Upload model code
Browse files
    	
        model.py
    ADDED
    
    | 
         @@ -0,0 +1,60 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 3 | 
         
            +
            from huggingface_hub import PyTorchModelHubMixin
         
     | 
| 4 | 
         
            +
            from torch import nn
         
     | 
| 5 | 
         
            +
            from torchvision import models
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            class ICN(nn.Module, PyTorchModelHubMixin):
         
     | 
| 9 | 
         
            +
                def __init__(self):
         
     | 
| 10 | 
         
            +
                    super().__init__()
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
                    cnn = models.resnet50(pretrained=False)
         
     | 
| 13 | 
         
            +
                    self.cnn_head = nn.Sequential(
         
     | 
| 14 | 
         
            +
                        *list(cnn.children())[:4],
         
     | 
| 15 | 
         
            +
                        *list(list(list(cnn.children())[4].children())[0].children())[:4],
         
     | 
| 16 | 
         
            +
                    )
         
     | 
| 17 | 
         
            +
                    self.cnn_tail = nn.Sequential(
         
     | 
| 18 | 
         
            +
                        *list(list(cnn.children())[4].children()
         
     | 
| 19 | 
         
            +
                              )[1:], *list(cnn.children())[5:-2]
         
     | 
| 20 | 
         
            +
                    )
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
                    self.conv1 = nn.Conv2d(128, 256, 3, padding=1)
         
     | 
| 23 | 
         
            +
                    self.bn1 = nn.BatchNorm2d(num_features=256)
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                    self.fc1 = nn.Linear(2048 * 7 * 7, 256)
         
     | 
| 26 | 
         
            +
                    self.fc2 = nn.Linear(256, 7 * 7)
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                    self.cls_fc = nn.Linear(256, 3)
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                    self.criterion = nn.CrossEntropyLoss()
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
                def forward(self, x):
         
     | 
| 33 | 
         
            +
                    # Input: [-1, 6, 224, 224]
         
     | 
| 34 | 
         
            +
                    real = x[:, :3, :, :]
         
     | 
| 35 | 
         
            +
                    fake = x[:, 3:, :, :]
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                    # Push both images through pretrained backbone
         
     | 
| 38 | 
         
            +
                    real_features = F.relu(self.cnn_head(real))  # [-1, 64, 56, 56]
         
     | 
| 39 | 
         
            +
                    fake_features = F.relu(self.cnn_head(fake))  # [-1, 64, 56, 56]
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                    # [-1, 128, 56, 56]
         
     | 
| 42 | 
         
            +
                    combined = torch.cat((real_features, fake_features), 1)
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                    x = self.conv1(combined)  # [-1, 256, 56, 56]
         
     | 
| 45 | 
         
            +
                    x = self.bn1(x)
         
     | 
| 46 | 
         
            +
                    x = F.relu(x)
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
                    x = self.cnn_tail(x)
         
     | 
| 49 | 
         
            +
                    x = x.view(-1, 2048 * 7 * 7)
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                    # Final feature [-1, 256]
         
     | 
| 52 | 
         
            +
                    d = F.relu(self.fc1(x))
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
                    # Heatmap [-1, 49]
         
     | 
| 55 | 
         
            +
                    grid = self.fc2(d)
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                    # Classifier [-1, 1]
         
     | 
| 58 | 
         
            +
                    cl = self.cls_fc(d)
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
                    return grid, cl
         
     |