File size: 21,706 Bytes
e54915d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
#!/usr/bin/env
import torch
import torch.nn.functional as F
import math
import random
import sys
import pandas as pd
from utils.generate_utils import mask_for_de_novo, calculate_cosine_sim, calculate_hamming_dist
from diffusion import Diffusion
from pareto_mcts import Node, MCTS
import hydra
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModel, pipeline
from tokenizer.my_tokenizers import SMILES_SPE_Tokenizer
from helm_tokenizer.helm_tokenizer import HelmTokenizer
from utils.helm_utils import create_helm_from_aa_seq
from utils.app import PeptideAnalyzer
from new_tokenizer.ape_tokenizer import APETokenizer
import matplotlib.pyplot as plt
import os
import seaborn as sns
import pandas as pd
import numpy as np

def save_logs_to_file(config, valid_fraction_log, affinity1_log, affinity2_log, sol_log, hemo_log, nf_log, permeability_log, output_path):
    """
    Saves the logs (valid_fraction_log, affinity1_log, and permeability_log) to a CSV file.
    
    Parameters:
        valid_fraction_log (list): Log of valid fractions over iterations.
        affinity1_log (list): Log of binding affinity over iterations.
        permeability_log (list): Log of membrane permeability over iterations.
        output_path (str): Path to save the log CSV file.
    """
    os.makedirs(os.path.dirname(output_path), exist_ok=True)
    
    if config.mcts.perm:
        # Combine logs into a DataFrame
        log_data = {
            "Iteration": list(range(1, len(valid_fraction_log) + 1)),
            "Valid Fraction": valid_fraction_log,
            "Binding Affinity": affinity1_log,
            "Solubility": sol_log,
            "Hemolysis": hemo_log, 
            "Nonfouling": nf_log,
            "Permeability": permeability_log
        }
    elif config.mcts.dual: 
        log_data = {
            "Iteration": list(range(1, len(valid_fraction_log) + 1)),
            "Valid Fraction": valid_fraction_log,
            "Binding Affinity 1": affinity1_log,
            "Binding Affinity 2": affinity2_log,
            "Solubility": sol_log,
            "Hemolysis": hemo_log, 
            "Nonfouling": nf_log,
            "Permeability": permeability_log
        }
    elif config.mcts.single: 
        log_data = {
            "Iteration": list(range(1, len(valid_fraction_log) + 1)),
            "Valid Fraction": valid_fraction_log,
            "Permeability": permeability_log
        }
    else:
        log_data = {
            "Iteration": list(range(1, len(valid_fraction_log) + 1)),
            "Valid Fraction": valid_fraction_log,
            "Binding Affinity": affinity1_log,
            "Solubility": sol_log,
            "Hemolysis": hemo_log, 
            "Nonfouling": nf_log
        }
        
    df = pd.DataFrame(log_data)
    
    # Save to CSV
    df.to_csv(output_path, index=False)

def plot_data(log1, log2=None, 
                    save_path=None, 
                    label1="Log 1", 
                    label2=None, 
                    title="Fraction of Valid Peptides Over Iterations", 
                    palette=None):
    """
    Plots one or two datasets with their mean values over iterations.

    Parameters:
        log1 (list): The first list of mean values for each iteration.
        log2 (list, optional): The second list of mean values for each iteration. Defaults to None.
        save_path (str): Path to save the plot. Defaults to None.
        label1 (str): Label for the first dataset. Defaults to "Log 1".
        label2 (str, optional): Label for the second dataset. Defaults to None.
        title (str): Title of the plot. Defaults to "Mean Values Over Iterations".
        palette (dict, optional): A dictionary defining custom colors for datasets. Defaults to None.
    """
    # Prepare data for log1
    data1 = pd.DataFrame({
        "Iteration": range(1, len(log1) + 1),
        "Fraction of Valid Peptides": log1,
        "Dataset": label1
    })

