|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
import math |
|
|
import random |
|
|
import sys |
|
|
import pandas as pd |
|
|
from utils.generate_utils import mask_for_de_novo, calculate_cosine_sim, calculate_hamming_dist |
|
|
from diffusion import Diffusion |
|
|
import hydra |
|
|
from tqdm import tqdm |
|
|
from transformers import AutoTokenizer, AutoModel, pipeline |
|
|
from tokenizer.my_tokenizers import SMILES_SPE_Tokenizer |
|
|
from helm_tokenizer.helm_tokenizer import HelmTokenizer |
|
|
from utils.helm_utils import create_helm_from_aa_seq, get_smi_from_helms |
|
|
from utils.filter import PeptideAnalyzer |
|
|
from new_tokenizer.ape_tokenizer import APETokenizer |
|
|
from scoring.scoring_functions import ScoringFunctions |
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
|
def generate_sequence_unconditional(config, sequence_length: int, mdlm: Diffusion): |
|
|
tokenizer = mdlm.tokenizer |
|
|
|
|
|
masked_array = mask_for_de_novo(config, sequence_length) |
|
|
|
|
|
if config.vocab == 'old_smiles': |
|
|
|
|
|
inputs = tokenizer.encode(masked_array) |
|
|
elif config.vocab == 'new_smiles' or config.vocab == 'selfies': |
|
|
inputs = tokenizer.encode_for_generation(masked_array) |
|
|
else: |
|
|
|
|
|
inputs = tokenizer(masked_array, return_tensors="pt") |
|
|
|
|
|
|
|
|
inputs = {key: value.to(mdlm.device) for key, value in inputs.items()} |
|
|
|
|
|
logits = mdlm._sample(x_input=inputs) |
|
|
|
|
|
return logits, inputs |
|
|
|
|
|
|
|
|
@hydra.main(version_base=None, config_path='/home/st512/peptune/scripts/peptide-mdlm-mcts', config_name='config') |
|
|
def main(config): |
|
|
path = "/home/st512/peptune/scripts/peptide-mdlm-mcts" |
|
|
|
|
|
if config.vocab == 'new_smiles': |
|
|
tokenizer = APETokenizer() |
|
|
tokenizer.load_vocabulary('/home/st512/peptune/scripts/peptide-mdlm-mcts/new_tokenizer/peptide_smiles_600_vocab.json') |
|
|
elif config.vocab == 'old_smiles': |
|
|
tokenizer = SMILES_SPE_Tokenizer('/home/st512/peptune/scripts/peptide-mdlm-mcts/tokenizer/new_vocab.txt', |
|
|
'/home/st512/peptune/scripts/peptide-mdlm-mcts/tokenizer/new_splits.txt') |
|
|
elif config.vocab == 'selfies': |
|
|
tokenizer = APETokenizer() |
|
|
tokenizer.load_vocabulary('/home/st512/peptune/scripts/peptide-mdlm-mcts/new_tokenizer/peptide_selfies_600_vocab.json') |
|
|
elif config.vocab == 'helm': |
|
|
tokenizer = HelmTokenizer('/home/st512/peptune/scripts/peptide-mdlm-mcts/helm_tokenizer/monomer_vocab.txt') |
|
|
|
|
|
mdlm_model = Diffusion.load_from_checkpoint(config.eval.checkpoint_path, config=config, tokenizer=tokenizer, strict=False) |
|
|
|
|
|
mdlm_model.eval() |
|
|
device = torch.device('cuda' if torch.cuda.is_available() else "cpu") |
|
|
mdlm_model.to(device) |
|
|
|
|
|
print("loaded models...") |
|
|
analyzer = PeptideAnalyzer() |
|
|
|
|
|
gfap = 'MERRRITSAARRSYVSSGEMMVGGLAPGRRLGPGTRLSLARMPPPLPTRVDFSLAGALNAGFKETRASERAEMMELNDRFASYIEKVRFLEQQNKALAAELNQLRAKEPTKLADVYQAELRELRLRLDQLTANSARLEVERDNLAQDLATVRQKLQDETNLRLEAENNLAAYRQEADEATLARLDLERKIESLEEEIRFLRKIHEEEVRELQEQLARQQVHVELDVAKPDLTAALKEIRTQYEAMASSNMHEAEEWYRSKFADLTDAAARNAELLRQAKHEANDYRRQLQSLTCDLESLRGTNESLERQMREQEERHVREAASYQEALARLEEEGQSLKDEMARHLQEYQDLLNVKLALDIEIATYRKLLEGEENRITIPVQTFSNLQIRETSLDTKSVSEGHLKRNIVVKTVEMRDGEVIKESKQEHKDVM' |
|
|
|
|
|
|
|
|
score_func_names = ['binding_affinity1', 'solubility', 'hemolysis', 'nonfouling', 'permeability'] |
|
|
score_functions = ScoringFunctions(score_func_names, [gfap]) |
|
|
|
|
|
|
|
|
max_seq_length = config.sampling.seq_length |
|
|
num_sequences = config.sampling.num_sequences |
|
|
generation_results = [] |
|
|
num_valid = 0. |
|
|
num_total = 0. |
|
|
while num_total < num_sequences: |
|
|
num_total += 1 |
|
|
generated_array, input_array = generate_sequence_unconditional(config, max_seq_length, mdlm_model) |
|
|
|
|
|
|
|
|
generated_array = generated_array.to(mdlm_model.device) |
|
|
print(generated_array) |
|
|
|
|
|
|
|
|
perplexity = mdlm_model.compute_masked_perplexity(generated_array, input_array['input_ids']) |
|
|
perplexity = round(perplexity, 4) |
|
|
|
|
|
if config.vocab == 'old_smiles' or config.vocab == 'new_smiles': |
|
|
smiles_seq = tokenizer.decode(generated_array) |
|
|
if analyzer.is_peptide(smiles_seq): |
|
|
aa_seq, seq_length = analyzer.analyze_structure(smiles_seq) |
|
|
num_valid += 1 |
|
|
scores = score_functions(input_seqs=[smiles_seq]) |
|
|
|
|
|
binding = scores[0][0] |
|
|
sol = scores[0][1] |
|
|
hemo = scores[0][2] |
|
|
nf = scores[0][3] |
|
|
perm = scores[0][4] |
|
|
|
|
|
generation_results.append([smiles_seq, perplexity, aa_seq, binding, sol, hemo, nf, perm]) |
|
|
else: |
|
|
aa_seq = "not valid peptide" |
|
|
seq_length = '-' |
|
|
scores = "not valid peptide" |
|
|
elif config.vocab == 'selfies': |
|
|
smiles_seq = tokenizer.decode(generated_array) |
|
|
else: |
|
|
aa_seq = tokenizer.decode(generated_array) |
|
|
smiles_seq = get_smi_from_helms(aa_seq) |
|
|
|
|
|
|
|
|
print(f"perplexity: {perplexity} | length: {seq_length} | smiles sequence: {smiles_seq} | amino acid sequence: {aa_seq} | scores: {scores}") |
|
|
sys.stdout.flush() |
|
|
|
|
|
valid_frac = num_valid / num_total |
|
|
print(f"fraction of synthesizable peptides: {valid_frac}") |
|
|
df = pd.DataFrame(generation_results, columns=['Generated SMILES', 'Perplexity', 'Peptide Sequence', 'Binding Affinity', 'Solubility', 'Hemolysis', 'Nonfouling', 'Permeability']) |
|
|
df.to_csv(path + f'/benchmarks/unconditional/epoch-10-pretrain-gfap.csv', index=False) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |