Commit
·
86a12be
1
Parent(s):
673a573
up
Browse files
README.md
CHANGED
|
@@ -7,12 +7,12 @@ tags:
|
|
| 7 |
- stable-diffusion
|
| 8 |
---
|
| 9 |
|
| 10 |
-
# Controlnet - v1.1 - *
|
| 11 |
|
| 12 |
-
**Controlnet v1.1** is the successor model of [Controlnet v1.0](https://huggingface.co/lllyasviel/
|
| 13 |
and was released in [lllyasviel/ControlNet-v1-1](https://huggingface.co/lllyasviel/ControlNet-v1-1) by [Lvmin Zhang](https://huggingface.co/lllyasviel).
|
| 14 |
|
| 15 |
-
This checkpoint is a conversion of [the original checkpoint](https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/
|
| 16 |
It can be used in combination with **Stable Diffusion**, such as [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5).
|
| 17 |
|
| 18 |
|
|
@@ -23,7 +23,7 @@ ControlNet is a neural network structure to control diffusion models by adding e
|
|
| 23 |
|
| 24 |

|
| 25 |
|
| 26 |
-
This checkpoint corresponds to the ControlNet conditioned on **
|
| 27 |
|
| 28 |
## Model Details
|
| 29 |
- **Developed by:** Lvmin Zhang, Maneesh Agrawala
|
|
@@ -64,10 +64,10 @@ Experimentally, the checkpoint can be used with other diffusion models such as d
|
|
| 64 |
|
| 65 |
**Note**: If you want to process an image to create the auxiliary conditioning, external dependencies are required as shown below:
|
| 66 |
|
| 67 |
-
1. Install
|
| 68 |
|
| 69 |
```sh
|
| 70 |
-
$ pip install
|
| 71 |
```
|
| 72 |
|
| 73 |
2. Let's install `diffusers` and related packages:
|
|
@@ -84,9 +84,9 @@ import os
|
|
| 84 |
from huggingface_hub import HfApi
|
| 85 |
from pathlib import Path
|
| 86 |
from diffusers.utils import load_image
|
| 87 |
-
import numpy as np
|
| 88 |
-
import cv2
|
| 89 |
from PIL import Image
|
|
|
|
|
|
|
| 90 |
|
| 91 |
from diffusers import (
|
| 92 |
ControlNetModel,
|
|
@@ -94,22 +94,16 @@ from diffusers import (
|
|
| 94 |
UniPCMultistepScheduler,
|
| 95 |
)
|
| 96 |
|
| 97 |
-
checkpoint = "ControlNet-1-1-preview/
|
| 98 |
|
| 99 |
image = load_image(
|
| 100 |
-
"https://huggingface.co/ControlNet-1-1-preview/
|
| 101 |
)
|
| 102 |
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
low_threshold = 100
|
| 106 |
-
high_threshold = 200
|
| 107 |
-
|
| 108 |
-
image = cv2.Canny(image, low_threshold, high_threshold)
|
| 109 |
-
image = image[:, :, None]
|
| 110 |
-
image = np.concatenate([image, image, image], axis=2)
|
| 111 |
-
control_image = Image.fromarray(image)
|
| 112 |
|
|
|
|
| 113 |
control_image.save("./images/control.png")
|
| 114 |
|
| 115 |
controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
|
|
@@ -120,10 +114,11 @@ pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
| 120 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 121 |
pipe.enable_model_cpu_offload()
|
| 122 |
|
| 123 |
-
generator = torch.manual_seed(
|
| 124 |
-
image = pipe(
|
| 125 |
|
| 126 |
image.save('images/image_out.png')
|
|
|
|
| 127 |
```
|
| 128 |
|
| 129 |

|
|
@@ -139,25 +134,12 @@ on a different type of conditioning:
|
|
| 139 |
|
| 140 |
| Model Name | Control Image Overview| Control Image Example | Generated Image Example |
|
| 141 |
|---|---|---|---|
|
| 142 |
-
|
| 143 |
-
|[lllyasviel/control_v11p_sd15_mlsd](https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd)<br/> *Trained with Midas depth estimation* |A grayscale image with black representing deep areas and white representing shallow areas.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_vermeer_depth.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_vermeer_depth.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_depth_2.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_depth_2.png"/></a>|
|
| 144 |
-
|[lllyasviel/control_v11p_sd15_depth](https://huggingface.co/lllyasviel/control_v11p_sd15_depth)<br/> *Trained with HED edge detection (soft edge)* |A monochrome image with white soft edges on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_bird_hed.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_bird_hed.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_hed_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_hed_1.png"/></a> |
|
| 145 |
-
|[lllyasviel/control_v11p_sd15_normalbae](https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae)<br/> *Trained with M-LSD line detection* |A monochrome image composed only of white straight lines on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_mlsd.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_mlsd.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_mlsd_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_mlsd_0.png"/></a>|