    # Prepare data for log2 if provided
    if log2 is not None:
        data2 = pd.DataFrame({
            "Iteration": range(1, len(log2) + 1),
            "Fraction of Valid Peptides": log2,
            "Dataset": label2
        })
        data = pd.concat([data1, data2], ignore_index=True)
    else:
        data = data1

    palette = {
        label1: "#8181ED",  # Default color for log1
        label2: "#D577FF"   # Default color for log2 (if provided)
    }

    # Set Seaborn theme
    sns.set_theme()
    sns.set_context("paper")

    # Create the plot
    sns.lineplot(
        data=data, 
        x="Iteration", 
        y="Fraction of Valid Peptides", 
        hue="Dataset", 
        style="Dataset", 
        markers=True, 
        dashes=False, 
        palette=palette
    )

    # Titles and labels
    plt.title(title)
    plt.xlabel("Iteration")
    plt.ylabel("Fraction of Valid Peptides")

    if save_path:
        plt.savefig(save_path, dpi=300, bbox_inches='tight')
        print(f"Plot saved to {save_path}")
    plt.show()

def plot_data_with_distribution_seaborn(log1, log2=None, 
                                        save_path=None, 
                                        label1=None, 
                                        label2=None, 
                                        title=None):
    """
    Plots one or two datasets with the average values and distributions over iterations using Seaborn.

    Parameters:
        log1 (list of lists): The first list of scores (each element is a list of scores for an iteration).
        log2 (list of lists, optional): The second list of scores (each element is a list of scores for an iteration). Defaults to None.
        save_path (str): Path to save the plot. Defaults to None.
        label1 (str): Label for the first dataset. Defaults to "Fraction of Valid Peptide SMILES".
        label2 (str, optional): Label for the second dataset. Defaults to None.
        title (str): Title of the plot. Defaults to "Fraction of Valid Peptides Over Iterations".
    """
    # Prepare data for log1
    data1 = pd.DataFrame({
        "Iteration": np.repeat(range(1, len(log1) + 1), [len(scores) for scores in log1]),
        "Fraction of Valid Peptides": [score for scores in log1 for score in scores],
        "Dataset": label1,
        "Style": "Log1"
    })

    # Prepare data for log2 if provided
    if log2 is not None:
        data2 = pd.DataFrame({
            "Iteration": np.repeat(range(1, len(log2) + 1), [len(scores) for scores in log2]),
            "Fraction of Valid Peptides": [score for scores in log2 for score in scores],
            "Dataset": label2,
            "Style": "Log2"
        })
        data = pd.concat([data1, data2], ignore_index=True)
    else:
        data = data1
    
    palette = {
        label1: "#8181ED",  # Default color for log1
        label2: "#D577FF"   # Default color for log2 (if provided)
    }

    # Set Seaborn theme
    sns.set_theme()
    sns.set_context("paper")

    # Create the plot
    sns.relplot(
        data=data, 
        kind="line",
        x="Iteration", 
        y="Fraction of Valid Peptides", 
        hue="Dataset", 
        style="Style", 
        markers=True, 
        dashes=True,
        ci="sd",  # Show standard deviation
        height=5, 
        aspect=1.5,
        palette=palette
    )

    # Titles and labels
    plt.title(title)
    plt.xlabel("Iteration")
    plt.ylabel("Fraction of Valid Peptides")

    if save_path:
        plt.savefig(save_path, dpi=300, bbox_inches='tight')
        print(f"Plot saved to {save_path}")
    plt.show()

@torch.no_grad()
def generate_valid_mcts(config, mdlm, prot1=None, prot2=None, filename=None, prot_name1=None, prot_name2 = None):
    tokenizer = mdlm.tokenizer
    max_sequence_length = config.sampling.seq_length
        
