Commit 
							
							·
						
						2720945
	
1
								Parent(s):
							
							9df9e84
								
Upload README.md
Browse files
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,181 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            language: en
         | 
| 3 | 
            +
            datasets:
         | 
| 4 | 
            +
            - librispeech_asr
         | 
| 5 | 
            +
            tags:
         | 
| 6 | 
            +
            - speech
         | 
| 7 | 
            +
            - audio
         | 
| 8 | 
            +
            - automatic-speech-recognition
         | 
| 9 | 
            +
            - hf-asr-leaderboard
         | 
| 10 | 
            +
            license: mit
         | 
| 11 | 
            +
            pipeline_tag: automatic-speech-recognition
         | 
| 12 | 
            +
            widget:
         | 
| 13 | 
            +
            - example_title: Librispeech sample 1
         | 
| 14 | 
            +
              src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
         | 
| 15 | 
            +
            - example_title: Librispeech sample 2
         | 
| 16 | 
            +
              src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
         | 
| 17 | 
            +
            model-index:
         | 
| 18 | 
            +
            - name: s2t-small-librispeech-asr
         | 
| 19 | 
            +
              results:
         | 
| 20 | 
            +
              - task:
         | 
| 21 | 
            +
                  name: Automatic Speech Recognition
         | 
| 22 | 
            +
                  type: automatic-speech-recognition
         | 
| 23 | 
            +
                dataset:
         | 
| 24 | 
            +
                  name: LibriSpeech (clean)
         | 
| 25 | 
            +
                  type: librispeech_asr
         | 
| 26 | 
            +
                  config: clean
         | 
| 27 | 
            +
                  split: test
         | 
| 28 | 
            +
                  args: 
         | 
| 29 | 
            +
                    language: en
         | 
| 30 | 
            +
                metrics:
         | 
| 31 | 
            +
                - name: Test WER
         | 
| 32 | 
            +
                  type: wer
         | 
| 33 | 
            +
                  value: 4.3
         | 
| 34 | 
            +
              - task:
         | 
| 35 | 
            +
                  name: Automatic Speech Recognition
         | 
| 36 | 
            +
                  type: automatic-speech-recognition
         | 
| 37 | 
            +
                dataset:
         | 
| 38 | 
            +
                  name: LibriSpeech (other)
         | 
| 39 | 
            +
                  type: librispeech_asr
         | 
| 40 | 
            +
                  config: other
         | 
| 41 | 
            +
                  split: test
         | 
| 42 | 
            +
                  args: 
         | 
| 43 | 
            +
                    language: en
         | 
| 44 | 
            +
                metrics:
         | 
| 45 | 
            +
                - name: Test WER
         | 
| 46 | 
            +
                  type: wer
         | 
| 47 | 
            +
                  value: 9.0
         | 
| 48 | 
            +
            ---
         | 
| 49 | 
            +
             | 
| 50 | 
            +
             | 
| 51 | 
            +
            # S2T-SMALL-LIBRISPEECH-ASR
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            `s2t-small-librispeech-asr` is a Speech to Text Transformer (S2T) model trained for automatic speech recognition (ASR).
         | 
| 54 | 
            +
            The S2T model was proposed in [this paper](https://arxiv.org/abs/2010.05171) and released in
         | 
| 55 | 
            +
            [this repository](https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text)
         | 
| 56 | 
            +
             | 
| 57 | 
            +
             | 
| 58 | 
            +
            ## Model description
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            S2T is an end-to-end sequence-to-sequence transformer model. It is trained with standard
         | 
| 61 | 
            +
            autoregressive cross-entropy loss and generates the transcripts autoregressively.
         | 
| 62 | 
            +
             | 
| 63 | 
            +
            ## Intended uses & limitations
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            This model can be used for end-to-end speech recognition (ASR).
         | 
| 66 | 
            +
            See the [model hub](https://huggingface.co/models?filter=speech_to_text) to look for other S2T checkpoints.
         | 
| 67 | 
            +
             | 
| 68 | 
            +
             | 
| 69 | 
            +
            ### How to use
         | 
| 70 | 
            +
             | 
| 71 | 
            +
            As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the
         | 
| 72 | 
            +
            transcripts by passing the speech features to the model.
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            *Note: The `Speech2TextProcessor` object uses [torchaudio](https://github.com/pytorch/audio)  to extract the
         | 
| 75 | 
            +
            filter bank features. Make sure to install the `torchaudio` package before running this example.*
         | 
| 76 | 
            +
             | 
| 77 | 
            +
            *Note: The feature extractor depends on [torchaudio](https://github.com/pytorch/audio) and the tokenizer depends on [sentencepiece](https://github.com/google/sentencepiece)
         | 
| 78 | 
            +
            so be sure to install those packages before running the examples.*
         | 
| 79 | 
            +
             | 
| 80 | 
            +
            You could either install those as extra speech dependancies with
         | 
| 81 | 
            +
            `pip install transformers"[speech, sentencepiece]"` or install the packages seperatly 
         | 
| 82 | 
            +
            with `pip install torchaudio sentencepiece`.
         | 
| 83 | 
            +
             | 
| 84 | 
            +
             | 
| 85 | 
            +
            ```python
         | 
| 86 | 
            +
            import torch
         | 
| 87 | 
            +
            from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
         | 
| 88 | 
            +
            from datasets import load_dataset
         | 
| 89 | 
            +
             | 
| 90 | 
            +
            model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr")
         | 
| 91 | 
            +
            processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
         | 
| 92 | 
            +
             | 
| 93 | 
            +
            ds = load_dataset(
         | 
| 94 | 
            +
                "patrickvonplaten/librispeech_asr_dummy",
         | 
| 95 | 
            +
                "clean",
         | 
| 96 | 
            +
                split="validation"
         | 
| 97 | 
            +
            )
         | 
| 98 | 
            +
             | 
| 99 | 
            +
            input_features = processor(
         | 
| 100 | 
            +
                ds[0]["audio"]["array"],
         | 
| 101 | 
            +
                sampling_rate=16_000,
         | 
| 102 | 
            +
                return_tensors="pt"
         | 
| 103 | 
            +
            ).input_features  # Batch size 1
         | 
| 104 | 
            +
            generated_ids = model.generate(input_ids=input_features)
         | 
| 105 | 
            +
             | 
| 106 | 
            +
            transcription = processor.batch_decode(generated_ids)
         | 
| 107 | 
            +
            ```
         | 
| 108 | 
            +
             | 
| 109 | 
            +
            #### Evaluation on LibriSpeech Test
         | 
| 110 | 
            +
             | 
| 111 | 
            +
            The following script shows how to evaluate this model on the [LibriSpeech](https://huggingface.co/datasets/librispeech_asr)
         | 
| 112 | 
            +
            *"clean"* and *"other"* test dataset.
         | 
| 113 | 
            +
             | 
| 114 | 
            +
            ```python
         | 
| 115 | 
            +
            from datasets import load_dataset, load_metric
         | 
| 116 | 
            +
            from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor
         | 
| 117 | 
            +
             | 
| 118 | 
            +
            librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")  # change to "other" for other test dataset
         | 
| 119 | 
            +
            wer = load_metric("wer")
         | 
| 120 | 
            +
             | 
| 121 | 
            +
            model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr").to("cuda")
         | 
| 122 | 
            +
            processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr", do_upper_case=True)
         | 
| 123 | 
            +
             | 
| 124 | 
            +
            librispeech_eval = librispeech_eval.map(map_to_array)
         | 
| 125 | 
            +
             | 
| 126 | 
            +
            def map_to_pred(batch):
         | 
| 127 | 
            +
                features = processor(batch["audio"]["array"], sampling_rate=16000, padding=True, return_tensors="pt")
         | 
| 128 | 
            +
                input_features = features.input_features.to("cuda")
         | 
| 129 | 
            +
                attention_mask = features.attention_mask.to("cuda")
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                gen_tokens = model.generate(input_ids=input_features, attention_mask=attention_mask)
         | 
| 132 | 
            +
                batch["transcription"] = processor.batch_decode(gen_tokens, skip_special_tokens=True)
         | 
| 133 | 
            +
                return batch
         | 
| 134 | 
            +
             | 
| 135 | 
            +
            result = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=["speech"])
         | 
| 136 | 
            +
             | 
| 137 | 
            +
            print("WER:", wer(predictions=result["transcription"], references=result["text"]))
         | 
| 138 | 
            +
            ```
         | 
| 139 | 
            +
             | 
| 140 | 
            +
            *Result (WER)*:
         | 
| 141 | 
            +
             | 
| 142 | 
            +
            | "clean" | "other" |
         | 
| 143 | 
            +
            |:-------:|:-------:|
         | 
| 144 | 
            +
            | 4.3     | 9.0     |
         | 
| 145 | 
            +
             | 
| 146 | 
            +
             | 
| 147 | 
            +
             | 
| 148 | 
            +
            ## Training data
         | 
| 149 | 
            +
             | 
| 150 | 
            +
            The S2T-SMALL-LIBRISPEECH-ASR is trained on [LibriSpeech ASR Corpus](https://www.openslr.org/12), a dataset consisting of
         | 
| 151 | 
            +
            approximately 1000 hours of 16kHz read English speech.
         | 
| 152 | 
            +
             | 
| 153 | 
            +
             | 
| 154 | 
            +
            ## Training procedure
         | 
| 155 | 
            +
             | 
| 156 | 
            +
            ### Preprocessing
         | 
| 157 | 
            +
             | 
| 158 | 
            +
            The speech data is pre-processed by extracting Kaldi-compliant 80-channel log mel-filter bank features automatically from
         | 
| 159 | 
            +
            WAV/FLAC audio files via PyKaldi or torchaudio. Further utterance-level CMVN (cepstral mean and variance normalization)
         | 
| 160 | 
            +
            is applied to each example.
         | 
| 161 | 
            +
             | 
| 162 | 
            +
            The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 10,000.
         | 
| 163 | 
            +
             | 
| 164 | 
            +
             | 
| 165 | 
            +
            ### Training
         | 
| 166 | 
            +
             | 
| 167 | 
            +
            The model is trained with standard autoregressive cross-entropy loss and using [SpecAugment](https://arxiv.org/abs/1904.08779).
         | 
| 168 | 
            +
            The encoder receives speech features, and the decoder generates the transcripts autoregressively.
         | 
| 169 | 
            +
             | 
| 170 | 
            +
             | 
| 171 | 
            +
            ### BibTeX entry and citation info
         | 
| 172 | 
            +
             | 
| 173 | 
            +
            ```bibtex
         | 
| 174 | 
            +
            @inproceedings{wang2020fairseqs2t,
         | 
| 175 | 
            +
              title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq},
         | 
| 176 | 
            +
              author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino},
         | 
| 177 | 
            +
              booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations},
         | 
| 178 | 
            +
              year = {2020},
         | 
| 179 | 
            +
            }
         | 
| 180 | 
            +
             | 
| 181 | 
            +
            ```
         | 

