| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						import cv2 | 
					
					
						
						| 
							 | 
						import time | 
					
					
						
						| 
							 | 
						import argparse | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						import onnxruntime as ort | 
					
					
						
						| 
							 | 
						import _thread | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torch.nn.functional as F | 
					
					
						
						| 
							 | 
						import ms_ssim | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from tqdm import tqdm | 
					
					
						
						| 
							 | 
						from queue import Queue, Empty | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						parser = argparse.ArgumentParser(description='Interpolation for a pair of images') | 
					
					
						
						| 
							 | 
						parser.add_argument('--video', dest='video', type=str, default='./demo.mp4') | 
					
					
						
						| 
							 | 
						parser.add_argument('--output', dest='output', type=str, default=None) | 
					
					
						
						| 
							 | 
						parser.add_argument('--img', dest='img', type=str, default=None) | 
					
					
						
						| 
							 | 
						parser.add_argument('--montage', dest='montage', action='store_true', help='montage origin video') | 
					
					
						
						| 
							 | 
						parser.add_argument('--model', dest='model', type=str, default=None, help='directory with trained model files') | 
					
					
						
						| 
							 | 
						parser.add_argument('--fp16', dest='fp16', action='store_true', help='fp16 mode for faster and more lightweight inference on cards with Tensor Cores') | 
					
					
						
						| 
							 | 
						parser.add_argument('--UHD', dest='UHD', action='store_true', help='support 4k video') | 
					
					
						
						| 
							 | 
						parser.add_argument('--scale', dest='scale', type=float, default=1.0, help='Try scale=0.5 for 4k video') | 
					
					
						
						| 
							 | 
						parser.add_argument('--skip', dest='skip', action='store_true', help='whether to remove static frames before processing') | 
					
					
						
						| 
							 | 
						parser.add_argument('--fps', dest='fps', type=int, default=None) | 
					
					
						
						| 
							 | 
						parser.add_argument('--png', dest='png', action='store_true', help='whether to vid_out png format vid_outs') | 
					
					
						
						| 
							 | 
						parser.add_argument('--ext', dest='ext', type=str, default='mp4', help='vid_out video extension') | 
					
					
						
						| 
							 | 
						parser.add_argument('--exp', dest='exp', type=int, default=1) | 
					
					
						
						| 
							 | 
						parser.add_argument('--multi', dest='multi', type=int, default=2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def read_video(video_path): | 
					
					
						
						| 
							 | 
						    cap = cv2.VideoCapture(video_path) | 
					
					
						
						| 
							 | 
						    if not cap.isOpened(): | 
					
					
						
						| 
							 | 
						        raise IOError(f"Cannot open video: {video_path}") | 
					
					
						
						| 
							 | 
						    try: | 
					
					
						
						| 
							 | 
						        while True: | 
					
					
						
						| 
							 | 
						            ret, frame = cap.read() | 
					
					
						
						| 
							 | 
						            if not ret: | 
					
					
						
						| 
							 | 
						                break | 
					
					
						
						| 
							 | 
						            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)   | 
					
					
						
						| 
							 | 
						            yield frame | 
					
					
						
						| 
							 | 
						    finally: | 
					
					
						
						| 
							 | 
						        cap.release() | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						def clear_write_buffer(user_args, write_buffer, vid_out): | 
					
					
						
						| 
							 | 
						    cnt = 0 | 
					
					
						
						| 
							 | 
						    while True: | 
					
					
						
						| 
							 | 
						        item = write_buffer.get() | 
					
					
						
						| 
							 | 
						        if item is None: | 
					
					
						
						| 
							 | 
						            break | 
					
					
						
						| 
							 | 
						        if user_args.png: | 
					
					
						
						| 
							 | 
						            cv2.imwrite('vid_out/{:0>7d}.png'.format(cnt), item[:, :, ::-1]) | 
					
					
						
						| 
							 | 
						            cnt += 1 | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            vid_out.write(item[:, :, ::-1]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def build_read_buffer(user_args, read_buffer, videogen): | 
					
					
						
						| 
							 | 
						    try: | 
					
					
						
						| 
							 | 
						        for frame in videogen: | 
					
					
						
						| 
							 | 
						            if not user_args.img is None: | 
					
					
						
						| 
							 | 
						                frame = cv2.imread(os.path.join(user_args.img, frame), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy() | 
					
					
						
						| 
							 | 
						            if user_args.montage: | 
					
					
						
						| 
							 | 
						                frame = frame[:, left: left + w] | 
					
					
						
						| 
							 | 
						            read_buffer.put(frame) | 
					
					
						
						| 
							 | 
						    except: | 
					
					
						
						| 
							 | 
						        pass | 
					
					
						
						| 
							 | 
						    read_buffer.put(None) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						def pad_image(img, padding): | 
					
					
						
						| 
							 | 
						    if(args.fp16): | 
					
					
						
						| 
							 | 
						        return F.pad(img, padding).half() | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        return F.pad(img, padding) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						def run(args): | 
					
