Updated pipeline
Browse files- tts_pipeline.py +65 -7
tts_pipeline.py
CHANGED
|
@@ -2,7 +2,26 @@ import re
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
from transformers import MimiModel, GenerationConfig
|
| 5 |
-
from transformers import Pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
class IndriTTSPipeline(Pipeline):
|
| 8 |
def __init__(self, *args, **kwargs):
|
|
@@ -18,6 +37,8 @@ class IndriTTSPipeline(Pipeline):
|
|
| 18 |
self.num_codebooks = 8
|
| 19 |
self.audio_offset = 50257
|
| 20 |
|
|
|
|
|
|
|
| 21 |
self.model.generation_config = GenerationConfig(
|
| 22 |
eos_token_id=self.stop_token,
|
| 23 |
max_length=kwargs.get('max_length', 1024),
|
|
@@ -62,21 +83,55 @@ class IndriTTSPipeline(Pipeline):
|
|
| 62 |
|
| 63 |
return acoustic_tokens
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
def preprocess(self, inputs, speaker):
|
| 66 |
-
# TODO: Check for batching
|
| 67 |
input_text = self._sanitize_text(inputs)
|
| 68 |
input_tokens = self.tokenizer.encode(input_text)
|
| 69 |
task_tokens = self._prepare_tts_tokens(input_tokens, speaker)
|
| 70 |
task_tokens = torch.tensor(task_tokens).unsqueeze(0)
|
| 71 |
|
| 72 |
-
return {'task_tokens': task_tokens}
|
| 73 |
|
| 74 |
def _forward(self, model_inputs, **forward_args):
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
for idx, inputs in enumerate(model_inputs['
|
| 80 |
truncated = outputs[idx, inputs.shape[-1]:]
|
| 81 |
end = torch.where(truncated == self.stop_token[0])[-1]
|
| 82 |
|
|
@@ -89,8 +144,11 @@ class IndriTTSPipeline(Pipeline):
|
|
| 89 |
truncated -= self.audio_offset
|
| 90 |
truncated = self._deserialize_tokens(torch.tensor(truncated), self.num_codebooks)
|
| 91 |
audio_tokens.append(truncated)
|
|
|
|
| 92 |
|
| 93 |
audio_tokens = torch.vstack(audio_tokens).unsqueeze(0)
|
|
|
|
|
|
|
| 94 |
audio = self.audio_tokenizer.decode(audio_tokens).audio_values
|
| 95 |
|
| 96 |
return {
|
|
@@ -99,4 +157,4 @@ class IndriTTSPipeline(Pipeline):
|
|
| 99 |
}
|
| 100 |
|
| 101 |
def postprocess(self, model_outputs):
|
| 102 |
-
return model_outputs
|
|
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
from transformers import MimiModel, GenerationConfig
|
| 5 |
+
from transformers import Pipeline, LogitsProcessor
|
| 6 |
+
|
| 7 |
+
class AlternatingCodebooksLogitsProcessor(LogitsProcessor):
|
| 8 |
+
def __init__(self, input_start_len: int, codebook_size: int, num_codebooks: int, offset: int, stop_token: int):
|
| 9 |
+
self.input_start_len = input_start_len
|
| 10 |
+
self.codebook_size = codebook_size
|
| 11 |
+
self.num_codebooks = num_codebooks
|
| 12 |
+
self.offset = offset
|
| 13 |
+
self.stop_token = stop_token
|
| 14 |
+
|
| 15 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
| 16 |
+
curr_len = input_ids.shape[-1]
|
| 17 |
+
codebook_idx = ((curr_len - self.input_start_len) % self.num_codebooks)
|
| 18 |
+
|
| 19 |
+
scores_processed = scores.clone()
|
| 20 |
+
scores_processed[:, : self.offset + codebook_idx * self.codebook_size] = -float("inf")
|
| 21 |
+
scores_processed[:, self.offset + (codebook_idx+1) * self.codebook_size :] = -float("inf")
|
| 22 |
+
scores_processed[:, self.stop_token] = scores[:, self.stop_token]
