| 258 |
+
num_resnets=mid_num_resnets,
|
| 259 |
+
num_attentions=mid_num_attentions,
|
| 260 |
+
mix_block_in_forward=mix_block_in_forward,
|
| 261 |
+
add_upsample=mid_block_add_upsample,
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
###############
|
| 265 |
+
# Up blocks #
|
| 266 |
+
###############
|
| 267 |
+
|
| 268 |
+
up_blocks_num_attentions = self.configurations.get("up_blocks_num_attentions")
|
| 269 |
+
up_blocks_num_resnets = self.configurations.get("up_blocks_num_resnets")
|
| 270 |
+
prev_output_channels = self.configurations.get("prev_output_channels")
|
| 271 |
+
up_upsample = self.configurations.get("add_upsample")
|
| 272 |
+
|
| 273 |
+
self.up_blocks = nn.ModuleList()
|
| 274 |
+
for in_c, out_c, prev_out, n_res, n_att, add_up in zip(
|
| 275 |
+
reversed(down_blocks_in_channels),
|
| 276 |
+
reversed(down_blocks_out_channels),
|
| 277 |
+
prev_output_channels,
|
| 278 |
+
up_blocks_num_resnets,
|
| 279 |
+
up_blocks_num_attentions,
|
| 280 |
+
up_upsample,
|
| 281 |
+
):
|
| 282 |
+
self.up_blocks.append(
|
| 283 |
+
FlexibleCrossAttnUpBlock2D(
|
| 284 |
+
in_channels=in_c,
|
| 285 |
+
out_channels=out_c,
|
| 286 |
+
prev_output_channel=prev_out,
|
| 287 |
+
temb_channels=temb_dim,
|
| 288 |
+
num_resnets=n_res,
|
| 289 |
+
num_attentions=n_att,
|
| 290 |
+
resnet_eps=resnet_eps,
|
| 291 |
+
resnet_act_fn=resnet_act_fn,
|
| 292 |
+
num_attention_heads=num_attention_heads,
|
| 293 |
+
cross_attention_dim=cross_attention_dim,
|
| 294 |
+
add_upsample=add_up,
|
| 295 |
+
mix_block_in_forward=mix_block_in_forward,
|
| 296 |
+
)
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
class FlexibleCrossAttnDownBlock2D(nn.Module):
|
| 301 |
+
def __init__(
|
| 302 |
+
self,
|
| 303 |
+
in_channels: int,
|
| 304 |
+
out_channels: int,
|
| 305 |
+
temb_channels: int,
|
| 306 |
+
dropout: float = 0.0,
|
| 307 |
+
num_resnets: int = 1,
|
| 308 |
+
num_attentions: int = 1,
|
| 309 |
+
transformer_layers_per_block: int = 1,
|
| 310 |
+
resnet_eps: float = 1e-6,
|
| 311 |
+
resnet_time_scale_shift: str = "default",
|
| 312 |
+
resnet_act_fn: str = "swish",
|
| 313 |
+
resnet_groups: int = 32,
|
| 314 |
+
resnet_pre_norm: bool = True,
|
| 315 |
+
num_attention_heads: int = 1,
|
| 316 |
+
cross_attention_dim: int = 1280,
|
| 317 |
+
output_scale_factor: float = 1.0,
|
| 318 |
+
downsample_padding: int = 1,
|
| 319 |
+
add_downsample: bool = True,
|
| 320 |
+
use_linear_projection: bool = False,
|
| 321 |
+
only_cross_attention: bool = False,
|
| 322 |
+
upcast_attention: bool = False,
|
| 323 |
+
last_block: bool = False,
|
| 324 |
+
mix_block_in_forward: bool = True,
|
| 325 |
+
):
|
| 326 |
+
super().__init__()
|
| 327 |
+
|
| 328 |
+
self.last_block = last_block
|
| 329 |
+
self.mix_block_in_forward = mix_block_in_forward
|
| 330 |
+
self.has_cross_attention = True
|
| 331 |
+
self.num_attention_heads = num_attention_heads
|
| 332 |
+
|
| 333 |
+
modules = []
|
| 334 |
+
|
| 335 |
+
add_resnets = [True] * num_resnets
|
| 336 |
+
add_cross_attentions = [True] * num_attentions
|
| 337 |
+
for i, (add_resnet, add_cross_attention) in enumerate(itertools.zip_longest(add_resnets, add_cross_attentions, fillvalue=False)):
|
| 338 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 339 |
+
if add_resnet:
|
| 340 |
+
modules.append(
|
| 341 |
+
ResnetBlock2D(
|
| 342 |
+
in_channels=in_channels,
|
| 343 |
+
out_channels=out_channels,
|
| 344 |
+
temb_channels=temb_channels,
|
| 345 |
+
eps=resnet_eps,
|
| 346 |
+
groups=resnet_groups,
|
| 347 |
+
dropout=dropout,
|
| 348 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 349 |
+
non_linearity=resnet_act_fn,
|
| 350 |
+
output_scale_factor=output_scale_factor,
|
| 351 |
+
pre_norm=resnet_pre_norm,
|
| 352 |
+
)
|
| 353 |
+
)
|
| 354 |
+
if add_cross_attention:
|
| 355 |
+
modules.append(
|
| 356 |
+
FlexibleTransformer2DModel(
|
| 357 |
+
num_attention_heads=num_attention_heads,
|
| 358 |
+
attention_head_dim=out_channels // num_attention_heads,
|
| 359 |
+
in_channels=out_channels,
|
| 360 |
+
num_layers=transformer_layers_per_block,
|
| 361 |
+
cross_attention_dim=cross_attention_dim,
|
| 362 |
+
norm_num_groups=resnet_groups,
|
| 363 |
+
use_linear_projection=use_linear_projection,
|
| 364 |
+
only_cross_attention=only_cross_attention,
|
| 365 |
+
upcast_attention=upcast_attention,
|
| 366 |
+
)
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
if not mix_block_in_forward:
|
| 370 |
+
modules = sorted(modules, key=custom_sort_order)
|
| 371 |
+
|
| 372 |
+
self.modules_list = nn.ModuleList(modules)
|
| 373 |
+
|
| 374 |
+
if add_downsample:
|
| 375 |
+
self.downsamplers = nn.ModuleList([Downsample2D(out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op")])
|
| 376 |
+
else:
|
| 377 |
+
self.downsamplers = None
|
| 378 |
+
|
| 379 |
+
self.gradient_checkpointing = False
|
| 380 |
+
|
| 381 |
+
def forward(
|
| 382 |
+
self,
|
| 383 |
+
hidden_states: torch.FloatTensor,
|
| 384 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 385 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 386 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 387 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 388 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 389 |
+
):
|
| 390 |
+
output_states = ()
|
| 391 |
+
|
| 392 |
+
for module in self.modules_list:
|
| 393 |
+
if isinstance(module, ResnetBlock2D):
|
| 394 |
+
hidden_states = module(hidden_states, temb)
|
| 395 |
+
elif isinstance(module, (FlexibleTransformer2DModel, Transformer2DModel)):
|
| 396 |
+
hidden_states = module(
|
| 397 |
+
hidden_states,
|
| 398 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 399 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 400 |
+
attention_mask=attention_mask,