|
| 146 |
-
|[lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint)<br/> *Trained with normal map* |A [normal mapped](https://en.wikipedia.org/wiki/Normal_mapping) image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_human_normal.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_normal.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_normal_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_normal_1.png"/></a>|
|
| 147 |
-
|[lllyasviel/control_v11p_sd15_lineart](https://huggingface.co/lllyasviel/control_v11p_sd15_lineart)<br/> *Trained with OpenPose bone image* |A [OpenPose bone](https://github.com/CMU-Perceptual-Computing-Lab/openpose) image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_human_openpose.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_openpose.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_openpose_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_openpose_0.png"/></a>|
|
| 148 |
-
|[lllyasviel/control_v11p_sd15s2_lineart_anime](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> *Trained with human scribbles* |A hand-drawn monochrome image with white outlines on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_vermeer_scribble.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_vermeer_scribble.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_scribble_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_scribble_0.png"/></a> |
|
| 149 |
-
|[lllyasviel/control_v11p_sd15_openpose](https://huggingface.co/lllyasviel/control_v11p_sd15_openpose)<br/>*Trained with semantic segmentation* |An [ADE20K](https://groups.csail.mit.edu/vision/datasets/ADE20K/)'s segmentation protocol image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_seg.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_seg.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"/></a> |
|
| 150 |
-
|[lllyasviel/control_v11p_sd15_scribble](https://huggingface.co/lllyasviel/control_v11p_sd15_scribble)<br/>*Trained with semantic segmentation* |An [ADE20K](https://groups.csail.mit.edu/vision/datasets/ADE20K/)'s segmentation protocol image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_seg.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_seg.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"/></a> |
|
| 151 |
-
|[lllyasviel/control_v11p_sd15_softedge](https://huggingface.co/lllyasviel/control_v11p_sd15_softedge)<br/>*Trained with semantic segmentation* |An [ADE20K](https://groups.csail.mit.edu/vision/datasets/ADE20K/)'s segmentation protocol image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_seg.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_seg.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"/></a> |
|
| 152 |
-
|[lllyasviel/control_v11e_sd15_shuffle](https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle)<br/>*Trained with semantic segmentation* |An [ADE20K](https://groups.csail.mit.edu/vision/datasets/ADE20K/)'s segmentation protocol image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_seg.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_seg.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"/></a> |
|
| 153 |
-
|[lllyasviel/control_v11e_sd15_ip2p](https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p)<br/>*Trained with semantic segmentation* |An [ADE20K](https://groups.csail.mit.edu/vision/datasets/ADE20K/)'s segmentation protocol image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_seg.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_seg.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"/></a> |
|
| 154 |
-
|[lllyasviel/control_v11u_sd15_tile](https://huggingface.co/lllyasviel/control_v11u_sd15_tile)<br/>*Trained with semantic segmentation* |An [ADE20K](https://groups.csail.mit.edu/vision/datasets/ADE20K/)'s segmentation protocol image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_seg.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_seg.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"/></a> |
|
| 155 |
|
| 156 |
### Training
|
| 157 |
|
| 158 |
-
|
| 159 |
-
caption pairs using Stable Diffusion 1.5 as a base model.