    # generate array of [MASK] tokens
    masked_array = mask_for_de_novo(config, max_sequence_length)
    
    if config.vocab == 'old_smiles':
        # use custom encode function
        inputs = tokenizer.encode(masked_array)
    elif config.vocab == 'new_smiles' or config.vocab == 'selfies':
        inputs = tokenizer.encode_for_generation(masked_array)
    else:
        # custom HELM tokenizer
        inputs = tokenizer(masked_array, return_tensors="pt")
    
    inputs = {key: value.to(mdlm.device) for key, value in inputs.items()}
    
    # initialize root node
    rootNode = Node(config=config, tokens=inputs, timestep=0)
    # initalize tree search algorithm
    
    if config.mcts.perm:
        score_func_names = ['permeability', 'binding_affinity1', 'solubility', 'hemolysis', 'nonfouling']
        num_func = [0, 50, 50, 50, 50]
    elif config.mcts.dual:
        score_func_names = ['binding_affinity1', 'solubility', 'hemolysis', 'nonfouling', 'binding_affinity2']
    elif config.mcts.single:
        score_func_names = ['permeability']
    else: 
        score_func_names = ['binding_affinity1', 'solubility', 'hemolysis', 'nonfouling']  
        
    if not config.mcts.time_dependent:
        num_func = [0] * len(score_func_names)
    
    if prot1 and prot2 is not None:
        mcts = MCTS(config=config, max_sequence_length=max_sequence_length, mdlm=mdlm, score_func_names=score_func_names, prot_seqs=[prot1, prot2], num_func=num_func)
    elif prot1 is not None: 
        mcts = MCTS(config=config, max_sequence_length=max_sequence_length, mdlm=mdlm, score_func_names=score_func_names, prot_seqs=[prot1], num_func=num_func)
    elif config.mcts.single:
        mcts = MCTS(config=config, max_sequence_length=max_sequence_length, mdlm=mdlm, score_func_names=score_func_names, num_func=num_func)
    else:
        mcts = MCTS(config=config, max_sequence_length=max_sequence_length, mdlm=mdlm, score_func_names=score_func_names, num_func=num_func)
    
    paretoFront = mcts.forward(rootNode)
    
    output_log_path = f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/log_{filename}.csv'
    save_logs_to_file(config, mcts.valid_fraction_log, mcts.affinity1_log, mcts.affinity2_log, mcts.sol_log, mcts.hemo_log, mcts.nf_log, mcts.permeability_log, output_log_path)

    if config.mcts.single:
        plot_data_with_distribution_seaborn(log1=mcts.permeability_log,
                save_path=f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/perm_{filename}.png',
                label1="Average Permeability Score",
                title="Average Permeability Score Over Iterations")
    else:
        plot_data(mcts.valid_fraction_log, 
                save_path=f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/valid_{filename}.png')
        plot_data_with_distribution_seaborn(log1=mcts.affinity1_log,
                save_path=f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/binding1_{filename}.png',
                label1="Average Binding Affinity to TfR",
                title="Average Binding Affinity to TfR Over Iterations")
        if config.mcts.dual:
            plot_data_with_distribution_seaborn(log1=mcts.affinity2_log,
                save_path=f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/binding2_{filename}.png',
                label1="Average Binding Affinity to SKP2",
                title="Average Binding Affinity to SKP2 Over Iterations")
        plot_data_with_distribution_seaborn(log1=mcts.sol_log,
                save_path=f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/sol_{filename}.png',
                label1="Average Solubility Score",
                title="Average Solubility Score Over Iterations")
        plot_data_with_distribution_seaborn(log1=mcts.hemo_log,
                save_path=f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/hemo_{filename}.png',
                label1="Average Hemolysis Score",
                title="Average Hemolysis Score Over Iterations")
        plot_data_with_distribution_seaborn(log1=mcts.nf_log,
                save_path=f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/nf_{filename}.png',
                label1="Average Nonfouling Score",
                title="Average Nonfouling Score Over Iterations")
        if config.mcts.perm:
            plot_data_with_distribution_seaborn(log1=mcts.permeability_log,
                    save_path=f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/perm_{filename}.png',
                    label1="Average Permeability Score",
                    title="Average Permeability Score Over Iterations")
    