|
| 401 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 402 |
+
return_dict=False,
|
| 403 |
+
)[0]
|
| 404 |
+
else:
|
| 405 |
+
raise ValueError(f"Got an unexpected module in modules list! {type(module)}")
|
| 406 |
+
if isinstance(module, ResnetBlock2D):
|
| 407 |
+
output_states = output_states + (hidden_states,)
|
| 408 |
+
|
| 409 |
+
if self.downsamplers is not None:
|
| 410 |
+
for downsampler in self.downsamplers:
|
| 411 |
+
hidden_states = downsampler(hidden_states)
|
| 412 |
+
|
| 413 |
+
if not self.last_block:
|
| 414 |
+
output_states = output_states + (hidden_states,)
|
| 415 |
+
|
| 416 |
+
return hidden_states, output_states
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
class FlexibleCrossAttnUpBlock2D(nn.Module):
|
| 420 |
+
def __init__(
|
| 421 |
+
self,
|
| 422 |
+
in_channels: int,
|
| 423 |
+
out_channels: int,
|
| 424 |
+
prev_output_channel: int,
|
| 425 |
+
temb_channels: int,
|
| 426 |
+
dropout: float = 0.0,
|
| 427 |
+
num_resnets: int = 1,
|
| 428 |
+
num_attentions: int = 1,
|
| 429 |
+
transformer_layers_per_block: int = 1,
|
| 430 |
+
resnet_eps: float = 1e-6,
|
| 431 |
+
resnet_time_scale_shift: str = "default",
|
| 432 |
+
resnet_act_fn: str = "swish",
|
| 433 |
+
resnet_groups: int = 32,
|
| 434 |
+
resnet_pre_norm: bool = True,
|
| 435 |
+
num_attention_heads: int = 1,
|
| 436 |
+
cross_attention_dim: int = 1280,
|
| 437 |
+
output_scale_factor: float = 1.0,
|
| 438 |
+
add_upsample: bool = True,
|
| 439 |
+
use_linear_projection: bool = False,
|
| 440 |
+
only_cross_attention: bool = False,
|
| 441 |
+
upcast_attention: bool = False,
|
| 442 |
+
mix_block_in_forward: bool = True,
|
| 443 |
+
):
|
| 444 |
+
super().__init__()
|
| 445 |
+
modules = []
|
| 446 |
+
|
| 447 |
+
# WARNING: This parameter is filled with number of resnets and used within StableDiffusionPipeline
|
| 448 |
+
self.resnets = []
|
| 449 |
+
|
| 450 |
+
self.has_cross_attention = True
|
| 451 |
+
self.num_attention_heads = num_attention_heads
|
| 452 |
+
|
| 453 |
+
add_resnets = [True] * num_resnets
|
| 454 |
+
add_cross_attentions = [True] * num_attentions
|
| 455 |
+
for i, (add_resnet, add_cross_attention) in enumerate(itertools.zip_longest(add_resnets, add_cross_attentions, fillvalue=False)):
|
| 456 |
+
res_skip_channels = in_channels if (i == len(add_resnets) - 1) else out_channels
|
| 457 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 458 |
+
|
| 459 |
+
if add_resnet:
|
| 460 |
+
self.resnets += [True]
|
| 461 |
+
modules.append(
|
| 462 |
+
ResnetBlock2D(
|
| 463 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 464 |
+
out_channels=out_channels,
|
| 465 |
+
temb_channels=temb_channels,
|
| 466 |
+
eps=resnet_eps,
|
| 467 |
+
groups=resnet_groups,
|
| 468 |
+
dropout=dropout,
|
| 469 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 470 |
+
non_linearity=resnet_act_fn,
|
| 471 |
+
output_scale_factor=output_scale_factor,
|
| 472 |
+
pre_norm=resnet_pre_norm,
|
| 473 |
+
)
|
| 474 |
+
)
|
| 475 |
+
if add_cross_attention:
|
| 476 |
+
modules.append(
|
| 477 |
+
FlexibleTransformer2DModel(
|
| 478 |
+
num_attention_heads,
|
| 479 |
+
out_channels // num_attention_heads,
|
| 480 |
+
in_channels=out_channels,
|
| 481 |
+
num_layers=transformer_layers_per_block,
|
| 482 |
+
cross_attention_dim=cross_attention_dim,
|
| 483 |
+
norm_num_groups=resnet_groups,
|
| 484 |
+
use_linear_projection=use_linear_projection,
|
| 485 |
+
only_cross_attention=only_cross_attention,
|
| 486 |
+
upcast_attention=upcast_attention,
|
| 487 |
+
)
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
if not mix_block_in_forward:
|
| 491 |
+
modules = sorted(modules, key=custom_sort_order)
|
| 492 |
+
|
| 493 |
+
self.modules_list = nn.ModuleList(modules)
|
| 494 |
+
|
| 495 |
+
self.upsamplers = None
|
| 496 |
+
if add_upsample:
|
| 497 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
| 498 |
+
|
| 499 |
+
self.gradient_checkpointing = False
|
| 500 |
+
|
| 501 |
+
def forward(
|
| 502 |
+
self,
|
| 503 |
+
hidden_states: torch.FloatTensor,
|
| 504 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
| 505 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 506 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 507 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 508 |
+
upsample_size: Optional[int] = None,
|
| 509 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 510 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 511 |
+
):
|
| 512 |
+
|
| 513 |
+
for module in self.modules_list:
|
| 514 |
+
if isinstance(module, ResnetBlock2D):
|
| 515 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 516 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 517 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 518 |
+
hidden_states = module(hidden_states, temb)
|
| 519 |
+
if isinstance(module, (FlexibleTransformer2DModel, Transformer2DModel)):
|
| 520 |
+
hidden_states = module(
|
| 521 |
+
hidden_states,
|
| 522 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 523 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 524 |
+
attention_mask=attention_mask,
|
| 525 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 526 |
+
return_dict=False,
|
| 527 |
+
)[0]
|
| 528 |
+
|
| 529 |
+
if self.upsamplers is not None:
|
| 530 |
+
for upsampler in self.upsamplers:
|
| 531 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 532 |
+
|
| 533 |
+
return hidden_states
|
| 534 |
+
|
| 535 |
+
|
| 536 |
+
class FlexibleUNetMidBlock2DCrossAttn(nn.Module):
|
| 537 |
+
def __init__(
|
| 538 |
+
self,
|
| 539 |
+
in_channels: int,
|
| 540 |
+
temb_channels: int,
|
| 541 |
+
dropout: float = 0.0,
|
| 542 |
+
num_resnets: int = 1,
|
| 543 |
+
num_attentions: int = 1,
|
| 544 |
+