|
| 160 |
|
| 161 |
### Blog post
|
| 162 |
|
| 163 |
-
For more information, please also have a look at the [Diffusers ControlNet Blog Post](https://huggingface.co/blog/controlnet).
|
|
|
|
| 7 |
- stable-diffusion
|
| 8 |
---
|
| 9 |
|
| 10 |
+
# Controlnet - v1.1 - *normalbae Version*
|
| 11 |
|
| 12 |
+
**Controlnet v1.1** is the successor model of [Controlnet v1.0](https://huggingface.co/lllyasviel/ControlNet)
|
| 13 |
and was released in [lllyasviel/ControlNet-v1-1](https://huggingface.co/lllyasviel/ControlNet-v1-1) by [Lvmin Zhang](https://huggingface.co/lllyasviel).
|
| 14 |
|
| 15 |
+
This checkpoint is a conversion of [the original checkpoint](https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_normalbae.pth) into `diffusers` format.
|
| 16 |
It can be used in combination with **Stable Diffusion**, such as [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5).
|
| 17 |
|
| 18 |
|
|
|
|
| 23 |
|
| 24 |

|
| 25 |
|
| 26 |
+
This checkpoint corresponds to the ControlNet conditioned on **normalbae images**.
|
| 27 |
|
| 28 |
## Model Details
|
| 29 |
- **Developed by:** Lvmin Zhang, Maneesh Agrawala
|
|
|
|
| 64 |
|
| 65 |
**Note**: If you want to process an image to create the auxiliary conditioning, external dependencies are required as shown below:
|
| 66 |
|
| 67 |
+
1. Install https://github.com/patrickvonplaten/controlnet_aux
|
| 68 |
|
| 69 |
```sh
|
| 70 |
+
$ pip install controlnet_aux==0.3.0
|
| 71 |
```
|
| 72 |
|
| 73 |
2. Let's install `diffusers` and related packages:
|
|
|
|
| 84 |
from huggingface_hub import HfApi
|
| 85 |
from pathlib import Path
|
| 86 |
from diffusers.utils import load_image
|
|
|
|
|
|
|
| 87 |
from PIL import Image
|
| 88 |
+
import numpy as np
|
| 89 |
+
from controlnet_aux import NormalBaeDetector
|
| 90 |
|
| 91 |
from diffusers import (
|
| 92 |
ControlNetModel,
|
|
|
|
| 94 |
UniPCMultistepScheduler,
|
| 95 |
)
|
| 96 |
|
| 97 |
+
checkpoint = "ControlNet-1-1-preview/control_v11p_sd15_normalbae"
|
| 98 |
|
| 99 |
image = load_image(
|
| 100 |
+
"https://huggingface.co/ControlNet-1-1-preview/control_v11p_sd15_normalbae/resolve/main/images/input.png"
|
| 101 |
)
|
| 102 |
|
| 103 |
+
prompt = "A head full of roses"
|
| 104 |
+
processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
control_image = processor(image)
|
| 107 |
control_image.save("./images/control.png")
|
| 108 |
|
| 109 |
controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
|
|
|
|
| 114 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 115 |
pipe.enable_model_cpu_offload()
|
| 116 |
|
| 117 |
+
generator = torch.manual_seed(0)
|
| 118 |
+
image = pipe(prompt, num_inference_steps=30, generator=generator, image=image).images[0]
|
| 119 |
|
| 120 |
image.save('images/image_out.png')
|
| 121 |
+
|
| 122 |
```
|
| 123 |
|
| 124 |

|
|
|
|
| 134 |
|
| 135 |
| Model Name | Control Image Overview| Control Image Example | Generated Image Example |
|
| 136 |
|---|---|---|---|
|
| 137 |
+
TODO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
### Training
|
| 140 |
|
| 141 |
+
TODO
|
|
|
|
| 142 |
|
| 143 |
### Blog post
|
| 144 |
|
| 145 |
+
For more information, please also have a look at the [Diffusers ControlNet Blog Post](https://huggingface.co/blog/controlnet).
|