DannyAI commited on
Commit
d59baac
·
verified ·
1 Parent(s): 3bc6fc3

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,470 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - dense
10
+ - generated_from_trainer
11
+ - dataset_size:200000
12
+ - loss:AdaptiveLayerLoss
13
+ - loss:MultipleNegativesRankingLoss
14
+ base_model: BAAI/bge-large-en-v1.5
15
+ widget:
16
+ - source_sentence: A man standing in front of a brick building.
17
+ sentences:
18
+ - The men are together.
19
+ - A man is outside.
20
+ - The man pushes a women on the ground.
21
+ - source_sentence: A football coach is walking on a football field.
22
+ sentences:
23
+ - Two girls are watching dolls.
24
+ - a baseball player walks on the field
25
+ - a football coach walks on the field
26
+ - source_sentence: A woman wearing gray pants, a white blouse and a black vest is
27
+ jumping with one hand in the air as she goes through an indoor stadium.
28
+ sentences:
29
+ - The girl wearing a dress skips down the sidewalk.
30
+ - They are outdoors.
31
+ - The jumping lady in slacks also has her hand raised.
32
+ - source_sentence: A light brown dog with his tail in the air jumps of a pontoon toward
33
+ the water.
34
+ sentences:
35
+ - A man is heading to his house of worship.
36
+ - A dog jumps toward the water.
37
+ - A cat is jumping in the air.
38
+ - source_sentence: Young boy kicks a soccer ball towards the goal as the crowd watches.
39
+ sentences:
40
+ - The boy is under the age of eighteen.
41
+ - The girl is running.
42
+ - The boy is alone in his backyard.
43
+ datasets:
44
+ - sentence-transformers/all-nli
45
+ pipeline_tag: sentence-similarity
46
+ library_name: sentence-transformers
47
+ metrics:
48
+ - cosine_accuracy
49
+ model-index:
50
+ - name: bge-large-en-v1.5
51
+ results:
52
+ - task:
53
+ type: triplet
54
+ name: Triplet
55
+ dataset:
56
+ name: all nli val
57
+ type: all-nli-val
58
+ metrics:
59
+ - type: cosine_accuracy
60
+ value: 0.9513333439826965
61
+ name: Cosine Accuracy
62
+ - task:
63
+ type: triplet
64
+ name: Triplet
65
+ dataset:
66
+ name: all nli test
67
+ type: all-nli-test
68
+ metrics:
69
+ - type: cosine_accuracy
70
+ value: 0.9527916312217712
71
+ name: Cosine Accuracy
72
+ ---
73
+
74
+ # bge-large-en-v1.5
75
+
76
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
77
+
78
+ ## Model Details
79
+
80
+ ### Model Description
81
+ - **Model Type:** Sentence Transformer
82
+ - **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
83
+ - **Maximum Sequence Length:** 512 tokens
84
+ - **Output Dimensionality:** 1024 dimensions
85
+ - **Similarity Function:** Cosine Similarity
86
+ - **Training Dataset:**
87
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
88
+ - **Language:** en
89
+ - **License:** mit
90
+
91
+ ### Model Sources
92
+
93
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
94
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
95
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
96
+
97
+ ### Full Model Architecture
98
+
99
+ ```
100
+ SentenceTransformer(
101
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True, 'architecture': 'BertModel'})
102
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
103
+ (2): Normalize()
104
+ )
105
+ ```
106
+
107
+ ## Usage
108
+
109
+ ### Direct Usage (Sentence Transformers)
110
+
111
+ First install the Sentence Transformers library:
112
+
113
+ ```bash
114
+ pip install -U sentence-transformers
115
+ ```
116
+
117
+ Then you can load this model and run inference.
