David Scripps
commited on
Commit
·
a706d11
1
Parent(s):
2546a51
adding files
Browse files- .gitattributes +3 -0
- Border Texture.png +3 -0
- README.md +42 -0
- RunLaboroTomato.cs +275 -0
- classes.txt +6 -0
- info.js +5 -0
- info.json +5 -0
- laboro_tomato_yolov8.onnx +3 -0
- laboro_tomato_yolov8.sentis +3 -0
- preview.png +3 -0
- tomatoes.mp4 +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.sentis filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
Border Texture.png
ADDED
|
Git LFS Details
|
README.md
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: unity-sentis
|
| 3 |
+
pipeline_tag: object-detection
|
| 4 |
+
---
|
| 5 |
+
# LaboroTomato for Unity Sentis (Version 1.4.0-pre.3*)
|
| 6 |
+
|
| 7 |
+
[LaboroTomato](https://github.com/laboroai/LaboroTomato) is is an image dataset of growing tomatoes at different stages of their ripening.
|
| 8 |
+
|
| 9 |
+
This model was trained on the LaboroTomato image dataset using the Ultralytics [YOLOv8n](https://docs.ultralytics.com/models/yolov8/) object detection framework. The sentis example implementation was copied from [sentis-YOLOv8n](https://huggingface.co/unity/sentis-YOLOv8n).
|
| 10 |
+
|
| 11 |
+
## How to Use
|
| 12 |
+
First get the package `com.unity.sentis` from the package manager.
|
| 13 |
+
You will also need the Unity UI package.
|
| 14 |
+
|
| 15 |
+
* Create a new scene in Unity 6.
|
| 16 |
+
* Install `com.unity.sentis` version `1.4.0-pre.3` from the package manager
|
| 17 |
+
* Add the c# script to the Main Camera.
|
| 18 |
+
* Create a Raw Image in the scene and link it as the `displayImage`
|
| 19 |
+
* Drag the yolov8n.sentis file into the model asset field
|
| 20 |
+
* Drag the classes.txt on to the labelAssets field
|
| 21 |
+
* Put a video file in the Assets/StreamingAssets folder and set the name of videoName to the filename in the script ("tomatoes.mp4")
|
| 22 |
+
* Set the fields for the bounding box texture sprite (you can [create your own one](https://docs.unity3d.com/Manual/9SliceSprites.html) using a transparent texture or use an inbuilt one) and the font
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
## Preview
|
| 26 |
+
If working correctly you should see something like this:
|
| 27 |
+
|
| 28 |
+

|
| 29 |
+
|
| 30 |
+
## Information
|
| 31 |
+
The onnx model was designed with the same inputs as [sentis-YOLOv8n](https://huggingface.co/unity/sentis-YOLOv8n). If you are using that implementation, you can simply swap out the model and labels with the ones in this project and it should work.
|
| 32 |
+
|
| 33 |
+
## References
|
| 34 |
+
For information on how the model was trained and exported to onnx, see the [project github page](https://github.com/DavidAtRedpine/LaboroTomatoYoloV8).
|
| 35 |
+
|
| 36 |
+
## Unity Sentis
|
| 37 |
+
Unity Sentis is the inference engine that runs in Unity 3D. More information can be found at [here](https://unity.com/products/sentis)
|
| 38 |
+
|
| 39 |
+
## License
|
| 40 |
+
Ultralytics YOLOv8 uses the GPLv3 license. Details [here](https://github.com/autogyro/yolo-V8?tab=readme-ov-file#license).
|
| 41 |
+
|
| 42 |
+
The LaboroTomato dataset uses the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Details [here](https://github.com/laboroai/LaboroTomato/blob/master/README.md#license).
