--- license: mit language: - en base_model: - distilbert/distilbert-base-uncased tags: - finance - document-classification datasets: - gretelai/synthetic_pii_finance_multilingual metrics: - accuracy pipeline_tag: text-classification --- # 📄 Finance Document Classification A fine-tuned DistilBERT model for classifying finance-related documents. This model is based on `distilbert-base-uncased` and fine-tuned on the English subset of the Synthetic PII Finance Multilingual dataset. It is suitable for multi-class document classification tasks in the finance domain. ## Model Details - **Base Model:** distilbert-base-uncased - **Task:** Multi-class finance document classification - **Language:** English - **Dataset:** Synthetic PII Finance Multilingual (English subset) - **Framework:** Hugging Face Transformers ## Metrics | Metric | Score | |-------------|---------| | Accuracy | 98.65% | | Precision | 98.70% | | Recall | 98.65% | | F1 | 98.65% | ## How to Use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model_id = "Ar86Bat/Finance-Document-Text-Classification" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained(model_id) text = "Client requested details about investment restrictions." inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = model(**inputs) probs = torch.nn.functional.softmax(outputs.logits, dim=-1) pred_id = torch.argmax(probs, dim=1).item() print("Predicted class ID:", pred_id) ``` ## Intended Uses & Limitations - **Intended use:** Automated classification of finance-related documents for compliance, organization, or workflow automation. - **Not suitable for:** Non-financial or out-of-domain documents without further fine-tuning. ## Example API Usage This model can be served via FastAPI or other REST frameworks. Example request/response: **Request:** ```json { "text": "Client requested details about investment restrictions." } ``` **Response:** ```json { "label": "Investment Restrictions", "confidence": 0.987 } ``` ## Citation If you use this model, please cite the repository: ``` @misc{ar86bat_finance_doc_classification_2025, author = {Arif Hizlan}, title = {Finance Document Text Classification}, year = {2025}, howpublished = {\\url{https://huggingface.co/Ar86Bat/Finance-Document-Text-Classification}} } ``` ## License MIT License