transformer_layers_per_block: int = 1,
|
| 545 |
+
resnet_eps: float = 1e-6,
|
| 546 |
+
resnet_time_scale_shift: str = "default",
|
| 547 |
+
resnet_act_fn: str = "swish",
|
| 548 |
+
resnet_groups: int = 32,
|
| 549 |
+
resnet_pre_norm: bool = True,
|
| 550 |
+
num_attention_heads: int = 1,
|
| 551 |
+
output_scale_factor: float = 1.0,
|
| 552 |
+
cross_attention_dim: int = 1280,
|
| 553 |
+
use_linear_projection: bool = False,
|
| 554 |
+
upcast_attention: bool = False,
|
| 555 |
+
mix_block_in_forward: bool = True,
|
| 556 |
+
add_upsample: bool = True,
|
| 557 |
+
):
|
| 558 |
+
super().__init__()
|
| 559 |
+
|
| 560 |
+
self.has_cross_attention = True
|
| 561 |
+
self.num_attention_heads = num_attention_heads
|
| 562 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
| 563 |
+
# There is always at least one resnet
|
| 564 |
+
modules = [
|
| 565 |
+
ResnetBlock2D(
|
| 566 |
+
in_channels=in_channels,
|
| 567 |
+
out_channels=in_channels,
|
| 568 |
+
temb_channels=temb_channels,
|
| 569 |
+
eps=resnet_eps,
|
| 570 |
+
groups=resnet_groups,
|
| 571 |
+
dropout=dropout,
|
| 572 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 573 |
+
non_linearity=resnet_act_fn,
|
| 574 |
+
output_scale_factor=output_scale_factor,
|
| 575 |
+
pre_norm=resnet_pre_norm,
|
| 576 |
+
)
|
| 577 |
+
]
|
| 578 |
+
|
| 579 |
+
add_resnets = [True] * num_resnets
|
| 580 |
+
add_cross_attentions = [True] * num_attentions
|
| 581 |
+
for i, (add_resnet, add_cross_attention) in enumerate(itertools.zip_longest(add_resnets, add_cross_attentions, fillvalue=False)):
|
| 582 |
+
if add_cross_attention:
|
| 583 |
+
modules.append(
|
| 584 |
+
FlexibleTransformer2DModel(
|
| 585 |
+
num_attention_heads,
|
| 586 |
+
in_channels // num_attention_heads,
|
| 587 |
+
in_channels=in_channels,
|
| 588 |
+
num_layers=transformer_layers_per_block,
|
| 589 |
+
cross_attention_dim=cross_attention_dim,
|
| 590 |
+
norm_num_groups=resnet_groups,
|
| 591 |
+
use_linear_projection=use_linear_projection,
|
| 592 |
+
upcast_attention=upcast_attention,
|
| 593 |
+
)
|
| 594 |
+
)
|
| 595 |
+
|
| 596 |
+
if add_resnet:
|
| 597 |
+
modules.append(
|
| 598 |
+
ResnetBlock2D(
|
| 599 |
+
in_channels=in_channels,
|
| 600 |
+
out_channels=in_channels,
|
| 601 |
+
temb_channels=temb_channels,
|
| 602 |
+
eps=resnet_eps,
|
| 603 |
+
groups=resnet_groups,
|
| 604 |
+
dropout=dropout,
|
| 605 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 606 |
+
non_linearity=resnet_act_fn,
|
| 607 |
+
output_scale_factor=output_scale_factor,
|
| 608 |
+
pre_norm=resnet_pre_norm,
|
| 609 |
+
)
|
| 610 |
+
)
|
| 611 |
+
if not mix_block_in_forward:
|
| 612 |
+
modules = sorted(modules, key=custom_sort_order)
|
| 613 |
+
|
| 614 |
+
self.modules_list = nn.ModuleList(modules)
|
| 615 |
+
|
| 616 |
+
self.upsamplers = nn.ModuleList([nn.Identity()])
|
| 617 |
+
if add_upsample:
|
| 618 |
+
self.upsamplers = nn.ModuleList([Upsample2D(in_channels, use_conv=True, out_channels=in_channels)])
|
| 619 |
+
|
| 620 |
+
def forward(
|
| 621 |
+
self,
|
| 622 |
+
hidden_states: torch.FloatTensor,
|
| 623 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 624 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 625 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 626 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 627 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 628 |
+
) -> torch.FloatTensor:
|
| 629 |
+
hidden_states = self.modules_list[0](hidden_states, temb)
|
| 630 |
+
|
| 631 |
+
for module in self.modules_list:
|
| 632 |
+
if isinstance(module, (FlexibleTransformer2DModel, Transformer2DModel)):
|
| 633 |
+
hidden_states = module(
|
| 634 |
+
hidden_states,
|
| 635 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 636 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 637 |
+
attention_mask=attention_mask,
|
| 638 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 639 |
+
return_dict=False,
|
| 640 |
+
)[0]
|
| 641 |
+
elif isinstance(module, ResnetBlock2D):
|
| 642 |
+
hidden_states = module(hidden_states, temb)
|
| 643 |
+
|
| 644 |
+
for upsampler in self.upsamplers:
|
| 645 |
+
hidden_states = upsampler(hidden_states)
|
| 646 |
+
|
| 647 |
+
return hidden_states
|
| 648 |
+
|
| 649 |
+
|
| 650 |
+
class FlexibleTransformer2DModel(ModelMixin, ConfigMixin):
|
| 651 |
+
@register_to_config
|
| 652 |
+
def __init__(
|
| 653 |
+
self,
|
| 654 |
+
num_attention_heads: int = 16,
|
| 655 |
+
attention_head_dim: int = 88,
|
| 656 |
+
in_channels: Optional[int] = None,
|
| 657 |
+
out_channels: Optional[int] = None,
|
| 658 |
+
num_layers: int = 1,
|
| 659 |
+
dropout: float = 0.0,
|
| 660 |
+
norm_num_groups: int = 32,
|
| 661 |
+
cross_attention_dim: Optional[int] = None,
|
| 662 |
+
attention_bias: bool = False,
|
| 663 |
+
activation_fn: str = "geglu",
|
| 664 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 665 |
+
only_cross_attention: bool = False,
|
| 666 |
+
use_linear_projection: bool = False,
|
| 667 |
+
upcast_attention: bool = False,
|
| 668 |
+
norm_type: str = "layer_norm",
|
| 669 |
+
norm_elementwise_affine: bool = True,
|
| 670 |
+
):
|
| 671 |
+
super().__init__()
|
| 672 |
+
self.num_attention_heads = num_attention_heads
|
| 673 |
+
self.attention_head_dim = attention_head_dim
|
| 674 |
+
self.in_channels = in_channels
|
| 675 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 676 |
+
|
| 677 |
+
# Define input layers
|
| 678 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
| 679 |
+
self.use_linear_projection = use_linear_projection
|
| 680 |
+
if self.use_linear_projection:
|
| 681 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
| 682 |
+
else:
|
| 683 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
| 684 |
+
|
| 685 |