118
+ ```python
119
+ from sentence_transformers import SentenceTransformer
120
+
121
+ # Download from the 🤗 Hub
122
+ model = SentenceTransformer("DannyAI/embedding_fine_tuning_adaptive_layer_bge-large-en-v1.5")
123
+ # Run inference
124
+ sentences = [
125
+ 'Young boy kicks a soccer ball towards the goal as the crowd watches.',
126
+ 'The boy is under the age of eighteen.',
127
+ 'The boy is alone in his backyard.',
128
+ ]
129
+ embeddings = model.encode(sentences)
130
+ print(embeddings.shape)
131
+ # [3, 1024]
132
+
133
+ # Get the similarity scores for the embeddings
134
+ similarities = model.similarity(embeddings, embeddings)
135
+ print(similarities)
136
+ # tensor([[1.0000, 0.5172, 0.2682],
137
+ # [0.5172, 1.0000, 0.4388],
138
+ # [0.2682, 0.4388, 1.0000]])
139
+ ```
140
+
141
+ <!--
142
+ ### Direct Usage (Transformers)
143
+
144
+ <details><summary>Click to see the direct usage in Transformers</summary>
145
+
146
+ </details>
147
+ -->
148
+
149
+ <!--
150
+ ### Downstream Usage (Sentence Transformers)
151
+
152
+ You can finetune this model on your own dataset.
153
+
154
+ <details><summary>Click to expand</summary>
155
+
156
+ </details>
157
+ -->
158
+
159
+ <!--
160
+ ### Out-of-Scope Use
161
+
162
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
163
+ -->
164
+
165
+ ## Evaluation
166
+
167
+ ### Metrics
168
+
169
+ #### Triplet
170
+
171
+ * Datasets: `all-nli-val` and `all-nli-test`
172
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
173
+
174
+ | Metric | all-nli-val | all-nli-test |
175
+ |:--------------------|:------------|:-------------|
176
+ | **cosine_accuracy** | **0.9513** | **0.9528** |
177
+
178
+ <!--
179
+ ## Bias, Risks and Limitations
180
+
181
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
182
+ -->
183
+
184
+ <!--
185
+ ### Recommendations
186
+
187
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
188
+ -->
189
+
190
+ ## Training Details
191
+
192
+ ### Training Dataset
193
+
194
+ #### all-nli
195
+
196
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
197
+ * Size: 200,000 training samples
198
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
199
+ * Approximate statistics based on the first 1000 samples:
200
+ | | anchor | positive | negative |
201
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
202
+ | type | string | string | string |
203
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
204
+ * Samples:
205
+ | anchor | positive | negative |
206
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
207
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
208
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
209
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
210
+ * Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
211
+ ```json
212
+ {
213
+ "loss": "MultipleNegativesRankingLoss",
214
+ "n_layers_per_step": 1,
215
+ "last_layer_weight": 1.0,
216
+ "prior_layers_weight": 1.0,
217
+ "kl_div_weight": 1.0,
218
+ "kl_temperature": 0.3
219
+ }
220
+ ```
221
+
222
+ ### Evaluation Dataset
223
+
224
+ #### all-nli
225
+
226
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
227
+ * Size: 3,000 evaluation samples
228
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
229
+ * Approximate statistics based on the first 1000 samples:
230
+ | | anchor | positive | negative |
231
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
232
+ | type | string | string | string |
233
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
234
+ * Samples:
235
+ | anchor | positive | negative |
236
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
237
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
238
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
239
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
240
+ * Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
241
+ ```json
242
+ {
243