|
| 23 |
+
|
| 24 |
+
return scores_processed
|
| 25 |
|
| 26 |
class IndriTTSPipeline(Pipeline):
|
| 27 |
def __init__(self, *args, **kwargs):
|
|
|
|
| 37 |
self.num_codebooks = 8
|
| 38 |
self.audio_offset = 50257
|
| 39 |
|
| 40 |
+
self.model.stop_token = self.stop_token
|
| 41 |
+
|
| 42 |
self.model.generation_config = GenerationConfig(
|
| 43 |
eos_token_id=self.stop_token,
|
| 44 |
max_length=kwargs.get('max_length', 1024),
|
|
|
|
| 83 |
|
| 84 |
return acoustic_tokens
|
| 85 |
|
| 86 |
+
# TODO: Use this to support batching
|
| 87 |
+
def _prepare_mimi_batch(self, tokens, attention_mask):
|
| 88 |
+
max_len = max(token.size(1) for token in tokens)
|
| 89 |
+
|
| 90 |
+
padded_tokens = []
|
| 91 |
+
padded_masks = []
|
| 92 |
+
|
| 93 |
+
for token, mask in zip(tokens, attention_masks):
|
| 94 |
+
pad_len = max_len - token.size(1)
|
| 95 |
+
|
| 96 |
+
padded_token = F.pad(token, (0, pad_len, 0, 0), value=0)
|
| 97 |
+
padded_mask = F.pad(mask, (0, pad_len, 0, 0), value=0)
|
| 98 |
+
|
| 99 |
+
padded_tokens.append(padded_token)
|
| 100 |
+
padded_masks.append(padded_mask)
|
| 101 |
+
|
| 102 |
+
stacked_tokens = torch.stack(padded_tokens, dim=0)
|
| 103 |
+
stacked_masks = torch.stack(padded_masks, dim=0)
|
| 104 |
+
|
| 105 |
+
return stacked_tokens, stacked_masks
|
| 106 |
+
|
| 107 |
def preprocess(self, inputs, speaker):
|
|
|
|
| 108 |
input_text = self._sanitize_text(inputs)
|
| 109 |
input_tokens = self.tokenizer.encode(input_text)
|
| 110 |
task_tokens = self._prepare_tts_tokens(input_tokens, speaker)
|
| 111 |
task_tokens = torch.tensor(task_tokens).unsqueeze(0)
|
| 112 |
|
| 113 |
+
return {'input_ids': task_tokens, 'attention_mask': torch.ones_like(task_tokens)}
|
| 114 |
|
| 115 |
def _forward(self, model_inputs, **forward_args):
|
| 116 |
|
| 117 |
+
logits_processor=[
|
| 118 |
+
AlternatingCodebooksLogitsProcessor(
|
| 119 |
+
input_start_len=model_inputs['input_ids'].shape[-1],
|
| 120 |
+
codebook_size=2048,
|
| 121 |
+
num_codebooks=self.num_codebooks,
|
| 122 |
+
offset=self.audio_offset,
|
| 123 |
+
stop_token=self.stop_token
|
| 124 |
+
)
|
| 125 |
+
]
|
| 126 |
+
|
| 127 |
+
outputs = self.model.generate(
|
| 128 |
+
model_inputs['input_ids'],
|
| 129 |
+
logits_processor=logits_processor
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
audio_tokens, attention_mask = [], []
|
| 133 |
|
| 134 |
+
for idx, inputs in enumerate(model_inputs['input_ids']):
|
| 135 |
truncated = outputs[idx, inputs.shape[-1]:]
|
| 136 |
end = torch.where(truncated == self.stop_token[0])[-1]
|
| 137 |
|
|
|
|
| 144 |
truncated -= self.audio_offset
|
| 145 |
truncated = self._deserialize_tokens(torch.tensor(truncated), self.num_codebooks)
|
| 146 |
audio_tokens.append(truncated)
|
| 147 |
+
attention_mask.append(torch.ones_like(truncated))
|
| 148 |
|
| 149 |
audio_tokens = torch.vstack(audio_tokens).unsqueeze(0)
|
| 150 |
+
attention_mask = torch.vstack(attention_mask).unsqueeze(0)
|
| 151 |
+
|
| 152 |
audio = self.audio_tokenizer.decode(audio_tokens).audio_values
|
| 153 |
|
| 154 |
return {
|
|
|
|
| 157 |
}
|
| 158 |
|
| 159 |
def postprocess(self, model_outputs):
|
| 160 |
+
return model_outputs
|