|
RunLaboroTomato.cs
ADDED
|
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
using System.Collections.Generic;
|
| 2 |
+
using Unity.Sentis;
|
| 3 |
+
using UnityEngine;
|
| 4 |
+
using UnityEngine.UI;
|
| 5 |
+
using UnityEngine.Video;
|
| 6 |
+
using Lays = Unity.Sentis.Layers;
|
| 7 |
+
using System.IO;
|
| 8 |
+
using FF = Unity.Sentis.Functional;
|
| 9 |
+
|
| 10 |
+
/*
|
| 11 |
+
* LaboroTomato (made with YoloV8) Inference Script
|
| 12 |
+
* ========================
|
| 13 |
+
*
|
| 14 |
+
* Place this script on the Main Camera.
|
| 15 |
+
*
|
| 16 |
+
* Place the laboro_tomato_yolov8.sentis file in the asset folder and drag onto the asset field
|
| 17 |
+
* Place a *.mp4 video file in the Assets/StreamingAssets folder
|
| 18 |
+
* Create a RawImage in your scene and set it as the displayImage field
|
| 19 |
+
* Drag the classes.txt into the labelsAsset field
|
| 20 |
+
* Add a reference to a sprite image for the bounding box and a font for the text
|
| 21 |
+
*
|
| 22 |
+
*/
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
public class RunLaboroTomato : MonoBehaviour
|
| 26 |
+
{
|
| 27 |
+
// Drag the yolov8n.sentis file here
|
| 28 |
+
public ModelAsset asset;
|
| 29 |
+
const string modelName = "laboro_tomato_yolov8.sentis";
|
| 30 |
+
// Change this to the name of the video you put in StreamingAssets folder:
|
| 31 |
+
const string videoName = "tomatoes.mp4";
|
| 32 |
+
// Link the classes.txt here:
|
| 33 |
+
public TextAsset labelsAsset;
|
| 34 |
+
// Create a Raw Image in the scene and link it here:
|
| 35 |
+
public RawImage displayImage;
|
| 36 |
+
// Link to a bounding box sprite or texture here:
|
| 37 |
+
public Sprite borderSprite;
|
| 38 |
+
public Texture2D borderTexture;
|
| 39 |
+
// Link to the font for the labels:
|
| 40 |
+
public Font font;
|
| 41 |
+
|
| 42 |
+
const BackendType backend = BackendType.GPUCompute;
|
| 43 |
+
|
| 44 |
+
private Transform displayLocation;
|
| 45 |
+
private IWorker engine;
|
| 46 |
+
private string[] labels;
|
| 47 |
+
private RenderTexture targetRT;
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
//Image size for the model
|
| 51 |
+
private const int imageWidth = 640;
|
| 52 |
+
private const int imageHeight = 640;
|
| 53 |
+
|
| 54 |
+
//The number of classes in the model
|
| 55 |
+
private const int numClasses = 80;
|
| 56 |
+
|
| 57 |
+
private VideoPlayer video;
|
| 58 |
+
|
| 59 |
+
List<GameObject> boxPool = new();
|
| 60 |
+
|
| 61 |
+
[SerializeField, Range(0, 1)] float iouThreshold = 0.5f;
|
| 62 |
+
[SerializeField, Range(0, 1)] float scoreThreshold = 0.5f;
|
| 63 |
+
int maxOutputBoxes = 64;
|
| 64 |
+
|
| 65 |
+
TensorFloat centersToCorners;
|
| 66 |
+
//bounding box data
|
| 67 |
+
public struct BoundingBox
|
| 68 |
+
{
|
| 69 |
+
public float centerX;
|
| 70 |
+
public float centerY;
|
| 71 |
+
public float width;
|
| 72 |