+
# Define transformers blocks
|
| 686 |
+
self.transformer_blocks = nn.ModuleList(
|
| 687 |
+
[
|
| 688 |
+
BasicTransformerBlock(
|
| 689 |
+
inner_dim,
|
| 690 |
+
num_attention_heads,
|
| 691 |
+
attention_head_dim,
|
| 692 |
+
dropout=dropout,
|
| 693 |
+
cross_attention_dim=cross_attention_dim,
|
| 694 |
+
activation_fn=activation_fn,
|
| 695 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
| 696 |
+
attention_bias=attention_bias,
|
| 697 |
+
only_cross_attention=only_cross_attention,
|
| 698 |
+
upcast_attention=upcast_attention,
|
| 699 |
+
norm_type=norm_type,
|
| 700 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
| 701 |
+
)
|
| 702 |
+
for _ in range(num_layers)
|
| 703 |
+
]
|
| 704 |
+
)
|
| 705 |
+
|
| 706 |
+
# Define output layers
|
| 707 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
| 708 |
+
if self.use_linear_projection:
|
| 709 |
+
self.proj_out = nn.Linear(inner_dim, in_channels)
|
| 710 |
+
else:
|
| 711 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
| 712 |
+
|
| 713 |
+
def forward(
|
| 714 |
+
self,
|
| 715 |
+
hidden_states: torch.Tensor,
|
| 716 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 717 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 718 |
+
class_labels: Optional[torch.LongTensor] = None,
|
| 719 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 720 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 721 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 722 |
+
return_dict: bool = False,
|
| 723 |
+
):
|
| 724 |
+
# 1. Input
|
| 725 |
+
batch, _, height, width = hidden_states.shape
|
| 726 |
+
residual = hidden_states
|
| 727 |
+
|
| 728 |
+
hidden_states = self.norm(hidden_states)
|
| 729 |
+
if not self.use_linear_projection:
|
| 730 |
+
hidden_states = self.proj_in(hidden_states)
|
| 731 |
+
inner_dim = hidden_states.shape[1]
|
| 732 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
| 733 |
+
else:
|
| 734 |
+
inner_dim = hidden_states.shape[1]
|
| 735 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
| 736 |
+
hidden_states = self.proj_in(hidden_states)
|
| 737 |
+
|
| 738 |
+
# 2. Blocks
|
| 739 |
+
for block in self.transformer_blocks:
|
| 740 |
+
hidden_states = block(
|
| 741 |
+
hidden_states,
|
| 742 |
+
attention_mask=attention_mask,
|
| 743 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 744 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 745 |
+
timestep=timestep,
|
| 746 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 747 |
+
class_labels=class_labels,
|
| 748 |
+
)
|
| 749 |
+
|
| 750 |
+
# 3. Output
|
| 751 |
+
if not self.use_linear_projection:
|
| 752 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
| 753 |
+
hidden_states = self.proj_out(hidden_states)
|
| 754 |
+
else:
|
| 755 |
+
hidden_states = self.proj_out(hidden_states)
|
| 756 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
| 757 |
+
|
| 758 |
+
output = hidden_states + residual
|
| 759 |
+
if return_dict:
|
| 760 |
+
return (output,)
|
| 761 |
+
return Transformer2DModelOutput(sample=output)
|
| 762 |
+
|
| 763 |
+
|
| 764 |
+
class DeciDiffusionPipeline(StableDiffusionPipeline):
|
| 765 |
+
deci_default_squeeze_mode = "10,6"
|
| 766 |
+
deci_default_number_of_iterations = 16
|
| 767 |
+
deci_default_guidance_rescale = 0.7
|
| 768 |
+
|
| 769 |
+
def __init__(
|
| 770 |
+
self,
|
| 771 |
+
vae: AutoencoderKL,
|
| 772 |
+
text_encoder: CLIPTextModel,
|
| 773 |
+
tokenizer: CLIPTokenizer,
|
| 774 |
+
unet: UNet2DConditionModel,
|
| 775 |
+
scheduler: KarrasDiffusionSchedulers,
|
| 776 |
+
safety_checker: StableDiffusionSafetyChecker,
|
| 777 |
+
feature_extractor: CLIPImageProcessor,
|
| 778 |
+
requires_safety_checker: bool = True,
|
| 779 |
+
):
|
| 780 |
+
# Replace UNet with Deci`s unet
|
| 781 |
+
del unet
|
| 782 |
+
unet = FlexibleUNet2DConditionModel()
|
| 783 |
+
|
| 784 |
+
# Replace with custom scheduler
|
| 785 |
+
del scheduler
|
| 786 |
+
scheduler = SqueezedDPMSolverMultistepScheduler(squeeze_mode=self.deci_default_squeeze_mode)
|
| 787 |
+
|
| 788 |
+
super().__init__(
|
| 789 |
+
vae=vae,
|
| 790 |
+
text_encoder=text_encoder,
|
| 791 |
+
tokenizer=tokenizer,
|
| 792 |
+
unet=unet,
|
| 793 |
+
scheduler=scheduler,
|
| 794 |
+
safety_checker=safety_checker,
|
| 795 |
+
feature_extractor=feature_extractor,
|
| 796 |
+
requires_safety_checker=requires_safety_checker,
|
| 797 |
+
)
|
| 798 |
+
|
| 799 |
+
self.register_modules(
|
| 800 |
+
vae=vae,
|
| 801 |
+
text_encoder=text_encoder,
|
| 802 |
+
tokenizer=tokenizer,
|
| 803 |
+
unet=unet,
|
| 804 |
+
scheduler=scheduler,
|
| 805 |
+
safety_checker=safety_checker,
|
| 806 |
+
feature_extractor=feature_extractor,
|
| 807 |
+
)
|
| 808 |
+
|
| 809 |
+
@torch.no_grad()
|
| 810 |
+
def __call__(
|
| 811 |
+
self,
|
| 812 |
+
prompt: Union[str, List[str]] = None,
|
| 813 |
+
height: Optional[int] = None,
|
| 814 |
+
width: Optional[int] = None,
|
| 815 |
+
num_inference_steps: int = 16,
|
| 816 |
+
guidance_scale: float = 7.5,
|
| 817 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 818 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 819 |
+
eta: float = 0.0,
|
| 820 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 821 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 822 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 823 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 824 |
+
output_type: Optional[str] = "pil",
|
| 825 |
+
return_dict: bool = True,
|
| 826 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 827 |
+
callback_steps: int = 1,
|
| 828 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 829 |
+
guidance_rescale: float = 0.7,
|
| 830 |
+
):
|
| 831 |
+
r"""
|
| 832 |
+
The call function to the pipeline for generation.