					
						
						| 
							 | 
						    '''onnx inference''' | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    session = ort.InferenceSession(args.model, providers=['CPUExecutionProvider']) | 
					
					
						
						| 
							 | 
						    output_names = [x.name for x in session.get_outputs()] | 
					
					
						
						| 
							 | 
						    input_name = session.get_inputs()[0].name  | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    videoCapture = cv2.VideoCapture(args.video) | 
					
					
						
						| 
							 | 
						    fps = videoCapture.get(cv2.CAP_PROP_FPS) | 
					
					
						
						| 
							 | 
						    tot_frame = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT) | 
					
					
						
						| 
							 | 
						    videoCapture.release() | 
					
					
						
						| 
							 | 
						    if args.fps is None: | 
					
					
						
						| 
							 | 
						        fpsNotAssigned = True | 
					
					
						
						| 
							 | 
						        args.fps = fps * args.multi | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        fpsNotAssigned = False | 
					
					
						
						| 
							 | 
						    videogen = read_video(args.video) | 
					
					
						
						| 
							 | 
						    lastframe = next(videogen) | 
					
					
						
						| 
							 | 
						    fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') | 
					
					
						
						| 
							 | 
						    video_path_wo_ext, ext = os.path.splitext(args.video) | 
					
					
						
						| 
							 | 
						    print('{}.{}, {} frames in total, {}FPS to {}FPS'.format(video_path_wo_ext, args.ext, tot_frame, fps, args.fps)) | 
					
					
						
						| 
							 | 
						    if args.png == False and fpsNotAssigned == True: | 
					
					
						
						| 
							 | 
						        print("The audio will be merged after interpolation process") | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        print("Will not merge audio because using png or fps flag!") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    h, w, _ = lastframe.shape | 
					
					
						
						| 
							 | 
						    vid_out_name = None | 
					
					
						
						| 
							 | 
						    vid_out = None | 
					
					
						
						| 
							 | 
						    if args.png: | 
					
					
						
						| 
							 | 
						        if not os.path.exists('vid_out'): | 
					
					
						
						| 
							 | 
						            os.mkdir('vid_out') | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        if args.output is not None: | 
					
					
						
						| 
							 | 
						            vid_out_name = args.output | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            vid_out_name = '{}_{}X_{}fps.{}'.format(video_path_wo_ext, args.multi, int(np.round(args.fps)), args.ext) | 
					
					
						
						| 
							 | 
						        vid_out = cv2.VideoWriter(vid_out_name, fourcc, args.fps, (w, h)) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    tmp = max(128, int(128 / args.scale)) | 
					
					
						
						| 
							 | 
						    ph = ((h - 1) // tmp + 1) * tmp | 
					
					
						
						| 
							 | 
						    pw = ((w - 1) // tmp + 1) * tmp | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    padding = ((0, 0), (0, 0), (0, ph - h), (0, pw - w)) | 
					
					
						
						| 
							 | 
						    pbar = tqdm(total=tot_frame, ncols=80) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    write_buffer = Queue(maxsize=500) | 
					
					
						
						| 
							 | 
						    read_buffer = Queue(maxsize=500) | 
					
					
						
						| 
							 | 
						    _thread.start_new_thread(build_read_buffer, (args, read_buffer, videogen)) | 
					
					
						
						| 
							 | 
						    _thread.start_new_thread(clear_write_buffer, (args, write_buffer, vid_out)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    I1 = np.expand_dims(np.transpose(lastframe, (2,0,1)), 0).astype(np.float32) / 255. | 
					
					
						
						| 
							 | 
						    I1 = np.pad(I1, padding) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    temp = None  | 
					
					
						
						| 
							 | 
						    while True: | 
					
					
						
						| 
							 | 
						        if temp is not None: | 
					
					
						
						| 
							 | 
						            frame = temp | 
					
					
						
						| 
							 | 
						            temp = None | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            frame = read_buffer.get() | 
					
					
						
						| 
							 | 
						        if frame is None: | 
					
					
						
						| 
							 | 
						            break | 
					
					
						
						| 
							 | 
						        I0 = I1 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        I1 = np.expand_dims(np.transpose(frame, (2,0,1)), 0).astype(np.float32) / 255. | 
					
					
						
						| 
							 | 
						        I1 = np.pad(I1, padding) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        I0_small = F.interpolate(torch.from_numpy(I0).float(), (32, 32), mode='bilinear', align_corners=False) | 
					
					
						
						| 
							 | 
						        I1_small = F.interpolate(torch.from_numpy(I1).float(), (32, 32), mode='bilinear', align_corners=False) | 
					
					
						
						| 
							 | 
						        ssim = ms_ssim.ssim_matlab(I0_small[:, :3], I1_small[:, :3]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        break_flag = False | 
					