+
public float height;
|
| 73 |
+
public string label;
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
void Start()
|
| 78 |
+
{
|
| 79 |
+
Application.targetFrameRate = 60;
|
| 80 |
+
Screen.orientation = ScreenOrientation.LandscapeLeft;
|
| 81 |
+
|
| 82 |
+
//Parse neural net labels
|
| 83 |
+
labels = labelsAsset.text.Split('\n');
|
| 84 |
+
|
| 85 |
+
LoadModel();
|
| 86 |
+
|
| 87 |
+
targetRT = new RenderTexture(imageWidth, imageHeight, 0);
|
| 88 |
+
|
| 89 |
+
//Create image to display video
|
| 90 |
+
displayLocation = displayImage.transform;
|
| 91 |
+
|
| 92 |
+
SetupInput();
|
| 93 |
+
|
| 94 |
+
if (borderSprite == null)
|
| 95 |
+
{
|
| 96 |
+
borderSprite = Sprite.Create(borderTexture, new Rect(0, 0, borderTexture.width, borderTexture.height), new Vector2(borderTexture.width / 2, borderTexture.height / 2));
|
| 97 |
+
}
|
| 98 |
+
}
|
| 99 |
+
void LoadModel()
|
| 100 |
+
{
|
| 101 |
+
|
| 102 |
+
//Load model
|
| 103 |
+
//var model1 = ModelLoader.Load(Path.Join(Application.streamingAssetsPath, modelName));
|
| 104 |
+
var model1 = ModelLoader.Load(asset);
|
| 105 |
+
|
| 106 |
+
centersToCorners = new TensorFloat(new TensorShape(4, 4),
|
| 107 |
+
new float[]
|
| 108 |
+
{
|
| 109 |
+
1, 0, 1, 0,
|
| 110 |
+
0, 1, 0, 1,
|
| 111 |
+
-0.5f, 0, 0.5f, 0,
|
| 112 |
+
0, -0.5f, 0, 0.5f
|
| 113 |
+
});
|
| 114 |
+
|
| 115 |
+
//Here we transform the output of the model1 by feeding it through a Non-Max-Suppression layer.
|
| 116 |
+
var model2 = Functional.Compile(
|
| 117 |
+
input =>
|
| 118 |
+
{
|
| 119 |
+
var modelOutput = model1.Forward(input)[0];
|
| 120 |
+
var boxCoords = modelOutput[0, 0..4, ..].Transpose(0, 1); //shape=(8400,4)
|
| 121 |
+
var allScores = modelOutput[0, 4.., ..]; //shape=(80,8400)
|
| 122 |
+
var scores = FF.ReduceMax(allScores, 0) - scoreThreshold; //shape=(8400)
|
| 123 |
+
var classIDs = FF.ArgMax(allScores, 0); //shape=(8400)
|
| 124 |
+
var boxCorners = FF.MatMul(boxCoords, FunctionalTensor.FromTensor(centersToCorners));
|
| 125 |
+
var indices = FF.NMS(boxCorners, scores, iouThreshold); //shape=(N)
|
| 126 |
+
var indices2 = indices.Unsqueeze(-1).BroadcastTo(new int[] { 4 });//shape=(N,4)
|
| 127 |
+
var coords = FF.Gather(boxCoords, 0, indices2); //shape=(N,4)
|
| 128 |
+
var labelIDs = FF.Gather(classIDs, 0, indices); //shape=(N)
|
| 129 |
+
return (coords, labelIDs);
|
| 130 |
+
},
|
| 131 |
+
InputDef.FromModel(model1)[0]
|
| 132 |
+
);
|
| 133 |
+
|
| 134 |
+
//Create engine to run model
|
| 135 |
+
engine = WorkerFactory.CreateWorker(backend, model2);
|
| 136 |
+
}
|
| 137 |
+
|
| 138 |
+
void SetupInput()
|
| 139 |
+
{
|
| 140 |
+
video = gameObject.AddComponent<VideoPlayer>();
|
| 141 |
+
video.renderMode = VideoRenderMode.APIOnly;
|
| 142 |
+
video.source = VideoSource.Url;
|
| 143 |
+
video.url = Path.Join(Application.streamingAssetsPath, videoName);
