Parameter counts and some explanation
Browse files- README.md +44 -3
- count_params.py +28 -0
README.md
CHANGED
|
@@ -1,3 +1,44 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
tags:
|
| 4 |
+
- machine-learning
|
| 5 |
+
- reinforcement-learning
|
| 6 |
+
- sokoban
|
| 7 |
+
- planning
|
| 8 |
+
license: apache-2.0
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# Trained learned planners
|
| 12 |
+
|
| 13 |
+
This repository contains the trained networks from the paper ["Planning behavior in a recurrent neural network that
|
| 14 |
+
plays Sokoban"](https://openreview.net/forum?id=T9sB3S2hok), presented at the ICML 2024 Mechanistic Interpretability
|
| 15 |
+
Workshop.
|
| 16 |
+
|
| 17 |
+
To load and use the NNs, please refer to the [learned-planner
|
| 18 |
+
repository](http://github.com/alignmentresearch/learned-planner), and possibly to the [training code
|
| 19 |
+
](https://github.com/AlignmentResearch/train-learned-planner).
|
| 20 |
+
|
| 21 |
+
# Model details
|
| 22 |
+
|
| 23 |
+
**Hyperparameters:** see `model/*/cp_*/cfg.json` for the hyperparameters that were used to train a particular run.
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
## Parameter counts:
|
| 27 |
+
|
| 28 |
+
- DRC(3, 3): 1,285,125 (1.29M)
|
| 29 |
+
- DRC(1, 1): 987,525 (0.99M)
|
| 30 |
+
- ResNet: 3,068,421 (3.07M)
|
| 31 |
+
|
| 32 |
+
# Citation
|
| 33 |
+
|
| 34 |
+
If you use these neural networks, please cite our work:
|
| 35 |
+
|
| 36 |
+
```bibtex
|
| 37 |
+
@inproceedings{TODO: add your citation here,
|
| 38 |
+
title={Planning behavior in a recurrent neural network that plays Sokoban},
|
| 39 |
+
author={Your Authors},
|
| 40 |
+
booktitle={ICML 2024 Mechanistic Interpretability Workshop},
|
| 41 |
+
year={2024},
|
| 42 |
+
url={https://openreview.net/forum?id=T9sB3S2hok}
|
| 43 |
+
}
|
| 44 |
+
```
|
count_params.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
|
| 5 |
+
import farconf
|
| 6 |
+
from cleanba.config import Args
|
| 7 |
+
from cleanba.environments import SokobanConfig
|
| 8 |
+
|
| 9 |
+
soko_env = SokobanConfig(
|
| 10 |
+
max_episode_steps=100, num_envs=1, dim_room=(10, 10), num_boxes=1, asynchronous=False, tinyworld_obs=True
|
| 11 |
+
).make()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def parameter_count(root: Path) -> str:
|
| 15 |
+
model_dir = os.listdir(root)[0]
|
| 16 |
+
cp_dir = os.listdir(root / model_dir)[0]
|
| 17 |
+
|
| 18 |
+
with open(root / model_dir / cp_dir / "cfg.json", "r") as f:
|
| 19 |
+
cfg = json.load(f)
|
| 20 |
+
|
| 21 |
+
args = farconf.from_dict(cfg["cfg"], Args)
|
| 22 |
+
num = args.net.count_params(soko_env)
|
| 23 |
+
return f"{num:,} ({num/1_000_000:.2f}M)"
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
print("- DRC(3, 3): ", parameter_count(Path("drc33")))
|
| 27 |
+
print("- DRC(1, 1): ", parameter_count(Path("drc11")))
|
| 28 |
+
print("- ResNet: ", parameter_count(Path("resnet")))
|