File size: 7,556 Bytes
e54915d
 
 
 
d65f3a2
e54915d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

import re
import torch

from .utils import utils
    
from torch.utils.data import Dataset, DataLoader
import lightning.pytorch as pl
from functools import partial
import sys

class CustomDataset(Dataset):
    def __init__(self, dataset, indices):
        self.dataset = dataset
        self.indices = indices

    def __len__(self):
        return len(self.indices)

    def __getitem__(self, idx):
        actual_idx = int(self.indices[idx])
        item = self.dataset[actual_idx]
        return item


# for weighting losses of peptide bonds
def peptide_bond_mask(smiles_list):
    """
    Returns a mask with shape (batch_size, seq_length) that has 1 at the locations
    of recognized bonds in the positions dictionary and 0 elsewhere.

    Args:
        smiles_list: List of peptide SMILES strings (batch of SMILES strings).

    Returns:
        np.ndarray: A mask of shape (batch_size, seq_length) with 1s at bond positions.
    """
    # Initialize the batch mask
    batch_size = len(smiles_list)
    max_seq_length = max(len(smiles) for smiles in smiles_list)  # Find the longest SMILES
    mask = torch.zeros((batch_size, max_seq_length), dtype=torch.int)  # Mask filled with zeros

    bond_patterns = [
        (r'OC\(=O\)', 'ester'),
        (r'N\(C\)C\(=O\)', 'n_methyl'),
        (r'N[12]C\(=O\)', 'peptide'),  # Pro peptide bonds
        (r'NC\(=O\)', 'peptide'),  # Regular peptide bonds
        (r'C\(=O\)N\(C\)', 'n_methyl'),
        (r'C\(=O\)N[12]?', 'peptide')
    ]

    for batch_idx, smiles in enumerate(smiles_list):
        positions = []
        used = set()

        # Identify bonds
        for pattern, bond_type in bond_patterns:
            for match in re.finditer(pattern, smiles):
                if not any(p in range(match.start(), match.end()) for p in used):
                    positions.append({
                        'start': match.start(),
                        'end': match.end(),
                        'type': bond_type,
                        'pattern': match.group()
                    })
                    used.update(range(match.start(), match.end()))

        # Update the mask for the current SMILES
        for pos in positions:
            mask[batch_idx, pos['start']:pos['end']] = 1

    return mask

def peptide_token_mask(smiles_list, token_lists):
    """
    Returns a mask with shape (batch_size, num_tokens) that has 1 for tokens
    where any part of the token overlaps with a peptide bond, and 0 elsewhere.

    Args:
        smiles_list: List of peptide SMILES strings (batch of SMILES strings).
        token_lists: List of tokenized SMILES strings (split into tokens).

    Returns:
        np.ndarray: A mask of shape (batch_size, num_tokens) with 1s for peptide bond tokens.
    """
    # Initialize the batch mask
    batch_size = len(smiles_list)
    token_seq_length = max(len(tokens) for tokens in token_lists)  # Find the longest tokenized sequence
    tokenized_masks = torch.zeros((batch_size, token_seq_length), dtype=torch.int)  # Mask filled with zeros
    atomwise_masks = peptide_bond_mask(smiles_list)

 
    for batch_idx, atomwise_mask in enumerate(atomwise_masks):
        token_seq = token_lists[batch_idx]
        atom_idx = 0
        
        for token_idx, token in enumerate(token_seq):
            if token_idx != 0 and token_idx != len(token_seq) - 1:
                if torch.sum(atomwise_mask[atom_idx:atom_idx+len(token)]) >= 1:
                    tokenized_masks[batch_idx][token_idx] = 1
                atom_idx += len(token)
    
    return tokenized_masks

def extract_amino_acid_sequence(helm_string):
    """
    Extracts the amino acid sequence from a HELM peptide notation and outputs it as an array,
    removing any brackets around each amino acid.

    Args:
        helm_string (str): The HELM notation string for a peptide.

    Returns:
        list: A list containing each amino acid in sequence without brackets.
    """
    # Use regex to find the pattern within `{}` brackets following "PEPTIDE" followed by a number
    matches = re.findall(r'PEPTIDE\d+\{([^}]+)\}', helm_string)
    
    if matches:
        # Join all matched sequences and split by dots to get individual amino acids
        amino_acid_sequence = []
        for match in matches:
            sequence = match.replace('[', '').replace(']', '').split('.')
            amino_acid_sequence.extend(sequence)
        return amino_acid_sequence
    else:
        return "Invalid HELM notation or no peptide sequence found."
    
def helm_collate_fn(batch, tokenizer):
    sequences = [item['HELM'] for item in batch]
    
    max_len = 0
    for sequence in sequences:
        seq_len = len(extract_amino_acid_sequence(sequence))
        if seq_len > max_len:
            max_len = seq_len
    
    tokens = tokenizer(sequences, return_tensors='pt', padding=True, truncation=True, max_length=1024)
    
    return {
        'input_ids': tokens['input_ids'],
        'attention_mask': tokens['attention_mask']
    }
    
    
def collate_fn(batch, tokenizer):
    """Standard data collator that truncates/pad sequences based on max_length"""
    valid_sequences = []
    valid_items = []
    
    for item in batch: 
        try:
            test_tokens = tokenizer([item['SMILES']], return_tensors='pt', padding=False, truncation=True, max_length=1035)
            valid_sequences.append(item['SMILES'])
            valid_items.append(item)
        except Exception as e:
            print(f"Skipping sequence due to: {str(e)}")
            continue
    
    #sequences = [item['SMILES'] for item in batch]
    #max_len = max([len(seq) for seq in sequences])
    #labels = torch.tensor([item['labels'] for item in batch], dtype=torch.float32)

    tokens = tokenizer(valid_sequences, return_tensors='pt', padding=True, truncation=True, max_length=1035)
    
    token_array = tokenizer.get_token_split(tokens['input_ids'])
    bond_mask = peptide_token_mask(valid_sequences, token_array)
    #attention_masks = torch.ones(tokens.size()[:2], dtype=torch.bool)

    return {
        'input_ids': tokens['input_ids'],
        'attention_mask': tokens['attention_mask'],
        'bond_mask': bond_mask
    }
        

class CustomDataModule(pl.LightningDataModule):
    def __init__(self, train_dataset, val_dataset, test_dataset, tokenizer, batch_size, collate_fn=collate_fn):
        super().__init__()
        self.train_dataset = train_dataset
        self.val_dataset = val_dataset
        #self.test_dataset = test_dataset
        self.batch_size = batch_size
        self.tokenizer = tokenizer
        self.collate_fn = collate_fn

    def train_dataloader(self):
        return DataLoader(self.train_dataset, 
                          batch_size=self.batch_size,
                          collate_fn=partial(self.collate_fn, tokenizer=self.tokenizer),
                          num_workers=8, 
                          pin_memory=True
                          )
    

    def val_dataloader(self):
        return DataLoader(self.val_dataset, 
                          batch_size=self.batch_size,
                          collate_fn=partial(self.collate_fn, tokenizer=self.tokenizer),
                          num_workers=8, 
                          pin_memory=True
                          )
  
    """def test_dataloader(self):
        return DataLoader(self.test_dataset, batch_size=self.batch_size,
                          collate_fn=partial(self.collate_fn, tokenizer=self.tokenizer),
                          num_workers=8, pin_memory=True)"""