    return paretoFront, inputs


@hydra.main(version_base=None, config_path='/home/st512/peptune/scripts/peptide-mdlm-mcts', config_name='config')
def main(config):
    prot_name1 = "time_dependent"
    prot_name2 = "skp2"
    mode = "2"
    model = "mcts"
    length = "100"
    epoch = "7"
    
    filename = f'{mode}_{model}_length_{length}_epoch_{epoch}'

    if config.vocab == 'new_smiles':
        tokenizer = APETokenizer()
        tokenizer.load_vocabulary('/home/st512/peptune/scripts/peptide-mdlm-mcts/new_tokenizer/peptide_smiles_600_vocab.json')
    elif config.vocab == 'old_smiles':
        tokenizer = SMILES_SPE_Tokenizer('/home/st512/peptune/scripts/peptide-mdlm-mcts/tokenizer/new_vocab.txt', 
                                    '/home/st512/peptune/scripts/peptide-mdlm-mcts/tokenizer/new_splits.txt')
    elif config.vocab == 'selfies':
        tokenizer = APETokenizer()
        tokenizer.load_vocabulary('/home/st512/peptune/scripts/peptide-mdlm-mcts/new_tokenizer/peptide_selfies_600_vocab.json')
    elif config.vocab == 'helm':
        tokenizer = HelmTokenizer('/home/st512/peptune/scripts/peptide-mdlm-mcts/helm_tokenizer/monomer_vocab.txt')
    
    mdlm = Diffusion.load_from_checkpoint(config.eval.checkpoint_path, config=config, tokenizer=tokenizer, strict=False)
    
    mdlm.eval()
    device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
    mdlm.to(device)
    

    print("loaded models...")
    analyzer = PeptideAnalyzer()
    