|
| 144 |
+
video.isLooping = true;
|
| 145 |
+
video.Play();
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
+
private void Update()
|
| 149 |
+
{
|
| 150 |
+
ExecuteML();
|
| 151 |
+
|
| 152 |
+
if (Input.GetKeyDown(KeyCode.Escape))
|
| 153 |
+
{
|
| 154 |
+
Application.Quit();
|
| 155 |
+
}
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
public void ExecuteML()
|
| 159 |
+
{
|
| 160 |
+
ClearAnnotations();
|
| 161 |
+
|
| 162 |
+
if (video && video.texture)
|
| 163 |
+
{
|
| 164 |
+
float aspect = video.width * 1f / video.height;
|
| 165 |
+
Graphics.Blit(video.texture, targetRT, new Vector2(1f / aspect, 1), new Vector2(0, 0));
|
| 166 |
+
displayImage.texture = targetRT;
|
| 167 |
+
}
|
| 168 |
+
else return;
|
| 169 |
+
|
| 170 |
+
using var input = TextureConverter.ToTensor(targetRT, imageWidth, imageHeight, 3);
|
| 171 |
+
engine.Execute(input);
|
| 172 |
+
|
| 173 |
+
var output = engine.PeekOutput("output_0") as TensorFloat;
|
| 174 |
+
var labelIDs = engine.PeekOutput("output_1") as TensorInt;
|
| 175 |
+
|
| 176 |
+
output.CompleteOperationsAndDownload();
|
| 177 |
+
labelIDs.CompleteOperationsAndDownload();
|
| 178 |
+
|
| 179 |
+
float displayWidth = displayImage.rectTransform.rect.width;
|
| 180 |
+
float displayHeight = displayImage.rectTransform.rect.height;
|
| 181 |
+
|
| 182 |
+
float scaleX = displayWidth / imageWidth;
|
| 183 |
+
float scaleY = displayHeight / imageHeight;
|
| 184 |
+
|
| 185 |
+
int boxesFound = output.shape[0];
|
| 186 |
+
//Draw the bounding boxes
|
| 187 |
+
for (int n = 0; n < Mathf.Min(boxesFound, 200); n++)
|
| 188 |
+
{
|
| 189 |
+
var box = new BoundingBox
|
| 190 |
+
{
|
| 191 |
+
centerX = output[n, 0] * scaleX - displayWidth / 2,
|
| 192 |
+
centerY = output[n, 1] * scaleY - displayHeight / 2,
|
| 193 |
+
width = output[n, 2] * scaleX,
|
| 194 |
+
height = output[n, 3] * scaleY,
|
| 195 |
+
label = labels[labelIDs[n]],
|
| 196 |
+
};
|
| 197 |
+
DrawBox(box, n, displayHeight * 0.05f);
|
| 198 |
+
}
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
public void DrawBox(BoundingBox box, int id, float fontSize)
|
| 202 |
+
{
|
| 203 |
+
//Create the bounding box graphic or get from pool
|
| 204 |
+
GameObject panel;
|
| 205 |
+
if (id < boxPool.Count)
|
| 206 |
+
{
|
| 207 |
+
panel = boxPool[id];
|
| 208 |
+
panel.SetActive(true);
|
| 209 |
+
}
|
| 210 |
+
else
|
| 211 |
+
{
|
| 212 |
+
panel = CreateNewBox(Color.yellow);
|
| 213 |
+
}
|
| 214 |
+
//Set box position
|
| 215 |
+
panel.transform.localPosition = new Vector3(box.centerX, -box.centerY);
|
| 216 |
+
|
| 217 |
+
//Set box size
|
| 218 |
+
RectTransform rt = panel.GetComponent<RectTransform>();
|
| 219 |
+
rt.sizeDelta = new Vector2(box.width, box.height);
|
| 220 |
+
|
| 221 |
+
//Set label text
|
| 222 |
+
var label = panel.GetComponentInChildren<Text>();
|
| 223 |
+
label.text = box.label;