|
| 833 |
+
|
| 834 |
+
Args:
|
| 835 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 836 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
| 837 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 838 |
+
The height in pixels of the generated image.
|
| 839 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 840 |
+
The width in pixels of the generated image.
|
| 841 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 842 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 843 |
+
expense of slower inference.
|
| 844 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 845 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
| 846 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
| 847 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 848 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
| 849 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
| 850 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 851 |
+
The number of images to generate per prompt.
|
| 852 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 853 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
| 854 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
| 855 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 856 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
| 857 |
+
generation deterministic.
|
| 858 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 859 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
| 860 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 861 |
+
tensor is generated by sampling using the supplied random `generator`.
|
| 862 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 863 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
| 864 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
| 865 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 866 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
| 867 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
| 868 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 869 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
| 870 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 871 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 872 |
+
plain tuple.
|
| 873 |
+
callback (`Callable`, *optional*):
|
| 874 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
| 875 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
| 876 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
| 877 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
| 878 |
+
every step.
|
| 879 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 880 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
| 881 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 882 |
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
| 883 |
+
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
| 884 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
|
| 885 |
+
using zero terminal SNR.
|
| 886 |
+
|
| 887 |
+
Examples:
|
| 888 |
+
|
| 889 |
+
Returns:
|
| 890 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 891 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
| 892 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
| 893 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
| 894 |
+
"not-safe-for-work" (nsfw) content.
|
| 895 |
+
"""
|
| 896 |
+
# 0. Default height and width to unet
|
| 897 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 898 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 899 |
+
|
| 900 |
+
# 1. Check inputs. Raise error if not correct
|
| 901 |
+
self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
|
| 902 |
+
|
| 903 |
+
# 2. Define call parameters
|
| 904 |
+
if prompt is not None and isinstance(prompt, str):
|
| 905 |
+
batch_size = 1
|
| 906 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 907 |
+
batch_size = len(prompt)
|
| 908 |
+
else:
|
| 909 |
+
batch_size = prompt_embeds.shape[0]
|
| 910 |
+
|
| 911 |
+
device = self._execution_device
|
| 912 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 913 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 914 |
+
# corresponds to doing no classifier free guidance.
|
| 915 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 916 |
+
|
| 917 |
+
# 3. Encode input prompt
|
| 918 |
+
text_encoder_lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
| 919 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
| 920 |
+
prompt,
|
| 921 |
+
device,
|
| 922 |
+
num_images_per_prompt,
|
| 923 |
+
do_classifier_free_guidance,
|
| 924 |
+
negative_prompt,
|
| 925 |
+
prompt_embeds=prompt_embeds,
|
| 926 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 927 |
+
lora_scale=text_encoder_lora_scale,
|
| 928 |
+
)
|
| 929 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 930 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 931 |
+
# to avoid doing two forward passes
|
| 932 |
+
if do_classifier_free_guidance:
|
| 933 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
| 934 |
+
|
| 935 |
+
# 4. Prepare timesteps
|
| 936 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 937 |
+
timesteps = self.scheduler.timesteps
|
| 938 |
+
|
| 939 |
+
# 5. Prepare latent variables
|
| 940 |
+
num_channels_latents = self.unet.config.in_channels
|
| 941 |
+
latents = self.prepare_latents(
|
| 942 |
+
batch_size * num_images_per_prompt,
|
| 943 |
+
num_channels_latents,
|
| 944 |
+
height,
|
| 945 |
+
width,
|
| 946 |
+
prompt_embeds.dtype,
|
| 947 |
+
device,
|
| 948 |
+
generator,
|
| 949 |
+
latents,
|
| 950 |
+
)