    # proteins
    amhr = 'MLGSLGLWALLPTAVEAPPNRRTCVFFEAPGVRGSTKTLGELLDTGTELPRAIRCLYSRCCFGIWNLTQDRAQVEMQGCRDSDEPGCESLHCDPSPRAHPSPGSTLFTCSCGTDFCNANYSHLPPPGSPGTPGSQGPQAAPGESIWMALVLLGLFLLLLLLLGSIILALLQRKNYRVRGEPVPEPRPDSGRDWSVELQELPELCFSQVIREGGHAVVWAGQLQGKLVAIKAFPPRSVAQFQAERALYELPGLQHDHIVRFITASRGGPGRLLSGPLLVLELHPKGSLCHYLTQYTSDWGSSLRMALSLAQGLAFLHEERWQNGQYKPGIAHRDLSSQNVLIREDGSCAIGDLGLALVLPGLTQPPAWTPTQPQGPAAIMEAGTQRYMAPELLDKTLDLQDWGMALRRADIYSLALLLWEILSRCPDLRPDSSPPPFQLAYEAELGNTPTSDELWALAVQERRRPYIPSTWRCFATDPDGLRELLEDCWDADPEARLTAECVQQRLAALAHPQESHPFPESCPRGCPPLCPEDCTSIPAPTILPCRPQRSACHFSVQQGPCSRNPQPACTLSPV'
    tfr = 'MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLAVDEEENADNNTKANVTKPKRCSGSICYGTIAVIVFFLIGFMIGYLGYCKGVEPKTECERLAGTESPVREEPGEDFPAARRLYWDDLKRKLSEKLDSTDFTGTIKLLNENSYVPREAGSQKDENLALYVENQFREFKLSKVWRDQHFVKIQVKDSAQNSVIIVDKNGRLVYLVENPGGYVAYSKAATVTGKLVHANFGTKKDFEDLYTPVNGSIVIVRAGKITFAEKVANAESLNAIGVLIYMDQTKFPIVNAELSFFGHAHLGTGDPYTPGFPSFNHTQFPPSRSSGLPNIPVQTISRAAAEKLFGNMEGDCPSDWKTDSTCRMVTSESKNVKLTVSNVLKEIKILNIFGVIKGFVEPDHYVVVGAQRDAWGPGAAKSGVGTALLLKLAQMFSDMVLKDGFQPSRSIIFASWSAGDFGSVGATEWLEGYLSSLHLKAFTYINLDKAVLGTSNFKVSASPLLYTLIEKTMQNVKHPVTGQFLYQDSNWASKVEKLTLDNAAFPFLAYSGIPAVSFCFCEDTDYPYLGTTMDTYKELIERIPELNKVARAAAEVAGQFVIKLTHDVELNLDYERYNSQLLSFVRDLNQYRADIKEMGLSLQWLYSARGDFFRATSRLTTDFGNAEKTDRFVMKKLNDRVMRVEYHFLSPYVSPKESPFRHVFWGSGSHTLPALLENLKLRKQNNGAFNETLFRNQLALATWTIQGAANALSGDVWDIDNEF'
    gfap = 'MERRRITSAARRSYVSSGEMMVGGLAPGRRLGPGTRLSLARMPPPLPTRVDFSLAGALNAGFKETRASERAEMMELNDRFASYIEKVRFLEQQNKALAAELNQLRAKEPTKLADVYQAELRELRLRLDQLTANSARLEVERDNLAQDLATVRQKLQDETNLRLEAENNLAAYRQEADEATLARLDLERKIESLEEEIRFLRKIHEEEVRELQEQLARQQVHVELDVAKPDLTAALKEIRTQYEAMASSNMHEAEEWYRSKFADLTDAAARNAELLRQAKHEANDYRRQLQSLTCDLESLRGTNESLERQMREQEERHVREAASYQEALARLEEEGQSLKDEMARHLQEYQDLLNVKLALDIEIATYRKLLEGEENRITIPVQTFSNLQIRETSLDTKSVSEGHLKRNIVVKTVEMRDGEVIKESKQEHKDVM'
    glp1 = 'MAGAPGPLRLALLLLGMVGRAGPRPQGATVSLWETVQKWREYRRQCQRSLTEDPPPATDLFCNRTFDEYACWPDGEPGSFVNVSCPWYLPWASSVPQGHVYRFCTAEGLWLQKDNSSLPWRDLSECEESKRGERSSPEEQLLFLYIIYTVGYALSFSALVIASAILLGFRHLHCTRNYIHLNLFASFILRALSVFIKDAALKWMYSTAAQQHQWDGLLSYQDSLSCRLVFLLMQYCVAANYYWLLVEGVYLYTLLAFSVLSEQWIFRLYVSIGWGVPLLFVVPWGIVKYLYEDEGCWTRNSNMNYWLIIRLPILFAIGVNFLIFVRVICIVVSKLKANLMCKTDIKCRLAKSTLTLIPLLGTHEVIFAFVMDEHARGTLRFIKLFTELSFTSFQGLMVAILYCFVNNEVQLEFRKSWERWRLEHLHIQRDSSMKPLKCPTSSLSSGATAGSSMYTATCQASCS'
    glast = 'MTKSNGEEPKMGGRMERFQQGVRKRTLLAKKKVQNITKEDVKSYLFRNAFVLLTVTAVIVGTILGFTLRPYRMSYREVKYFSFPGELLMRMLQMLVLPLIISSLVTGMAALDSKASGKMGMRAVVYYMTTTIIAVVIGIIIVIIIHPGKGTKENMHREGKIVRVTAADAFLDLIRNMFPPNLVEACFKQFKTNYEKRSFKVPIQANETLVGAVINNVSEAMETLTRITEELVPVPGSVNGVNALGLVVFSMCFGFVIGNMKEQGQALREFFDSLNEAIMRLVAVIMWYAPVGILFLIAGKIVEMEDMGVIGGQLAMYTVTVIVGLLIHAVIVLPLLYFLVTRKNPWVFIGGLLQALITALGTSSSSATLPITFKCLEENNGVDKRVTRFVLPVGATINMDGTALYEALAAIFIAQVNNFELNFGQIITISITATAASIGAAGIPQAGLVTMVIVLTSVGLPTDDITLIIAVDWFLDRLRTTTNVLGDSLGAGIVEHLSRHELKNRDVEMGNSVIEENEMKKPYQLIAQDNETEKPIDSETKM'
    ncam = 'LQTKDLIWTLFFLGTAVSLQVDIVPSQGEISVGESKFFLCQVAGDAKDKDISWFSPNGEKLTPNQQRISVVWNDDSSSTLTIYNANIDDAGIYKCVVTGEDGSESEATVNVKIFQKLMFKNAPTPQEFREGEDAVIVCDVVSSLPPTIIWKHKGRDVILKKDVRFIVLSNNYLQIRGIKKTDEGTYRCEGRILARGEINFKDIQVIVNVPPTIQARQNIVNATANLGQSVTLVCDAEGFPEPTMSWTKDGEQIEQEEDDEKYIFSDDSSQLTIKKVDKNDEAEYICIAENKAGEQDATIHLKVFAKPKITYVENQTAMELEEQVTLTCEASGDPIPSITWRTSTRNISSEEKASWTRPEKQETLDGHMVVRSHARVSSLTLKSIQYTDAGEYICTASNTIGQDSQSMYLEVQYAPKLQGPVAVYTWEGNQVNITCEVFAYPSATISWFRDGQLLPSSNYSNIKIYNTPSASYLEVTPDSENDFGNYNCTAVNRIGQESLEFILVQADTPSSPSIDQVEPYSSTAQVQFDEPEATGGVPILKYKAEWRAVGEEVWHSKWYDAKEASMEGIVTIVGLKPETTYAVRLAALNGKGLGEISAASEF'
    cereblon = 'MAGEGDQQDAAHNMGNHLPLLPAESEEEDEMEVEDQDSKEAKKPNIINFDTSLPTSHTYLGADMEEFHGRTLHDDDSCQVIPVLPQVMMILIPGQTLPLQLFHPQEVSMVRNLIQKDRTFAVLAYSNVQEREAQFGTTAEIYAYREEQDFGIEIVKVKAIGRQRFKVLELRTQSDGIQQAKVQILPECVLPSTMSAVQLESLNKCQIFPSKPVSREDQCSYKWWQKYQKRKFHCANLTSWPRWLYSLYDAETLMDRIKKQLREWDENLKDDSLPSNPIDFSYRVAACLPIDDVLRIQLLKIGSAIQRLRCELDIMNKCTSLCCKQCQETEITTKNEIFSLSLCGPMAAYVNPHGYVHETLTVYKACNLNLIGRPSTEHSWFPGYAWTVAQCKICASHIGWKFTATKKDMSPQKFWGLTRSALLPTIPDTEDEISPDKVILCL'
    ligase = 'MASQPPEDTAESQASDELECKICYNRYNLKQRKPKVLECCHRVCAKCLYKIIDFGDSPQGVIVCPFCRFETCLPDDEVSSLPDDNNILVNLTCGGKGKKCLPENPTELLLTPKRLASLVSPSHTSSNCLVITIMEVQRESSPSLSSTPVVEFYRPASFDSVTTVSHNWTVWNCTSLLFQTSIRVLVWLLGLLYFSSLPLGIYLLVSKKVTLGVVFVSLVPSSLVILMVYGFCQCVCHEFLDCMAPPS'
    skp2 = 'MHRKHLQEIPDLSSNVATSFTWGWDSSKTSELLSGMGVSALEKEEPDSENIPQELLSNLGHPESPPRKRLKSKGSDKDFVIVRRPKLNRENFPGVSWDSLPDELLLGIFSCLCLPELLKVSGVCKRWYRLASDESLWQTLDLTGKNLHPDVTGRLLSQGVIAFRCPRSFMDQPLAEHFSPFRVQHMDLSNSVIEVSTLHGILSQCSKLQNLSLEGLRLSDPIVNTLAKNSNLVRLNLSGCSGFSEFALQTLLSSCSRLDELNLSWCFDFTEKHVQVAVAHVSETITQLNLSGYRKNLQKSDLSTLVRRCPNLVHLDLSDSVMLKNDCFQEFFQLNYLQHLSLSRCYDIIPETLLELGEIPTLKTLQVFGIVPDGTLQLLKEALPHLQINCSHFTTIARPTIGNKKNQEIWGIKCRLTLQKPSCL'
    