|
| 224 |
+
label.fontSize = (int)fontSize;
|
| 225 |
+
}
|
| 226 |
+
|
| 227 |
+
public GameObject CreateNewBox(Color color)
|
| 228 |
+
{
|
| 229 |
+
//Create the box and set image
|
| 230 |
+
|
| 231 |
+
var panel = new GameObject("ObjectBox");
|
| 232 |
+
panel.AddComponent<CanvasRenderer>();
|
| 233 |
+
Image img = panel.AddComponent<Image>();
|
| 234 |
+
img.color = color;
|
| 235 |
+
img.sprite = borderSprite;
|
| 236 |
+
img.type = Image.Type.Sliced;
|
| 237 |
+
panel.transform.SetParent(displayLocation, false);
|
| 238 |
+
|
| 239 |
+
//Create the label
|
| 240 |
+
|
| 241 |
+
var text = new GameObject("ObjectLabel");
|
| 242 |
+
text.AddComponent<CanvasRenderer>();
|
| 243 |
+
text.transform.SetParent(panel.transform, false);
|
| 244 |
+
Text txt = text.AddComponent<Text>();
|
| 245 |
+
txt.font = font;
|
| 246 |
+
txt.color = color;
|
| 247 |
+
txt.fontSize = 40;
|
| 248 |
+
txt.horizontalOverflow = HorizontalWrapMode.Overflow;
|
| 249 |
+
|
| 250 |
+
RectTransform rt2 = text.GetComponent<RectTransform>();
|
| 251 |
+
rt2.offsetMin = new Vector2(20, rt2.offsetMin.y);
|
| 252 |
+
rt2.offsetMax = new Vector2(0, rt2.offsetMax.y);
|
| 253 |
+
rt2.offsetMin = new Vector2(rt2.offsetMin.x, 0);
|
| 254 |
+
rt2.offsetMax = new Vector2(rt2.offsetMax.x, 30);
|
| 255 |
+
rt2.anchorMin = new Vector2(0, 0);
|
| 256 |
+
rt2.anchorMax = new Vector2(1, 1);
|
| 257 |
+
|
| 258 |
+
boxPool.Add(panel);
|
| 259 |
+
return panel;
|
| 260 |
+
}
|
| 261 |
+
|
| 262 |
+
public void ClearAnnotations()
|
| 263 |
+
{
|
| 264 |
+
foreach (var box in boxPool)
|
| 265 |
+
{
|
| 266 |
+
box.SetActive(false);
|
| 267 |
+
}
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
private void OnDestroy()
|
| 271 |
+
{
|
| 272 |
+
centersToCorners?.Dispose();
|
| 273 |
+
engine?.Dispose();
|
| 274 |
+
}
|
| 275 |
+
}
|
classes.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
b_fully_ripened
|
| 2 |
+
b_half_ripened
|
| 3 |
+
b_green
|
| 4 |
+
l_fully_ripened
|
| 5 |
+
l_half_ripened
|
| 6 |
+
l_green
|
info.js
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"version" : [
|
| 3 |
+
"1.4.0-pre.2"
|
| 4 |
+
]
|
| 5 |
+
}
|
info.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"code": [ "RunLaboroTomato.cs"],
|
| 3 |
+
"models": [ "laboro_tomato_yolov8.sentis"],
|
| 4 |
+
"data": [ "classes.txt" ]
|
| 5 |
+
}
|
laboro_tomato_yolov8.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0de233be5f31b89ab1482268ff7e72aca0ebb5917bf92afb500de79c0476a86a
|
| 3 |
+
size 44739449
|
laboro_tomato_yolov8.sentis
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b24b5e411a644600616be29245edc37876df080c86398fb5368a83fe759217cc
|
| 3 |
+
size 44738340
|
preview.png
ADDED
|
Git LFS Details
|
tomatoes.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:217ecb66a7235e4d3a6eb2557f62b15e69b5c6141ccae8e6ca076680efe0bc7f
|
| 3 |
+
size 3199970
|