|
| 951 |
+
|
| 952 |
+
# 6. Prepare extra step kwargs.
|
| 953 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 954 |
+
|
| 955 |
+
# 7. Denoising loop
|
| 956 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 957 |
+
with self.progress_bar(total=len(timesteps)) as progress_bar:
|
| 958 |
+
for i, t in enumerate(timesteps):
|
| 959 |
+
# expand the latents if we are doing classifier free guidance
|
| 960 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 961 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 962 |
+
|
| 963 |
+
# predict the noise residual
|
| 964 |
+
noise_pred = self.unet(
|
| 965 |
+
latent_model_input,
|
| 966 |
+
t,
|
| 967 |
+
encoder_hidden_states=prompt_embeds,
|
| 968 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 969 |
+
return_dict=False,
|
| 970 |
+
)[0]
|
| 971 |
+
|
| 972 |
+
# perform guidance
|
| 973 |
+
if do_classifier_free_guidance:
|
| 974 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 975 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 976 |
+
|
| 977 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
| 978 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
| 979 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
| 980 |
+
|
| 981 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 982 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
| 983 |
+
|
| 984 |
+
# call the callback, if provided
|
| 985 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 986 |
+
progress_bar.update()
|
| 987 |
+
if callback is not None and i % callback_steps == 0:
|
| 988 |
+
callback(i, t, latents)
|
| 989 |
+
|
| 990 |
+
if not output_type == "latent":
|
| 991 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
| 992 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
| 993 |
+
else:
|
| 994 |
+
image = latents
|
| 995 |
+
has_nsfw_concept = None
|
| 996 |
+
|
| 997 |
+
if has_nsfw_concept is None:
|
| 998 |
+
do_denormalize = [True] * image.shape[0]
|
| 999 |
+
else:
|
| 1000 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
| 1001 |
+
|
| 1002 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
| 1003 |
+
|
| 1004 |
+
# Offload all models
|
| 1005 |
+
self.maybe_free_model_hooks()
|
| 1006 |
+
|
| 1007 |
+
if not return_dict:
|
| 1008 |
+
return (image, has_nsfw_concept)
|
| 1009 |
+
|
| 1010 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
safety_checker/config.json
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_commit_hash": "1d0c4ebf6ff58a5caecab40fa1406526bca4b5b9",
|
| 3 |
+
"_name_or_path": "/home/borys.tymchenko/.cache/huggingface/hub/models--runwayml--stable-diffusion-v1-5/snapshots/1d0c4ebf6ff58a5caecab40fa1406526bca4b5b9/safety_checker",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"StableDiffusionSafetyChecker"
|
| 6 |
+
],
|
| 7 |
+
"initializer_factor": 1.0,
|
| 8 |
+
"logit_scale_init_value": 2.6592,
|
| 9 |
+
"model_type": "clip",
|
| 10 |
+
"projection_dim": 768,
|
| 11 |
+
"text_config": {
|
| 12 |
+
"_name_or_path": "",
|
| 13 |
+
"add_cross_attention": false,
|
| 14 |
+
"architectures": null,
|
| 15 |
+
"attention_dropout": 0.0,
|
| 16 |
+
"bad_words_ids": null,
|
| 17 |
+
"begin_suppress_tokens": null,
|
| 18 |
+
"bos_token_id": 0,
|
| 19 |
+
"chunk_size_feed_forward": 0,
|
| 20 |
+
"cross_attention_hidden_size": null,
|
| 21 |
+
"decoder_start_token_id": null,
|
| 22 |
+
"diversity_penalty": 0.0,
|
| 23 |
+
"do_sample": false,
|
| 24 |
+
"dropout": 0.0,
|
| 25 |
+
"early_stopping": false,
|
| 26 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 27 |
+
"eos_token_id": 2,
|
| 28 |
+
"exponential_decay_length_penalty": null,
|
| 29 |
+
"finetuning_task": null,
|
| 30 |
+
"forced_bos_token_id": null,
|
| 31 |
+
"forced_eos_token_id": null,
|
| 32 |
+
"hidden_act": "quick_gelu",
|
| 33 |
+
"hidden_size": 768,
|
| 34 |
+
"id2label": {
|
| 35 |
+
"0": "LABEL_0",
|
| 36 |
+
"1": "LABEL_1"
|
| 37 |
+
},
|
| 38 |
+
"initializer_factor": 1.0,
|
| 39 |
+
"initializer_range": 0.02,
|
| 40 |
+
"intermediate_size": 3072,
|
| 41 |
+
"is_decoder": false,
|
| 42 |
+
"is_encoder_decoder": false,
|
| 43 |
+
"label2id": {
|
| 44 |
+
"LABEL_0": 0,
|
| 45 |
+
"LABEL_1": 1
|
| 46 |
+
},
|
| 47 |
+
"layer_norm_eps": 1e-05,
|
| 48 |
+
"length_penalty": 1.0,
|
| 49 |
+
"max_length": 20,
|
| 50 |
+
"max_position_embeddings": 77,
|
| 51 |
+
"min_length": 0,
|
| 52 |
+
"model_type": "clip_text_model",
|
| 53 |
+
"no_repeat_ngram_size": 0,
|
| 54 |
+
"num_attention_heads": 12,
|
| 55 |
+
"num_beam_groups": 1,
|
| 56 |
+
"num_beams": 1,
|
| 57 |
+
"num_hidden_layers": 12,
|
| 58 |
+
"num_return_sequences": 1,
|
| 59 |
+
"output_attentions": false,
|
| 60 |
+
"output_hidden_states": false,
|
| 61 |
+
"output_scores": false,
|
| 62 |
+
"pad_token_id": 1,
|
| 63 |
+
"prefix": null,
|
| 64 |
+
"problem_type": null,
|
| 65 |
+
"projection_dim": 512,
|
| 66 |
+
"pruned_heads": {},
|
| 67 |
+
"remove_invalid_values": false,
|
| 68 |
+
"repetition_penalty": 1.0,
|
| 69 |
+
"return_dict": true,
|
| 70 |
+
"return_dict_in_generate": false,
|
| 71 |
+
"sep_token_id": null,
|
| 72 |
+
"suppress_tokens": null,
|
| 73 |
+
"task_specific_params": null,
|
| 74 |
+
"temperature": 1.0,
|
| 75 |
+
"tf_legacy_loss": false,
|
| 76 |
+
"tie_encoder_decoder": false,
|
| 77 |
+
"tie_word_embeddings": true,
|
