File size: 21,706 Bytes
e54915d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
#!/usr/bin/env
import torch
import torch.nn.functional as F
import math
import random
import sys
import pandas as pd
from utils.generate_utils import mask_for_de_novo, calculate_cosine_sim, calculate_hamming_dist
from diffusion import Diffusion
from pareto_mcts import Node, MCTS
import hydra
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModel, pipeline
from tokenizer.my_tokenizers import SMILES_SPE_Tokenizer
from helm_tokenizer.helm_tokenizer import HelmTokenizer
from utils.helm_utils import create_helm_from_aa_seq
from utils.app import PeptideAnalyzer
from new_tokenizer.ape_tokenizer import APETokenizer
import matplotlib.pyplot as plt
import os
import seaborn as sns
import pandas as pd
import numpy as np
def save_logs_to_file(config, valid_fraction_log, affinity1_log, affinity2_log, sol_log, hemo_log, nf_log, permeability_log, output_path):
"""
Saves the logs (valid_fraction_log, affinity1_log, and permeability_log) to a CSV file.
Parameters:
valid_fraction_log (list): Log of valid fractions over iterations.
affinity1_log (list): Log of binding affinity over iterations.
permeability_log (list): Log of membrane permeability over iterations.
output_path (str): Path to save the log CSV file.
"""
os.makedirs(os.path.dirname(output_path), exist_ok=True)
if config.mcts.perm:
# Combine logs into a DataFrame
log_data = {
"Iteration": list(range(1, len(valid_fraction_log) + 1)),
"Valid Fraction": valid_fraction_log,
"Binding Affinity": affinity1_log,
"Solubility": sol_log,
"Hemolysis": hemo_log,
"Nonfouling": nf_log,
"Permeability": permeability_log
}
elif config.mcts.dual:
log_data = {
"Iteration": list(range(1, len(valid_fraction_log) + 1)),
"Valid Fraction": valid_fraction_log,
"Binding Affinity 1": affinity1_log,
"Binding Affinity 2": affinity2_log,
"Solubility": sol_log,
"Hemolysis": hemo_log,
"Nonfouling": nf_log,
"Permeability": permeability_log
}
elif config.mcts.single:
log_data = {
"Iteration": list(range(1, len(valid_fraction_log) + 1)),
"Valid Fraction": valid_fraction_log,
"Permeability": permeability_log
}
else:
log_data = {
"Iteration": list(range(1, len(valid_fraction_log) + 1)),
"Valid Fraction": valid_fraction_log,
"Binding Affinity": affinity1_log,
"Solubility": sol_log,
"Hemolysis": hemo_log,
"Nonfouling": nf_log
}
df = pd.DataFrame(log_data)
# Save to CSV
df.to_csv(output_path, index=False)
def plot_data(log1, log2=None,
save_path=None,
label1="Log 1",
label2=None,
title="Fraction of Valid Peptides Over Iterations",
palette=None):
"""
Plots one or two datasets with their mean values over iterations.
Parameters:
log1 (list): The first list of mean values for each iteration.
log2 (list, optional): The second list of mean values for each iteration. Defaults to None.
save_path (str): Path to save the plot. Defaults to None.
label1 (str): Label for the first dataset. Defaults to "Log 1".
label2 (str, optional): Label for the second dataset. Defaults to None.
title (str): Title of the plot. Defaults to "Mean Values Over Iterations".
palette (dict, optional): A dictionary defining custom colors for datasets. Defaults to None.
"""
# Prepare data for log1
data1 = pd.DataFrame({
"Iteration": range(1, len(log1) + 1),
"Fraction of Valid Peptides": log1,
"Dataset": label1
})
# Prepare data for log2 if provided
if log2 is not None:
data2 = pd.DataFrame({
"Iteration": range(1, len(log2) + 1),
"Fraction of Valid Peptides": log2,
"Dataset": label2
})
data = pd.concat([data1, data2], ignore_index=True)
else:
data = data1
palette = {
label1: "#8181ED", # Default color for log1
label2: "#D577FF" # Default color for log2 (if provided)
}
# Set Seaborn theme
sns.set_theme()
sns.set_context("paper")
# Create the plot
sns.lineplot(
data=data,
x="Iteration",
y="Fraction of Valid Peptides",
hue="Dataset",
style="Dataset",
markers=True,
dashes=False,
palette=palette
)
# Titles and labels
plt.title(title)
plt.xlabel("Iteration")
plt.ylabel("Fraction of Valid Peptides")
if save_path:
plt.savefig(save_path, dpi=300, bbox_inches='tight')
print(f"Plot saved to {save_path}")
plt.show()
def plot_data_with_distribution_seaborn(log1, log2=None,
save_path=None,
label1=None,
label2=None,
title=None):
"""
Plots one or two datasets with the average values and distributions over iterations using Seaborn.
Parameters:
log1 (list of lists): The first list of scores (each element is a list of scores for an iteration).
log2 (list of lists, optional): The second list of scores (each element is a list of scores for an iteration). Defaults to None.
save_path (str): Path to save the plot. Defaults to None.
label1 (str): Label for the first dataset. Defaults to "Fraction of Valid Peptide SMILES".
label2 (str, optional): Label for the second dataset. Defaults to None.
title (str): Title of the plot. Defaults to "Fraction of Valid Peptides Over Iterations".
"""
# Prepare data for log1
data1 = pd.DataFrame({
"Iteration": np.repeat(range(1, len(log1) + 1), [len(scores) for scores in log1]),
"Fraction of Valid Peptides": [score for scores in log1 for score in scores],
"Dataset": label1,
"Style": "Log1"
})
# Prepare data for log2 if provided
if log2 is not None:
data2 = pd.DataFrame({
"Iteration": np.repeat(range(1, len(log2) + 1), [len(scores) for scores in log2]),
"Fraction of Valid Peptides": [score for scores in log2 for score in scores],
"Dataset": label2,
"Style": "Log2"
})
data = pd.concat([data1, data2], ignore_index=True)
else:
data = data1
palette = {
label1: "#8181ED", # Default color for log1
label2: "#D577FF" # Default color for log2 (if provided)
}
# Set Seaborn theme
sns.set_theme()
sns.set_context("paper")
# Create the plot
sns.relplot(
data=data,
kind="line",
x="Iteration",
y="Fraction of Valid Peptides",
hue="Dataset",
style="Style",
markers=True,
dashes=True,
ci="sd", # Show standard deviation
height=5,
aspect=1.5,
palette=palette
)
# Titles and labels
plt.title(title)
plt.xlabel("Iteration")
plt.ylabel("Fraction of Valid Peptides")
if save_path:
plt.savefig(save_path, dpi=300, bbox_inches='tight')
print(f"Plot saved to {save_path}")
plt.show()
@torch.no_grad()
def generate_valid_mcts(config, mdlm, prot1=None, prot2=None, filename=None, prot_name1=None, prot_name2 = None):
tokenizer = mdlm.tokenizer
max_sequence_length = config.sampling.seq_length
# generate array of [MASK] tokens
masked_array = mask_for_de_novo(config, max_sequence_length)
if config.vocab == 'old_smiles':
# use custom encode function
inputs = tokenizer.encode(masked_array)
elif config.vocab == 'new_smiles' or config.vocab == 'selfies':
inputs = tokenizer.encode_for_generation(masked_array)
else:
# custom HELM tokenizer
inputs = tokenizer(masked_array, return_tensors="pt")
inputs = {key: value.to(mdlm.device) for key, value in inputs.items()}
# initialize root node
rootNode = Node(config=config, tokens=inputs, timestep=0)
# initalize tree search algorithm
if config.mcts.perm:
score_func_names = ['permeability', 'binding_affinity1', 'solubility', 'hemolysis', 'nonfouling']
num_func = [0, 50, 50, 50, 50]
elif config.mcts.dual:
score_func_names = ['binding_affinity1', 'solubility', 'hemolysis', 'nonfouling', 'binding_affinity2']
elif config.mcts.single:
score_func_names = ['permeability']
else:
score_func_names = ['binding_affinity1', 'solubility', 'hemolysis', 'nonfouling']
if not config.mcts.time_dependent:
num_func = [0] * len(score_func_names)
if prot1 and prot2 is not None:
mcts = MCTS(config=config, max_sequence_length=max_sequence_length, mdlm=mdlm, score_func_names=score_func_names, prot_seqs=[prot1, prot2], num_func=num_func)
elif prot1 is not None:
mcts = MCTS(config=config, max_sequence_length=max_sequence_length, mdlm=mdlm, score_func_names=score_func_names, prot_seqs=[prot1], num_func=num_func)
elif config.mcts.single:
mcts = MCTS(config=config, max_sequence_length=max_sequence_length, mdlm=mdlm, score_func_names=score_func_names, num_func=num_func)
else:
mcts = MCTS(config=config, max_sequence_length=max_sequence_length, mdlm=mdlm, score_func_names=score_func_names, num_func=num_func)
paretoFront = mcts.forward(rootNode)
output_log_path = f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/log_{filename}.csv'
save_logs_to_file(config, mcts.valid_fraction_log, mcts.affinity1_log, mcts.affinity2_log, mcts.sol_log, mcts.hemo_log, mcts.nf_log, mcts.permeability_log, output_log_path)
if config.mcts.single:
plot_data_with_distribution_seaborn(log1=mcts.permeability_log,
save_path=f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/perm_{filename}.png',
label1="Average Permeability Score",
title="Average Permeability Score Over Iterations")
else:
plot_data(mcts.valid_fraction_log,
save_path=f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/valid_{filename}.png')
plot_data_with_distribution_seaborn(log1=mcts.affinity1_log,
save_path=f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/binding1_{filename}.png',
label1="Average Binding Affinity to TfR",
title="Average Binding Affinity to TfR Over Iterations")
if config.mcts.dual:
plot_data_with_distribution_seaborn(log1=mcts.affinity2_log,
save_path=f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/binding2_{filename}.png',
label1="Average Binding Affinity to SKP2",
title="Average Binding Affinity to SKP2 Over Iterations")
plot_data_with_distribution_seaborn(log1=mcts.sol_log,
save_path=f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/sol_{filename}.png',
label1="Average Solubility Score",
title="Average Solubility Score Over Iterations")
plot_data_with_distribution_seaborn(log1=mcts.hemo_log,
save_path=f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/hemo_{filename}.png',
label1="Average Hemolysis Score",
title="Average Hemolysis Score Over Iterations")
plot_data_with_distribution_seaborn(log1=mcts.nf_log,
save_path=f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/nf_{filename}.png',
label1="Average Nonfouling Score",
title="Average Nonfouling Score Over Iterations")
if config.mcts.perm:
plot_data_with_distribution_seaborn(log1=mcts.permeability_log,
save_path=f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/perm_{filename}.png',
label1="Average Permeability Score",
title="Average Permeability Score Over Iterations")
return paretoFront, inputs
@hydra.main(version_base=None, config_path='/home/st512/peptune/scripts/peptide-mdlm-mcts', config_name='config')
def main(config):
prot_name1 = "time_dependent"
prot_name2 = "skp2"
mode = "2"
model = "mcts"
length = "100"
epoch = "7"
filename = f'{mode}_{model}_length_{length}_epoch_{epoch}'
if config.vocab == 'new_smiles':
tokenizer = APETokenizer()
tokenizer.load_vocabulary('/home/st512/peptune/scripts/peptide-mdlm-mcts/new_tokenizer/peptide_smiles_600_vocab.json')
elif config.vocab == 'old_smiles':
tokenizer = SMILES_SPE_Tokenizer('/home/st512/peptune/scripts/peptide-mdlm-mcts/tokenizer/new_vocab.txt',
'/home/st512/peptune/scripts/peptide-mdlm-mcts/tokenizer/new_splits.txt')
elif config.vocab == 'selfies':
tokenizer = APETokenizer()
tokenizer.load_vocabulary('/home/st512/peptune/scripts/peptide-mdlm-mcts/new_tokenizer/peptide_selfies_600_vocab.json')
elif config.vocab == 'helm':
tokenizer = HelmTokenizer('/home/st512/peptune/scripts/peptide-mdlm-mcts/helm_tokenizer/monomer_vocab.txt')
mdlm = Diffusion.load_from_checkpoint(config.eval.checkpoint_path, config=config, tokenizer=tokenizer, strict=False)
mdlm.eval()
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
mdlm.to(device)
print("loaded models...")
analyzer = PeptideAnalyzer()
# proteins
amhr = 'MLGSLGLWALLPTAVEAPPNRRTCVFFEAPGVRGSTKTLGELLDTGTELPRAIRCLYSRCCFGIWNLTQDRAQVEMQGCRDSDEPGCESLHCDPSPRAHPSPGSTLFTCSCGTDFCNANYSHLPPPGSPGTPGSQGPQAAPGESIWMALVLLGLFLLLLLLLGSIILALLQRKNYRVRGEPVPEPRPDSGRDWSVELQELPELCFSQVIREGGHAVVWAGQLQGKLVAIKAFPPRSVAQFQAERALYELPGLQHDHIVRFITASRGGPGRLLSGPLLVLELHPKGSLCHYLTQYTSDWGSSLRMALSLAQGLAFLHEERWQNGQYKPGIAHRDLSSQNVLIREDGSCAIGDLGLALVLPGLTQPPAWTPTQPQGPAAIMEAGTQRYMAPELLDKTLDLQDWGMALRRADIYSLALLLWEILSRCPDLRPDSSPPPFQLAYEAELGNTPTSDELWALAVQERRRPYIPSTWRCFATDPDGLRELLEDCWDADPEARLTAECVQQRLAALAHPQESHPFPESCPRGCPPLCPEDCTSIPAPTILPCRPQRSACHFSVQQGPCSRNPQPACTLSPV'
tfr = 'MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLAVDEEENADNNTKANVTKPKRCSGSICYGTIAVIVFFLIGFMIGYLGYCKGVEPKTECERLAGTESPVREEPGEDFPAARRLYWDDLKRKLSEKLDSTDFTGTIKLLNENSYVPREAGSQKDENLALYVENQFREFKLSKVWRDQHFVKIQVKDSAQNSVIIVDKNGRLVYLVENPGGYVAYSKAATVTGKLVHANFGTKKDFEDLYTPVNGSIVIVRAGKITFAEKVANAESLNAIGVLIYMDQTKFPIVNAELSFFGHAHLGTGDPYTPGFPSFNHTQFPPSRSSGLPNIPVQTISRAAAEKLFGNMEGDCPSDWKTDSTCRMVTSESKNVKLTVSNVLKEIKILNIFGVIKGFVEPDHYVVVGAQRDAWGPGAAKSGVGTALLLKLAQMFSDMVLKDGFQPSRSIIFASWSAGDFGSVGATEWLEGYLSSLHLKAFTYINLDKAVLGTSNFKVSASPLLYTLIEKTMQNVKHPVTGQFLYQDSNWASKVEKLTLDNAAFPFLAYSGIPAVSFCFCEDTDYPYLGTTMDTYKELIERIPELNKVARAAAEVAGQFVIKLTHDVELNLDYERYNSQLLSFVRDLNQYRADIKEMGLSLQWLYSARGDFFRATSRLTTDFGNAEKTDRFVMKKLNDRVMRVEYHFLSPYVSPKESPFRHVFWGSGSHTLPALLENLKLRKQNNGAFNETLFRNQLALATWTIQGAANALSGDVWDIDNEF'
gfap = 'MERRRITSAARRSYVSSGEMMVGGLAPGRRLGPGTRLSLARMPPPLPTRVDFSLAGALNAGFKETRASERAEMMELNDRFASYIEKVRFLEQQNKALAAELNQLRAKEPTKLADVYQAELRELRLRLDQLTANSARLEVERDNLAQDLATVRQKLQDETNLRLEAENNLAAYRQEADEATLARLDLERKIESLEEEIRFLRKIHEEEVRELQEQLARQQVHVELDVAKPDLTAALKEIRTQYEAMASSNMHEAEEWYRSKFADLTDAAARNAELLRQAKHEANDYRRQLQSLTCDLESLRGTNESLERQMREQEERHVREAASYQEALARLEEEGQSLKDEMARHLQEYQDLLNVKLALDIEIATYRKLLEGEENRITIPVQTFSNLQIRETSLDTKSVSEGHLKRNIVVKTVEMRDGEVIKESKQEHKDVM'
glp1 = 'MAGAPGPLRLALLLLGMVGRAGPRPQGATVSLWETVQKWREYRRQCQRSLTEDPPPATDLFCNRTFDEYACWPDGEPGSFVNVSCPWYLPWASSVPQGHVYRFCTAEGLWLQKDNSSLPWRDLSECEESKRGERSSPEEQLLFLYIIYTVGYALSFSALVIASAILLGFRHLHCTRNYIHLNLFASFILRALSVFIKDAALKWMYSTAAQQHQWDGLLSYQDSLSCRLVFLLMQYCVAANYYWLLVEGVYLYTLLAFSVLSEQWIFRLYVSIGWGVPLLFVVPWGIVKYLYEDEGCWTRNSNMNYWLIIRLPILFAIGVNFLIFVRVICIVVSKLKANLMCKTDIKCRLAKSTLTLIPLLGTHEVIFAFVMDEHARGTLRFIKLFTELSFTSFQGLMVAILYCFVNNEVQLEFRKSWERWRLEHLHIQRDSSMKPLKCPTSSLSSGATAGSSMYTATCQASCS'
glast = 'MTKSNGEEPKMGGRMERFQQGVRKRTLLAKKKVQNITKEDVKSYLFRNAFVLLTVTAVIVGTILGFTLRPYRMSYREVKYFSFPGELLMRMLQMLVLPLIISSLVTGMAALDSKASGKMGMRAVVYYMTTTIIAVVIGIIIVIIIHPGKGTKENMHREGKIVRVTAADAFLDLIRNMFPPNLVEACFKQFKTNYEKRSFKVPIQANETLVGAVINNVSEAMETLTRITEELVPVPGSVNGVNALGLVVFSMCFGFVIGNMKEQGQALREFFDSLNEAIMRLVAVIMWYAPVGILFLIAGKIVEMEDMGVIGGQLAMYTVTVIVGLLIHAVIVLPLLYFLVTRKNPWVFIGGLLQALITALGTSSSSATLPITFKCLEENNGVDKRVTRFVLPVGATINMDGTALYEALAAIFIAQVNNFELNFGQIITISITATAASIGAAGIPQAGLVTMVIVLTSVGLPTDDITLIIAVDWFLDRLRTTTNVLGDSLGAGIVEHLSRHELKNRDVEMGNSVIEENEMKKPYQLIAQDNETEKPIDSETKM'
ncam = 'LQTKDLIWTLFFLGTAVSLQVDIVPSQGEISVGESKFFLCQVAGDAKDKDISWFSPNGEKLTPNQQRISVVWNDDSSSTLTIYNANIDDAGIYKCVVTGEDGSESEATVNVKIFQKLMFKNAPTPQEFREGEDAVIVCDVVSSLPPTIIWKHKGRDVILKKDVRFIVLSNNYLQIRGIKKTDEGTYRCEGRILARGEINFKDIQVIVNVPPTIQARQNIVNATANLGQSVTLVCDAEGFPEPTMSWTKDGEQIEQEEDDEKYIFSDDSSQLTIKKVDKNDEAEYICIAENKAGEQDATIHLKVFAKPKITYVENQTAMELEEQVTLTCEASGDPIPSITWRTSTRNISSEEKASWTRPEKQETLDGHMVVRSHARVSSLTLKSIQYTDAGEYICTASNTIGQDSQSMYLEVQYAPKLQGPVAVYTWEGNQVNITCEVFAYPSATISWFRDGQLLPSSNYSNIKIYNTPSASYLEVTPDSENDFGNYNCTAVNRIGQESLEFILVQADTPSSPSIDQVEPYSSTAQVQFDEPEATGGVPILKYKAEWRAVGEEVWHSKWYDAKEASMEGIVTIVGLKPETTYAVRLAALNGKGLGEISAASEF'
cereblon = 'MAGEGDQQDAAHNMGNHLPLLPAESEEEDEMEVEDQDSKEAKKPNIINFDTSLPTSHTYLGADMEEFHGRTLHDDDSCQVIPVLPQVMMILIPGQTLPLQLFHPQEVSMVRNLIQKDRTFAVLAYSNVQEREAQFGTTAEIYAYREEQDFGIEIVKVKAIGRQRFKVLELRTQSDGIQQAKVQILPECVLPSTMSAVQLESLNKCQIFPSKPVSREDQCSYKWWQKYQKRKFHCANLTSWPRWLYSLYDAETLMDRIKKQLREWDENLKDDSLPSNPIDFSYRVAACLPIDDVLRIQLLKIGSAIQRLRCELDIMNKCTSLCCKQCQETEITTKNEIFSLSLCGPMAAYVNPHGYVHETLTVYKACNLNLIGRPSTEHSWFPGYAWTVAQCKICASHIGWKFTATKKDMSPQKFWGLTRSALLPTIPDTEDEISPDKVILCL'
ligase = 'MASQPPEDTAESQASDELECKICYNRYNLKQRKPKVLECCHRVCAKCLYKIIDFGDSPQGVIVCPFCRFETCLPDDEVSSLPDDNNILVNLTCGGKGKKCLPENPTELLLTPKRLASLVSPSHTSSNCLVITIMEVQRESSPSLSSTPVVEFYRPASFDSVTTVSHNWTVWNCTSLLFQTSIRVLVWLLGLLYFSSLPLGIYLLVSKKVTLGVVFVSLVPSSLVILMVYGFCQCVCHEFLDCMAPPS'
skp2 = 'MHRKHLQEIPDLSSNVATSFTWGWDSSKTSELLSGMGVSALEKEEPDSENIPQELLSNLGHPESPPRKRLKSKGSDKDFVIVRRPKLNRENFPGVSWDSLPDELLLGIFSCLCLPELLKVSGVCKRWYRLASDESLWQTLDLTGKNLHPDVTGRLLSQGVIAFRCPRSFMDQPLAEHFSPFRVQHMDLSNSVIEVSTLHGILSQCSKLQNLSLEGLRLSDPIVNTLAKNSNLVRLNLSGCSGFSEFALQTLLSSCSRLDELNLSWCFDFTEKHVQVAVAHVSETITQLNLSGYRKNLQKSDLSTLVRRCPNLVHLDLSDSVMLKNDCFQEFFQLNYLQHLSLSRCYDIIPETLLELGEIPTLKTLQVFGIVPDGTLQLLKEALPHLQINCSHFTTIARPTIGNKKNQEIWGIKCRLTLQKPSCL'
paretoFront, input_array = generate_valid_mcts(config, mdlm, gfap, None, filename, prot_name1, None)
generation_results = []
for sequence, v in paretoFront.items():
generated_array = v['token_ids'].to(mdlm.device)
# compute perplexity
perplexity = mdlm.compute_masked_perplexity(generated_array, input_array['input_ids'])
perplexity = round(perplexity, 4)
aa_seq, seq_length = analyzer.analyze_structure(sequence)
scores = v['scores']
if config.mcts.single == False:
binding1 = scores[0]
solubility = scores[1]
hemo = scores[2]
nonfouling = scores[3]
if config.mcts.perm:
permeability = scores[4]
generation_results.append([sequence, perplexity, aa_seq, binding1, solubility, hemo, nonfouling, permeability])
print(f"perplexity: {perplexity} | length: {seq_length} | smiles sequence: {sequence} | amino acid sequence: {aa_seq} | Binding Affinity: {binding1} | Solubility: {solubility} | Hemolysis: {hemo} | Nonfouling: {nonfouling} | Permeability: {permeability}")
elif config.mcts.dual:
binding2 = scores[4]
generation_results.append([sequence, perplexity, aa_seq, binding1, binding2, solubility, hemo, nonfouling])
print(f"perplexity: {perplexity} | length: {seq_length} | smiles sequence: {sequence} | amino acid sequence: {aa_seq} | Binding Affinity 1: {binding1} | Binding Affinity 2: {binding2} | Solubility: {solubility} | Hemolysis: {hemo} | Nonfouling: {nonfouling}")
elif config.mcts.single:
permeability = scores[0]
else:
generation_results.append([sequence, perplexity, aa_seq, binding1, solubility, hemo, nonfouling])
print(f"perplexity: {perplexity} | length: {seq_length} | smiles sequence: {sequence} | amino acid sequence: {aa_seq} | Binding Affinity: {binding1} | Solubility: {solubility} | Hemolysis: {hemo} | Nonfouling: {nonfouling}")
sys.stdout.flush()
if config.mcts.perm:
df = pd.DataFrame(generation_results, columns=['Generated SMILES', 'Perplexity', 'Peptide Sequence', 'Binding Affinity', 'Solubility', 'Hemolysis', 'Nonfouling', 'Permeability'])
elif config.mcts.dual:
df = pd.DataFrame(generation_results, columns=['Generated SMILES', 'Perplexity', 'Peptide Sequence', 'Binding Affinity 1', 'Binding Affinity 2', 'Solubility', 'Hemolysis', 'Nonfouling'])
elif config.mcts.single:
df = pd.DataFrame(generation_results, columns=['Generated SMILES', 'Perplexity', 'Peptide Sequence', 'Permeability'])
else:
df = pd.DataFrame(generation_results, columns=['Generated SMILES', 'Perplexity', 'Peptide Sequence', 'Binding Affinity', 'Solubility', 'Hemolysis', 'Nonfouling'])
df.to_csv(f'/home/st512/peptune/scripts/peptide-mdlm-mcts/benchmarks/{prot_name1}/{filename}.csv', index=False)
if __name__ == "__main__":
main() |