Question Answering
Safetensors
English
llava_llama
shoubornowpi commited on
Commit
4e501e3
verified
1 Parent(s): 1f84cd0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -6
README.md CHANGED
@@ -1,6 +1,80 @@
1
- ---
2
- license: other
3
- license_name: hippocratic-license
4
- license_link: >-
5
- https://firstdonoharm.dev/version/3/0/cl-eco-extr-ffd-law-media-mil-my-soc-sv-tal-usta.html
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: hippocratic-license
4
+ license_link: >-
5
+ https://firstdonoharm.dev/version/3/0/cl-eco-extr-ffd-law-media-mil-my-soc-sv-tal-usta.html
6
+ ---
7
+
8
+ # LLaSA-7B
9
+
10
+ LLaSA-7B is a large language and sensor assistant that can interpret IMU data for human activities.
11
+
12
+ ## Abstract
13
+
14
+ Wearable systems can recognize activities from IMU data but often fail to explain their underlying causes or contextual significance. To address this limitation, we introduce two large-scale resources: SensorCap, comprising 35,960 IMU--caption pairs, and OpenSQA, with 199,701 question--answer pairs designed for causal and explanatory reasoning. OpenSQA includes a curated tuning split (Tune-OpenSQA) optimized for scientific accuracy, narrative clarity, and diagnostic insight. Leveraging these datasets, we develop LLaSA (Large Language and Sensor Assistant), a family of compact sensor-aware language models (7B and 13B) that generate interpretable, context-rich responses to open-ended questions grounded in raw IMU data. LLaSA outperforms commercial LLMs, including GPT-3.5 and GPT-4o-mini, on benchmark and real-world tasks, demonstrating the effectiveness of domain supervision and model alignment for sensor reasoning.
15
+
16
+ ### Model Summary
17
+
18
+
19
+
20
+ - **Developed by:** BASH Lab, WPI
21
+ - **Model type:** sensor-text-to-text
22
+ - **Language(s) (NLP):** English
23
+ - **Finetuned from model:** lmsys/vicuna-13b-v1.5-16K
24
+
25
+ ### Model Sources
26
+
27
+ - **Repository:** https://github.com/BASHLab/LLaSA
28
+ - **Paper:** https://arxiv.org/abs/2406.14498
29
+ - **Project Website:** https://bashlab.github.io/llasa_project/
30
+
31
+ ### Usage
32
+
33
+ ```bash
34
+ git clone https://github.com/BASHLab/LLaSA.git
35
+ cd LLaSA/LLaSA
36
+ pip install -e .
37
+ hf download BASH-Lab/LLaSA-7B
38
+ ```
39
+
40
+ You can run any of the inference scripts (zero-shot classification or question-answering) following the scripts in the eval subdirectory of the LLaSA GitHub repository, or you can run one sample as follows.
41
+ ```Python
42
+ from llava.eval.run_llava import eval_model
43
+ from llava.mm_utils import get_model_name_from_path
44
+
45
+
46
+ sensor_reading = "imu.npy" # 20Hz, 2 sec (shape: (120,6))
47
+ prompt = "Narrate this activity by analyzing the data."
48
+ model_path = "LLaSA-7B"
49
+ args = type('Args', (), {
50
+ "model_path": model_path,
51
+ "model_base": None,
52
+ "model_name": get_model_name_from_path(model_path),
53
+ "query": prompt,
54
+ "conv_mode": None,
55
+ "image_file": sensor_reading,
56
+ "sep": ",",
57
+ "temperature": 0,
58
+ "top_p": None,
59
+ "num_beams": 1,
60
+ "max_new_tokens": 300
61
+ })()
62
+ llasa_answer = eval_model(args)
63
+ print(llasa_answer)
64
+ ```
65
+
66
+ ## Citation
67
+
68
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
69
+
70
+ **BibTeX:**
71
+
72
+ ```
73
+ @article{imran2024llasa,
74
+ title={LLaSA: A Sensor-Aware LLM for Natural Language Reasoning of Human Activity from IMU Data},
75
+ author={Imran, Sheikh Asif and Khan, Mohammad Nur Hossain and Biswas, Subrata and Islam, Bashima},
76
+ journal={arXiv preprint arXiv:2406.14498},
77
+ year={2024}
78
+ }
79
+ ```
80
+