| 78 |
+
"tokenizer_class": null,
|
| 79 |
+
"top_k": 50,
|
| 80 |
+
"top_p": 1.0,
|
| 81 |
+
"torch_dtype": null,
|
| 82 |
+
"torchscript": false,
|
| 83 |
+
"transformers_version": "4.30.2",
|
| 84 |
+
"typical_p": 1.0,
|
| 85 |
+
"use_bfloat16": false,
|
| 86 |
+
"vocab_size": 49408
|
| 87 |
+
},
|
| 88 |
+
"torch_dtype": "float32",
|
| 89 |
+
"transformers_version": null,
|
| 90 |
+
"vision_config": {
|
| 91 |
+
"_name_or_path": "",
|
| 92 |
+
"add_cross_attention": false,
|
| 93 |
+
"architectures": null,
|
| 94 |
+
"attention_dropout": 0.0,
|
| 95 |
+
"bad_words_ids": null,
|
| 96 |
+
"begin_suppress_tokens": null,
|
| 97 |
+
"bos_token_id": null,
|
| 98 |
+
"chunk_size_feed_forward": 0,
|
| 99 |
+
"cross_attention_hidden_size": null,
|
| 100 |
+
"decoder_start_token_id": null,
|
| 101 |
+
"diversity_penalty": 0.0,
|
| 102 |
+
"do_sample": false,
|
| 103 |
+
"dropout": 0.0,
|
| 104 |
+
"early_stopping": false,
|
| 105 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 106 |
+
"eos_token_id": null,
|
| 107 |
+
"exponential_decay_length_penalty": null,
|
| 108 |
+
"finetuning_task": null,
|
| 109 |
+
"forced_bos_token_id": null,
|
| 110 |
+
"forced_eos_token_id": null,
|
| 111 |
+
"hidden_act": "quick_gelu",
|
| 112 |
+
"hidden_size": 1024,
|
| 113 |
+
"id2label": {
|
| 114 |
+
"0": "LABEL_0",
|
| 115 |
+
"1": "LABEL_1"
|
| 116 |
+
},
|
| 117 |
+
"image_size": 224,
|
| 118 |
+
"initializer_factor": 1.0,
|
| 119 |
+
"initializer_range": 0.02,
|
| 120 |
+
"intermediate_size": 4096,
|
| 121 |
+
"is_decoder": false,
|
| 122 |
+
"is_encoder_decoder": false,
|
| 123 |
+
"label2id": {
|
| 124 |
+
"LABEL_0": 0,
|
| 125 |
+
"LABEL_1": 1
|
| 126 |
+
},
|
| 127 |
+
"layer_norm_eps": 1e-05,
|
| 128 |
+
"length_penalty": 1.0,
|
| 129 |
+
"max_length": 20,
|
| 130 |
+
"min_length": 0,
|
| 131 |
+
"model_type": "clip_vision_model",
|
| 132 |
+
"no_repeat_ngram_size": 0,
|
| 133 |
+
"num_attention_heads": 16,
|
| 134 |
+
"num_beam_groups": 1,
|
| 135 |
+
"num_beams": 1,
|
| 136 |
+
"num_channels": 3,
|
| 137 |
+
"num_hidden_layers": 24,
|
| 138 |
+
"num_return_sequences": 1,
|
| 139 |
+
"output_attentions": false,
|
| 140 |
+
"output_hidden_states": false,
|
| 141 |
+
"output_scores": false,
|
| 142 |
+
"pad_token_id": null,
|
| 143 |
+
"patch_size": 14,
|
| 144 |
+
"prefix": null,
|
| 145 |
+
"problem_type": null,
|
| 146 |
+
"projection_dim": 512,
|
| 147 |
+
"pruned_heads": {},
|
| 148 |
+
"remove_invalid_values": false,
|
| 149 |
+
"repetition_penalty": 1.0,
|
| 150 |
+
"return_dict": true,
|
| 151 |
+
"return_dict_in_generate": false,
|
| 152 |
+
"sep_token_id": null,
|
| 153 |
+
"suppress_tokens": null,
|
| 154 |
+
"task_specific_params": null,
|
| 155 |
+
"temperature": 1.0,
|
| 156 |
+
"tf_legacy_loss": false,
|
| 157 |
+
"tie_encoder_decoder": false,
|
| 158 |
+
"tie_word_embeddings": true,
|
| 159 |
+
"tokenizer_class": null,
|
| 160 |
+
"top_k": 50,
|
| 161 |
+
"top_p": 1.0,
|
| 162 |
+
"torch_dtype": null,
|
| 163 |
+
"torchscript": false,
|
| 164 |
+
"transformers_version": "4.30.2",
|
| 165 |
+
"typical_p": 1.0,
|
| 166 |
+
"use_bfloat16": false
|
| 167 |
+
}
|
| 168 |
+
}
|
safety_checker/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:11cfe53105625af8c00faac32a430626641cce686454f3c39d837f14397d858b
|
| 3 |
+
size 1215981832
|
scheduler/scheduler_config.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "DDIMScheduler",
|
| 3 |
+
"_diffusers_version": "0.23.0",
|
| 4 |
+
"beta_end": 0.012,
|
| 5 |
+
"beta_schedule": "squaredcos_cap_v2",
|
| 6 |
+
"beta_start": 0.00085,
|
| 7 |
+
"clip_sample": false,
|
| 8 |
+
"clip_sample_range": 1.0,
|
| 9 |
+
"dynamic_thresholding_ratio": 0.995,
|
| 10 |
+
"num_train_timesteps": 1000,
|
| 11 |
+
"prediction_type": "v_prediction",
|
| 12 |
+
"rescale_betas_zero_snr": true,
|
| 13 |
+
"sample_max_value": 1.0,
|
| 14 |
+
"set_alpha_to_one": true,
|
| 15 |
+
"steps_offset": 1,
|
| 16 |
+
"thresholding": false,
|
| 17 |
+
"timestep_spacing": "trailing",
|
| 18 |
+
"trained_betas": null
|
| 19 |
+
}
|
text_encoder/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/home/borys.tymchenko/qcomdiffusion/checkpoint-286000-2050048000/pipeline/text_encoder",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"CLIPTextModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"dropout": 0.0,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "quick_gelu",
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"initializer_factor": 1.0,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 3072,
|
| 15 |
+
"layer_norm_eps": 1e-05,
|
| 16 |
+
"max_position_embeddings": 77,
|
| 17 |
+
"model_type": "clip_text_model",
|
| 18 |
+
"num_attention_heads": 12,
|
| 19 |
+
"num_hidden_layers": 12,
|
| 20 |
+
"pad_token_id": 1,
|
| 21 |
+
"projection_dim": 768,
|
| 22 |
+
"torch_dtype": "float32",
|
| 23 |
+
"transformers_version": "4.30.2",
|
| 24 |
+
"vocab_size": 49408
|
| 25 |
+
}
|
text_encoder/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22928c6a6a99759e4a19648ba56e044d1df47b650f7879470501b71ec996a3ef
|
| 3 |
+
size 492265880
|
