Add files using upload-large-folder tool
Browse files- README.md +150 -0
- config.json +28 -0
- diffusion_pytorch_model.safetensors +3 -0
README.md
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model:
|
| 3 |
+
- Qwen/Qwen-Image
|
| 4 |
+
base_model_relation: quantized
|
| 5 |
+
tags:
|
| 6 |
+
- dfloat11
|
| 7 |
+
- df11
|
| 8 |
+
- lossless compression
|
| 9 |
+
- 70% size, 100% accuracy
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# DFloat11 Compressed Model: `Qwen/Qwen-Image`
|
| 13 |
+
|
| 14 |
+
This is a **DFloat11 losslessly compressed** version of the original `Qwen/Qwen-Image` model. It reduces model size by **32%** compared to the original BFloat16 model, while maintaining **bit-identical outputs** and supporting **efficient GPU inference**.
|
| 15 |
+
|
| 16 |
+
🔥🔥🔥 Thanks to DFloat11 compression, Qwen-Image can now run on **a single 32GB GPU**, or on **a single 16GB GPU with CPU offloading**, while maintaining full model quality. 🔥🔥🔥
|
| 17 |
+
|
| 18 |
+
### 📊 Performance Comparison
|
| 19 |
+
|
| 20 |
+
| Model | Model Size | Peak GPU Memory (1328x1328 image generation) | Generation Time (A100 GPU) |
|
| 21 |
+
|-------------------------------------------|------------|----------------------------------------------|----------------------------|
|
| 22 |
+
| Qwen-Image (BFloat16) | ~41 GB | OOM | - |
|
| 23 |
+
| Qwen-Image (DFloat11) | 28.42 GB | 29.74 GB | 100 seconds |
|
| 24 |
+
| Qwen-Image (DFloat11 + GPU Offloading) | 28.42 GB | 16.68 GB | 260 seconds |
|
| 25 |
+
|
| 26 |
+
### 🔧 How to Use
|
| 27 |
+
|
| 28 |
+
1. Install or upgrade the DFloat11 pip package *(installs the CUDA kernel automatically; requires a CUDA-compatible GPU and PyTorch installed)*:
|
| 29 |
+
|
| 30 |
+
```bash
|
| 31 |
+
pip install -U dfloat11[cuda12]
|
| 32 |
+
```
|
| 33 |
+
|
| 34 |
+
2. Install or upgrade diffusers:
|
| 35 |
+
|
| 36 |
+
```bash
|
| 37 |
+
pip install git+https://github.com/huggingface/diffusers
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
3. Save the following code to a Python file `qwen_image.py`:
|
| 41 |
+
|
| 42 |
+
```python
|
| 43 |
+
from diffusers import DiffusionPipeline, QwenImageTransformer2DModel
|
| 44 |
+
import torch
|
| 45 |
+
from transformers.modeling_utils import no_init_weights
|
| 46 |
+
from dfloat11 import DFloat11Model
|
| 47 |
+
import argparse
|
| 48 |
+
|
| 49 |
+
def parse_args():
|
| 50 |
+
parser = argparse.ArgumentParser(description='Generate images using Qwen-Image model')
|
| 51 |
+
parser.add_argument('--cpu_offload', action='store_true', help='Enable CPU offloading')
|
| 52 |
+
parser.add_argument('--prompt', type=str, default='A coffee shop entrance features a chalkboard sign reading "Qwen Coffee 😊 $2 per cup," with a neon light beside it displaying "通义千问". Next to it hangs a poster showing a beautiful Chinese woman, and beneath the poster is written "π≈3.1415926-53589793-23846264-33832795-02384197".',
|
| 53 |
+
help='Text prompt for image generation')
|
| 54 |
+
parser.add_argument('--negative_prompt', type=str, default=' ',
|
| 55 |
+
help='Negative prompt for image generation')
|
| 56 |
+
parser.add_argument('--aspect_ratio', type=str, default='16:9', choices=['1:1', '16:9', '9:16', '4:3', '3:4'],
|
| 57 |
+
help='Aspect ratio of generated image')
|
| 58 |
+
parser.add_argument('--num_inference_steps', type=int, default=50,
|
| 59 |
+
help='Number of denoising steps')
|
| 60 |
+
parser.add_argument('--true_cfg_scale', type=float, default=4.0,
|
| 61 |
+
help='Classifier free guidance scale')
|
| 62 |
+
parser.add_argument('--seed', type=int, default=42,
|
| 63 |
+
help='Random seed for generation')
|
| 64 |
+
parser.add_argument('--output', type=str, default='example.png',
|
| 65 |
+
help='Output image path')
|
| 66 |
+
parser.add_argument('--language', type=str, default='en', choices=['en', 'zh'],
|
| 67 |
+
help='Language for positive magic prompt')
|
| 68 |
+
return parser.parse_args()
|
| 69 |
+
|
| 70 |
+
args = parse_args()
|
| 71 |
+
|
| 72 |
+
model_name = "Qwen/Qwen-Image"
|
| 73 |
+
|
| 74 |
+
with no_init_weights():
|
| 75 |
+