    paretoFront, input_array = generate_valid_mcts(config, mdlm, gfap, None, filename, prot_name1, None)
    generation_results = []
    
    for sequence, v in paretoFront.items():
        generated_array = v['token_ids'].to(mdlm.device)
        
        # compute perplexity
        perplexity = mdlm.compute_masked_perplexity(generated_array, input_array['input_ids'])
        perplexity = round(perplexity, 4)
        
        aa_seq, seq_length = analyzer.analyze_structure(sequence)
        scores = v['scores']
        
        if config.mcts.single == False:
            binding1 = scores[0]
            solubility = scores[1]
            hemo = scores[2]
            nonfouling = scores[3]
        
        if config.mcts.perm:
            permeability = scores[4]
            generation_results.append([sequence, perplexity, aa_seq, binding1, solubility, hemo, nonfouling, permeability])
            print(f"perplexity: {perplexity} | length: {seq_length} | smiles sequence: {sequence} | amino acid sequence: {aa_seq} | Binding Affinity: {binding1} | Solubility: {solubility} | Hemolysis: {hemo} | Nonfouling: {nonfouling} | Permeability: {permeability}")
        elif config.mcts.dual:
            binding2 = scores[4]
            generation_results.append([sequence, perplexity, aa_seq, binding1, binding2, solubility, hemo, nonfouling])
            print(f"perplexity: {perplexity} | length: {seq_length} | smiles sequence: {sequence} | amino acid sequence: {aa_seq} | Binding Affinity 1: {binding1} | Binding Affinity 2: {binding2} | Solubility: {solubility} | Hemolysis: {hemo} | Nonfouling: {nonfouling}")
        elif config.mcts.single:
            permeability = scores[0]
        else: 
            generation_results.append([sequence, perplexity, aa_seq, binding1, solubility, hemo, nonfouling])
            print(f"perplexity: {perplexity} | length: {seq_length} | smiles sequence: {sequence} | amino acid sequence: {aa_seq} | Binding Affinity: {binding1} | Solubility: {solubility} | Hemolysis: {hemo} | Nonfouling: {nonfouling}")

        sys.stdout.flush()

    if config.mcts.perm:
        df = pd.DataFrame(generation_results, columns=['Generated SMILES', 'Perplexity', 'Peptide Sequence', 'Binding Affinity', 'Solubility', 'Hemolysis', 'Nonfouling', 'Permeability'])
    elif config.mcts.dual:
        df = pd.DataFrame(generation_results, columns=['Generated SMILES', 'Perplexity', 'Peptide Sequence', 'Binding Affinity 1', 'Binding Affinity 2', 'Solubility', 'Hemolysis', 'Nonfouling'])
    elif config.mcts.single:
        df = pd.DataFrame(generation_results, columns=['Generated SMILES', 'Perplexity', 'Peptide Sequence', 'Permeability'])
    else: 
        df = pd.DataFrame(generation_results, columns=['Generated SMILES', 'Perplexity', 'Peptide Sequence', 'Binding Affinity', 'Solubility', 'Hemolysis', 'Nonfouling'])

    df.to_csv(f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/{filename}.csv', index=False)
        
    
if __name__ == "__main__":
    main()