tokenizer/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer/special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|startoftext|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": true,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|endoftext|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": true,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "<|endoftext|>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<|endoftext|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": true,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
tokenizer/tokenizer_config.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"bos_token": {
|
| 4 |
+
"__type": "AddedToken",
|
| 5 |
+
"content": "<|startoftext|>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": true,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false
|
| 10 |
+
},
|
| 11 |
+
"clean_up_tokenization_spaces": true,
|
| 12 |
+
"do_lower_case": true,
|
| 13 |
+
"eos_token": {
|
| 14 |
+
"__type": "AddedToken",
|
| 15 |
+
"content": "<|endoftext|>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": true,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false
|
| 20 |
+
},
|
| 21 |
+
"errors": "replace",
|
| 22 |
+
"model_max_length": 77,
|
| 23 |
+
"pad_token": "<|endoftext|>",
|
| 24 |
+
"tokenizer_class": "CLIPTokenizer",
|
| 25 |
+
"unk_token": {
|
| 26 |
+
"__type": "AddedToken",
|
| 27 |
+
"content": "<|endoftext|>",
|
| 28 |
+
"lstrip": false,
|
| 29 |
+
"normalized": true,
|
| 30 |
+
"rstrip": false,
|
| 31 |
+
"single_word": false
|
| 32 |
+
}
|
| 33 |
+
}
|
tokenizer/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
unet/config.json
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "UNet2DConditionModel",
|
| 3 |
+
"_diffusers_version": "0.23.0",
|
| 4 |
+
"_name_or_path": "/home/borys.tymchenko/.cache/huggingface/hub/models--runwayml--stable-diffusion-v1-5/snapshots/1d0c4ebf6ff58a5caecab40fa1406526bca4b5b9/unet",
|
| 5 |
+
"act_fn": "silu",
|
| 6 |
+
"addition_embed_type": null,
|
| 7 |
+
"addition_embed_type_num_heads": 64,
|
| 8 |
+
"addition_time_embed_dim": null,
|
| 9 |
+
"attention_head_dim": 8,
|
| 10 |
+
"attention_type": "default",
|
| 11 |
+
"block_out_channels": [
|
| 12 |
+
320,
|
| 13 |
+
640,
|
| 14 |
+
1280,
|
| 15 |
+
1280
|
| 16 |
+
],
|
| 17 |
+
"center_input_sample": false,
|
| 18 |
+
"class_embed_type": null,
|
| 19 |
+
"class_embeddings_concat": false,
|
| 20 |
+
"conv_in_kernel": 3,
|
| 21 |
+
"conv_out_kernel": 3,
|
| 22 |
+
"cross_attention_dim": 768,
|
| 23 |
+
"cross_attention_norm": null,
|
| 24 |
+
"down_block_types": [
|
| 25 |
+
"CrossAttnDownBlock2D",
|
| 26 |
+
"CrossAttnDownBlock2D",
|
| 27 |
+
"CrossAttnDownBlock2D",
|
| 28 |
+
"DownBlock2D"
|
| 29 |
+
],
|
| 30 |
+
"downsample_padding": 1,
|
| 31 |
+
"dropout": 0.0,
|
| 32 |
+
"dual_cross_attention": false,
|
| 33 |
+
"encoder_hid_dim": null,
|
| 34 |
+
"encoder_hid_dim_type": null,
|
| 35 |
+
"flip_sin_to_cos": true,
|
| 36 |
+
"freq_shift": 0,
|
| 37 |
+
"in_channels": 4,
|
| 38 |
+
"layers_per_block": 2,
|
| 39 |
+
"mid_block_only_cross_attention": null,
|
| 40 |
+
"mid_block_scale_factor": 1,
|
| 41 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
| 42 |
+
"norm_eps": 1e-05,
|
| 43 |
+
"norm_num_groups": 32,
|
| 44 |
+
"num_attention_heads": null,
|
| 45 |
+
"num_class_embeds": null,
|
| 46 |
+
"only_cross_attention": false,
|
| 47 |
+
"out_channels": 4,
|
| 48 |
+
"projection_class_embeddings_input_dim": null,
|
| 49 |
+
"resnet_out_scale_factor": 1.0,
|
| 50 |
+
"resnet_skip_time_act": false,
|
| 51 |
+
"resnet_time_scale_shift": "default",
|
| 52 |
+
"reverse_transformer_layers_per_block": null,
|
| 53 |
+
"sample_size": 64,
|
| 54 |
+
"time_cond_proj_dim": null,
|
| 55 |
+
"time_embedding_act_fn": null,
|
| 56 |
+
"time_embedding_dim": null,
|
| 57 |
+
"time_embedding_type": "positional",
|
| 58 |
+
"timestep_post_act": null,
|
| 59 |
+
"transformer_layers_per_block": 1,
|
| 60 |
+
"up_block_types": [
|
| 61 |
+
"UpBlock2D",
|
| 62 |
+
"CrossAttnUpBlock2D",
|
| 63 |
+
"CrossAttnUpBlock2D",
|
| 64 |
+
"CrossAttnUpBlock2D"
|
| 65 |
+
],
|
| 66 |
+
"upcast_attention": false,
|
| 67 |
+
"use_linear_projection": false
|
| 68 |
+
}
|
unet/diffusion_pytorch_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d27cd69d4a0aa32105087a619f32a51bc087e133be93fe23da92f3c0bcc07d79
|
| 3 |
+
size 3438167536
|
vae/config.json
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "AutoencoderKL",
|
| 3 |
+
"_diffusers_version": "0.23.0",
|
| 4 |
+
"_name_or_path": "stabilityai/stable-diffusion-2-1",
|
| 5 |
+
"act_fn": "silu",
|
| 6 |
+
"block_out_channels": [
|
| 7 |
+
128,
|
| 8 |
+
256,
|
| 9 |
+
512,
|
| 10 |
+
512
|
| 11 |
+
],
|
| 12 |
+
"down_block_types": [
|
| 13 |
+
"DownEncoderBlock2D",
|
| 14 |
+
"DownEncoderBlock2D",
|
| 15 |
+
"DownEncoderBlock2D",
|
| 16 |
+
"DownEncoderBlock2D"
|
| 17 |
+
],
|
| 18 |
+
"force_upcast": true,
|
| 19 |
+
"in_channels": 3,
|
| 20 |
+
"latent_channels": 4,
|
| 21 |
+
"layers_per_block": 2,
|
| 22 |
+
"norm_num_groups": 32,
|
| 23 |
+
"out_channels": 3,
|
| 24 |
+
"sample_size": 768,
|
| 25 |
+
"scaling_factor": 0.18215,
|
| 26 |
+
"up_block_types": [
|
| 27 |
+
"UpDecoderBlock2D",
|
| 28 |
+
"UpDecoderBlock2D",
|
| 29 |
+
"UpDecoderBlock2D",
|
| 30 |
+
"UpDecoderBlock2D"
|
| 31 |
+
]
|
| 32 |
+
}
|
vae/diffusion_pytorch_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2aa1f43011b553a4cba7f37456465cdbd48aab7b54b9348b890e8058ea7683ec
|
| 3 |
+
size 334643268
|