transformer = QwenImageTransformer2DModel.from_config(
|
| 76 |
+
QwenImageTransformer2DModel.load_config(
|
| 77 |
+
model_name, subfolder="transformer",
|
| 78 |
+
),
|
| 79 |
+
).to(torch.bfloat16)
|
| 80 |
+
|
| 81 |
+
DFloat11Model.from_pretrained(
|
| 82 |
+
"DFloat11/Qwen-Image-DF11",
|
| 83 |
+
device="cpu",
|
| 84 |
+
cpu_offload=args.cpu_offload,
|
| 85 |
+
bfloat16_model=transformer,
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 89 |
+
model_name,
|
| 90 |
+
transformer=transformer,
|
| 91 |
+
torch_dtype=torch.bfloat16,
|
| 92 |
+
)
|
| 93 |
+
pipe.enable_model_cpu_offload()
|
| 94 |
+
|
| 95 |
+
positive_magic = {
|
| 96 |
+
"en": "Ultra HD, 4K, cinematic composition.", # for english prompt,
|
| 97 |
+
"zh": "超清,4K,电影级构图" # for chinese prompt,
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
# Generate with different aspect ratios
|
| 101 |
+
aspect_ratios = {
|
| 102 |
+
"1:1": (1328, 1328),
|
| 103 |
+
"16:9": (1664, 928),
|
| 104 |
+
"9:16": (928, 1664),
|
| 105 |
+
"4:3": (1472, 1140),
|
| 106 |
+
"3:4": (1140, 1472),
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
width, height = aspect_ratios[args.aspect_ratio]
|
| 110 |
+
|
| 111 |
+
image = pipe(
|
| 112 |
+
prompt=args.prompt + positive_magic[args.language],
|
| 113 |
+
negative_prompt=args.negative_prompt,
|
| 114 |
+
width=width,
|
| 115 |
+
height=height,
|
| 116 |
+
num_inference_steps=args.num_inference_steps,
|
| 117 |
+
true_cfg_scale=args.true_cfg_scale,
|
| 118 |
+
generator=torch.Generator(device="cuda").manual_seed(args.seed)
|
| 119 |
+
).images[0]
|
| 120 |
+
|
| 121 |
+
image.save(args.output)
|
| 122 |
+
|
| 123 |
+
max_memory = torch.cuda.max_memory_allocated()
|
| 124 |
+
print(f"Max memory: {max_memory / (1000 ** 3):.2f} GB")
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
4. To run without CPU offloading (32GB VRAM required):
|
| 128 |
+
```bash
|
| 129 |
+
python qwen_image.py
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
To run with CPU offloading (16GB VRAM required):
|
| 133 |
+
```bash
|
| 134 |
+
python qwen_image.py --cpu_offload
|
| 135 |
+
```
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
### 🔍 How It Works
|
| 139 |
+
|
| 140 |
+
We apply **Huffman coding** to losslessly compress the exponent bits of BFloat16 model weights, which are highly compressible (their 8 bits carry only ~2.6 bits of actual information). To enable fast inference, we implement a highly efficient CUDA kernel that performs on-the-fly weight decompression directly on the GPU.
|
| 141 |
+
|
| 142 |
+
The result is a model that is **~32% smaller**, delivers **bit-identical outputs**, and achieves performance **comparable to the original** BFloat16 model.
|
| 143 |
+
|
| 144 |
+
Learn more in our [research paper](https://arxiv.org/abs/2504.11651).
|
| 145 |
+
|
| 146 |
+
### 📄 Learn More
|
| 147 |
+
|
| 148 |
+
* **Paper**: [70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float](https://arxiv.org/abs/2504.11651)
|
| 149 |
+
* **GitHub**: [https://github.com/LeanModels/DFloat11](https://github.com/LeanModels/DFloat11)
|
| 150 |
+
* **HuggingFace**: [https://huggingface.co/DFloat11](https://huggingface.co/DFloat11)
|
config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"dfloat11_config": {
|
| 3 |
+
"bytes_per_thread": 8,
|
| 4 |
+
"pattern_dict": {
|
| 5 |
+
"transformer_blocks\\.\\d+": [
|
| 6 |
+
"img_mod.1",
|
| 7 |
+
"attn.to_q",
|
| 8 |
+
"attn.to_k",
|
| 9 |
+
"attn.to_v",
|
| 10 |
+
"attn.add_k_proj",
|
| 11 |
+
"attn.add_v_proj",
|
| 12 |
+
"attn.add_q_proj",
|
| 13 |
+
"attn.to_out.0",
|
| 14 |
+
"attn.to_add_out",
|
| 15 |
+
"img_mlp.net.0.proj",
|
| 16 |
+
"img_mlp.net.2",
|
| 17 |
+
"txt_mod.1",
|
| 18 |
+
"txt_mlp.net.0.proj",
|
| 19 |
+
"txt_mlp.net.2"
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
"threads_per_block": [
|
| 23 |
+
512
|
| 24 |
+
],
|
| 25 |
+
"version": "0.3.1"
|
| 26 |
+
},
|
| 27 |
+
"model_type": "qwen2_5_vl"
|
| 28 |
+
}
|
diffusion_pytorch_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:37837fc3e638dbb9296584e8a417fa8d624fc637e2efb5902ee3cb1f903ddbcd
|
| 3 |
+
size 28423288808
|