+ "loss": "MultipleNegativesRankingLoss",
244
+ "n_layers_per_step": 1,
245
+ "last_layer_weight": 1.0,
246
+ "prior_layers_weight": 1.0,
247
+ "kl_div_weight": 1.0,
248
+ "kl_temperature": 0.3
249
+ }
250
+ ```
251
+
252
+ ### Training Hyperparameters
253
+ #### Non-Default Hyperparameters
254
+
255
+ - `eval_strategy`: steps
256
+ - `per_device_train_batch_size`: 5
257
+ - `per_device_eval_batch_size`: 5
258
+ - `learning_rate`: 2e-05
259
+ - `max_steps`: 600
260
+ - `warmup_ratio`: 0.1
261
+ - `seed`: 30
262
+ - `bf16`: True
263
+ - `load_best_model_at_end`: True
264
+ - `batch_sampler`: no_duplicates
265
+
266
+ #### All Hyperparameters
267
+ <details><summary>Click to expand</summary>
268
+
269
+ - `overwrite_output_dir`: False
270
+ - `do_predict`: False
271
+ - `eval_strategy`: steps
272
+ - `prediction_loss_only`: True
273
+ - `per_device_train_batch_size`: 5
274
+ - `per_device_eval_batch_size`: 5
275
+ - `per_gpu_train_batch_size`: None
276
+ - `per_gpu_eval_batch_size`: None
277
+ - `gradient_accumulation_steps`: 1
278
+ - `eval_accumulation_steps`: None
279
+ - `torch_empty_cache_steps`: None
280
+ - `learning_rate`: 2e-05
281
+ - `weight_decay`: 0.0
282
+ - `adam_beta1`: 0.9
283
+ - `adam_beta2`: 0.999
284
+ - `adam_epsilon`: 1e-08
285
+ - `max_grad_norm`: 1.0
286
+ - `num_train_epochs`: 3.0
287
+ - `max_steps`: 600
288
+ - `lr_scheduler_type`: linear
289
+ - `lr_scheduler_kwargs`: {}
290
+ - `warmup_ratio`: 0.1
291
+ - `warmup_steps`: 0
292
+ - `log_level`: passive
293
+ - `log_level_replica`: warning
294
+ - `log_on_each_node`: True
295
+ - `logging_nan_inf_filter`: True
296
+ - `save_safetensors`: True
297
+ - `save_on_each_node`: False
298
+ - `save_only_model`: False
299
+ - `restore_callback_states_from_checkpoint`: False
300
+ - `no_cuda`: False
301
+ - `use_cpu`: False
302
+ - `use_mps_device`: False
303
+ - `seed`: 30
304
+ - `data_seed`: None
305
+ - `jit_mode_eval`: False
306
+ - `use_ipex`: False
307
+ - `bf16`: True
308
+ - `fp16`: False
309
+ - `fp16_opt_level`: O1
310
+ - `half_precision_backend`: auto
311
+ - `bf16_full_eval`: False
312
+ - `fp16_full_eval`: False
313
+ - `tf32`: None
314
+ - `local_rank`: 0
315
+ - `ddp_backend`: None
316
+ - `tpu_num_cores`: None
317
+ - `tpu_metrics_debug`: False
318
+ - `debug`: []
319
+ - `dataloader_drop_last`: False
320
+ - `dataloader_num_workers`: 0
321
+ - `dataloader_prefetch_factor`: None
322
+ - `past_index`: -1
323
+ - `disable_tqdm`: False
324
+ - `remove_unused_columns`: True
325
+ - `label_names`: None
326
+ - `load_best_model_at_end`: True
327
+ - `ignore_data_skip`: False
328
+ - `fsdp`: []
329
+ - `fsdp_min_num_params`: 0
330
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
331
+ - `fsdp_transformer_layer_cls_to_wrap`: None
332
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
333
+ - `parallelism_config`: None
334
+ - `deepspeed`: None
335
+ - `label_smoothing_factor`: 0.0
336
+ - `optim`: adamw_torch_fused
337
+ - `optim_args`: None
338
+ - `adafactor`: False
339
+ - `group_by_length`: False
340
+ - `length_column_name`: length
341
+ - `ddp_find_unused_parameters`: None
342
+ - `ddp_bucket_cap_mb`: None
343
+ - `ddp_broadcast_buffers`: False
344
+ - `dataloader_pin_memory`: True
345
+ - `dataloader_persistent_workers`: False
346
+ - `skip_memory_metrics`: True
347
+ - `use_legacy_prediction_loop`: False
348
+ - `push_to_hub`: False
349
+ - `resume_from_checkpoint`: None
350
+ - `hub_model_id`: None
351
+ - `hub_strategy`: every_save
352
+ - `hub_private_repo`: None
353
+ - `hub_always_push`: False
354
+ - `hub_revision`: None
355
+ - `gradient_checkpointing`: False
356
+ - `gradient_checkpointing_kwargs`: None
357
+ - `include_inputs_for_metrics`: False
358
+ - `include_for_metrics`: []
359
+ - `eval_do_concat_batches`: True
360
+ - `fp16_backend`: auto
361
+ - `push_to_hub_model_id`: None
362