					
						
						| 
							 | 
						        if ssim > 0.996:   | 
					
					
						
						| 
							 | 
						            frame = read_buffer.get()  | 
					
					
						
						| 
							 | 
						            if frame is None: | 
					
					
						
						| 
							 | 
						                break_flag = True | 
					
					
						
						| 
							 | 
						                frame = lastframe | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                temp = frame | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            I1 = np.expand_dims(np.transpose(frame, (2,0,1)), 0).astype(np.float32) / 255. | 
					
					
						
						| 
							 | 
						            I1 = np.pad(I1, padding) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            imgs = np.concatenate((I0, I1), axis=1) | 
					
					
						
						| 
							 | 
						            I1 = session.run(output_names, {input_name: imgs}) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            I1 = np.array(I1[-1]) | 
					
					
						
						| 
							 | 
						            I1_small = F.interpolate(torch.from_numpy(I1).float(), (32, 32), mode='bilinear', align_corners=False) | 
					
					
						
						| 
							 | 
						            ssim = ms_ssim.ssim_matlab(I0_small[:, :3], I1_small[:, :3]) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            frame = np.clip(I1[0] * 255, 0, 255).astype(np.uint8).transpose(1, 2, 0)[:h, :w] | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						        if ssim < 0.2: | 
					
					
						
						| 
							 | 
						            output = [] | 
					
					
						
						| 
							 | 
						            for i in range(args.multi - 1): | 
					
					
						
						| 
							 | 
						                output.append(I0) | 
					
					
						
						| 
							 | 
						            ''' | 
					
					
						
						| 
							 | 
						            output = [] | 
					
					
						
						| 
							 | 
						            step = 1 / args.multi | 
					
					
						
						| 
							 | 
						            alpha = 0 | 
					
					
						
						| 
							 | 
						            for i in range(args.multi - 1): | 
					
					
						
						| 
							 | 
						                alpha += step | 
					
					
						
						| 
							 | 
						                beta = 1-alpha | 
					
					
						
						| 
							 | 
						                output.append(torch.from_numpy(np.transpose((cv2.addWeighted(frame[:, :, ::-1], alpha, lastframe[:, :, ::-1], beta, 0)[:, :, ::-1].copy()), (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.) | 
					
					
						
						| 
							 | 
						            ''' | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            imgs = np.concatenate((I0, I1), axis=1) | 
					
					
						
						| 
							 | 
						            output = [session.run(output_names, {input_name: imgs})[-1]] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if args.montage: | 
					
					
						
						| 
							 | 
						            write_buffer.put(np.concatenate((lastframe, lastframe), 1)) | 
					
					
						
						| 
							 | 
						            for mid in output: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                mid = np.clip(mid[0] * 255, 0, 255).astype(np.uint8).transpose(1, 2, 0) | 
					
					
						
						| 
							 | 
						                write_buffer.put(np.concatenate((lastframe, mid[:h, :w]), 1)) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            write_buffer.put(lastframe) | 
					
					
						
						| 
							 | 
						            for mid in output: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                mid = np.clip(mid[0] * 255, 0, 255).astype(np.uint8).transpose(1, 2, 0) | 
					
					
						
						| 
							 | 
						                write_buffer.put(mid[:h, :w]) | 
					
					
						
						| 
							 | 
						        pbar.update(1) | 
					
					
						
						| 
							 | 
						        lastframe = frame | 
					
					
						
						| 
							 | 
						        if break_flag: | 
					
					
						
						| 
							 | 
						            break | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						    if args.montage: | 
					
					
						
						| 
							 | 
						        write_buffer.put(np.concatenate((lastframe, lastframe), 1)) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        write_buffer.put(lastframe)       | 
					
					
						
						| 
							 | 
						    write_buffer.put(None) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    while(not write_buffer.empty()): | 
					
					
						
						| 
							 | 
						        time.sleep(0.1) | 
					
					
						
						| 
							 | 
						    pbar.close() | 
					
					
						
						| 
							 | 
						    if not vid_out is None: | 
					
					
						
						| 
							 | 
						        vid_out.release() | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						if __name__ == '__main__': | 
					
					
						
						| 
							 | 
						    args = parser.parse_args() | 
					
					
						
						| 
							 | 
						    if args.exp != 1: | 
					
					
						
						| 
							 | 
						        args.multi = (2 ** args.exp) | 
					
					
						
						| 
							 | 
						    assert (not args.video is None or not args.img is None) | 
					
					
						
						| 
							 | 
						    if args.skip: | 
					
					
						
						| 
							 | 
						        print("skip flag is abandoned, please refer to issue #207.") | 
					
					
						
						| 
							 | 
						    if args.UHD and args.scale==1.0: | 
					
					
						
						| 
							 | 
						        args.scale = 0.5 | 
					
					
						
						| 
							 | 
						    assert args.scale in [0.25, 0.5, 1.0, 2.0, 4.0] | 
					
					
						
						| 
							 | 
						    if not args.img is None: | 
					
					
						
						| 
							 | 
						        args.png = True | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						    run(args) |