+ - `push_to_hub_organization`: None
363
+ - `mp_parameters`:
364
+ - `auto_find_batch_size`: False
365
+ - `full_determinism`: False
366
+ - `torchdynamo`: None
367
+ - `ray_scope`: last
368
+ - `ddp_timeout`: 1800
369
+ - `torch_compile`: False
370
+ - `torch_compile_backend`: None
371
+ - `torch_compile_mode`: None
372
+ - `include_tokens_per_second`: False
373
+ - `include_num_input_tokens_seen`: False
374
+ - `neftune_noise_alpha`: None
375
+ - `optim_target_modules`: None
376
+ - `batch_eval_metrics`: False
377
+ - `eval_on_start`: False
378
+ - `use_liger_kernel`: False
379
+ - `liger_kernel_config`: None
380
+ - `eval_use_gather_object`: False
381
+ - `average_tokens_across_devices`: False
382
+ - `prompts`: None
383
+ - `batch_sampler`: no_duplicates
384
+ - `multi_dataset_batch_sampler`: proportional
385
+ - `router_mapping`: {}
386
+ - `learning_rate_mapping`: {}
387
+
388
+ </details>
389
+
390
+ ### Training Logs
391
+ | Epoch | Step | Training Loss | Validation Loss | all-nli-val_cosine_accuracy | all-nli-test_cosine_accuracy |
392
+ |:---------:|:-------:|:-------------:|:---------------:|:---------------------------:|:----------------------------:|
393
+ | -1 | -1 | - | - | 0.9600 | - |
394
+ | 0.0025 | 100 | 0.7326 | 0.5273 | 0.9520 | - |
395
+ | 0.005 | 200 | 0.6625 | 0.5954 | 0.9490 | - |
396
+ | 0.0075 | 300 | 0.6088 | 0.5250 | 0.9487 | - |
397
+ | 0.01 | 400 | 0.5053 | 0.5289 | 0.9550 | - |
398
+ | 0.0125 | 500 | 0.6039 | 0.5101 | 0.9483 | - |
399
+ | **0.015** | **600** | **0.5923** | **0.5037** | **0.9513** | **-** |
400
+ | -1 | -1 | - | - | - | 0.9528 |
401
+
402
+ * The bold row denotes the saved checkpoint.
403
+
404
+ ### Framework Versions
405
+ - Python: 3.12.11
406
+ - Sentence Transformers: 5.1.0
407
+ - Transformers: 4.56.1
408
+ - PyTorch: 2.8.0+cu126
409
+ - Accelerate: 1.10.1
410
+ - Datasets: 4.0.0
411
+ - Tokenizers: 0.22.0
412
+
413
+ ## Citation
414
+
415
+ ### BibTeX
416
+
417
+ #### Sentence Transformers
418
+ ```bibtex
419
+ @inproceedings{reimers-2019-sentence-bert,
420
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
421
+ author = "Reimers, Nils and Gurevych, Iryna",
422
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
423
+ month = "11",
424
+ year = "2019",
425
+ publisher = "Association for Computational Linguistics",
426
+ url = "https://arxiv.org/abs/1908.10084",
427
+ }
428
+ ```
429
+
430
+ #### AdaptiveLayerLoss
431
+ ```bibtex
432
+ @misc{li20242d,
433
+ title={2D Matryoshka Sentence Embeddings},
434
+ author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
435
+ year={2024},
436
+ eprint={2402.14776},
437
+ archivePrefix={arXiv},
438
+ primaryClass={cs.CL}
439
+ }
440
+ ```
441
+
442
+ #### MultipleNegativesRankingLoss
443
+ ```bibtex
444
+ @misc{henderson2017efficient,
445
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
446
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
447
+ year={2017},
448
+ eprint={1705.00652},
449
+ archivePrefix={arXiv},
450
+ primaryClass={cs.CL}
451
+ }
452
+ ```
453
+
454
+ <!--
455
+ ## Glossary
456
+
457
+ *Clearly define terms in order to be accessible across audiences.*
458
+ -->
459
+
460
+ <!--
461
+ ## Model Card Authors
462
+
463
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
464
+ -->
465
+
466
+ <!--
467
+ ## Model Card Contact
468
+
469
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
470
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "dtype": "float32",
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "transformers_version": "4.56.1",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.1.0",
4
+ "transformers": "4.56.1",
5
+ "pytorch": "2.8.0+cu126"
6
+ },
7
+ "model_type": "SentenceTransformer",
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5897baf2cb13ab759e37895a7b8a55138f5c789e5d1147ad40237e9e52e09586
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff